Search results for: atomic process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15778

Search results for: atomic process

14818 Grey Relational Analysis Coupled with Taguchi Method for Process Parameter Optimization of Friction Stir Welding on 6061 AA

Authors: Eyob Messele Sefene, Atinkut Atinafu Yilma

Abstract:

The highest strength-to-weight ratio criterion has fascinated increasing curiosity in virtually all areas where weight reduction is indispensable. One of the recent advances in manufacturing to achieve this intention endears friction stir welding (FSW). The process is widely used for joining similar and dissimilar non-ferrous materials. In FSW, the mechanical properties of the weld joints are impelled by property-selected process parameters. This paper presents verdicts of optimum process parameters in attempting to attain enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. A butt joint configuration was employed. Process parameters, rotational speed, traverse speed or feed rate, axial force, dwell time, tool material and tool profiles were utilized. Process parameters were also optimized, making use of a mixed L18 orthogonal array and the Grey relation analysis method with larger is better quality characteristics. The mechanical properties of the weld joint are examined through the tensile test, hardness test and liquid penetrant test at ambient temperature. ANOVA was conducted in order to investigate the significant process parameters. This research shows that dwell time, rotational speed, tool shape, and traverse speed have become significant, with a joint efficiency of about 82.58%. Nine confirmatory tests are conducted, and the results indicate that the average values of the grey relational grade fall within the 99% confidence interval. Hence the experiment is proven reliable.

Keywords: friction stir welding, optimization, 6061 AA, Taguchi

Procedia PDF Downloads 101
14817 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 158
14816 New HCI Design Process Education

Authors: Jongwan Kim

Abstract:

Human Computer Interaction (HCI) is a subject covering the study, plan, and design of interactions between humans and computers. The prevalent use of digital mobile devices is increasing the need for education and research on HCI. This work is focused on a new education method geared towards reducing errors while developing application programs that incorporate role-changing brainstorming techniques during HCI design process. The proposed method has been applied to a capstone design course in the last spring semester. Students discovered some examples about UI design improvement and their error discovering and reducing capability was promoted. An UI design improvement, PC voice control for people with disabilities as an assistive technology examplar, will be presented. The improvement of these students' design ability will be helpful to the real field work.

Keywords: HCI, design process, error reducing education, role-changing brainstorming, assistive technology

Procedia PDF Downloads 490
14815 Effect of Process Variables of Wire Electrical Discharge Machining on Surface Roughness for AA-6063 by Response Surface Methodology

Authors: Deepak

Abstract:

WEDM is an amazingly potential electro-wire process for machining of hard metal compounds and metal grid composites without making contact. Wire electrical machining is a developing noncustomary machining process for machining hard to machine materials that are electrically conductive. It is an exceptionally exact, precise, and one of the most famous machining forms in nontraditional machining. WEDM has turned into the fundamental piece of many assembling process ventures, which require precision, variety, and accuracy. In the present examination, AA-6063 is utilized as a workpiece, and execution investigation is done to discover the critical control factors. Impact of different parameters like a pulse on time, pulse off time, servo voltage, peak current, water pressure, wire tension, wire feed upon surface hardness has been researched while machining on AA-6063. RSM has been utilized to advance the yield variable. A variety of execution measures with input factors was demonstrated by utilizing the response surface methodology.

Keywords: AA-6063, response surface methodology, WEDM, surface roughness

Procedia PDF Downloads 116
14814 Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy

Authors: Azimeh Rajaee, Lingyun Zhao, Shi Wang, Yaqiang Liu

Abstract:

In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy.

Keywords: molecular imaging, nanomedicine, radiotherapy, theranostics

Procedia PDF Downloads 317
14813 A Process Model for Online Trip Reservation System

Authors: Sh. Wafa, M. Alanoud, S. Liyakathunisa

Abstract:

Online booking for a trip or hotel has become an indispensable traveling tool today, people tend to be more interested in selecting air flight travel as their first choice when going for a long trip. People's shopping behavior has greatly changed by the advent of social network. Traditional ticket booking methods are considered as outdated with the advancement in tools and technology. Web based booking framework is an 'absolute necessity to have' for any visit or movement business that is investing heaps of energy noting telephone calls, sending messages or considering employing more staff. In this paper, we propose a process model for online trip reservation for our designed web application. Our proposed system will be highly beneficial and helps in reduction in time and cost for customers.

Keywords: trip, hotel, reservation, process model, time, cost, web app

Procedia PDF Downloads 214
14812 Two-Photon-Exchange Effects in the Electromagnetic Production of Pions

Authors: Hui-Yun Cao, Hai-Qing Zhou

Abstract:

The high precision measurements and experiments play more and more important roles in particle physics and atomic physics. To analyse the precise experimental data sets, the corresponding precise and reliable theoretical calculations are necessary. Until now, the form factors of elemental constituents such as pion and proton are still attractive issues in current Quantum Chromodynamics (QCD). In this work, the two-photon-exchange (TPE) effects in ep→enπ⁺ at small -t are discussed within a hadronic model. Under the pion dominance approximation and the limit mₑ→0, the TPE contribution to the amplitude can be described by a scalar function. We calculate TPE contributions to the amplitude, and the unpolarized differential cross section with the only elastic intermediate state is considered. The results show that the TPE corrections to the unpolarized differential cross section are about from -4% to -20% at Q²=1-1.6 GeV². After considering the TPE corrections to the experimental data sets of unpolarized differential cross section, we analyze the TPE corrections to the separated cross sections σ(L,T,LT,TT). We find that the TPE corrections (at Q²=1-1.6 GeV²) to σL are about from -10% to -30%, to σT are about 20%, and to σ(LT,TT) are much larger. By these analyses, we conclude that the TPE contributions in ep→enπ⁺ at small -t are important to extract the separated cross sections σ(L,T,LT,TT) and the electromagnetic form factor of π⁺ in the experimental analysis.

Keywords: differential cross section, form factor, hadronic, two-photon

Procedia PDF Downloads 133
14811 The Restoration of the Old District in the Urbanization: The Case Study of Samsen Riverside Community, Dusit District, Bangkok

Authors: Tikhanporn Punluekdej, Saowapa Phaithayawat

Abstract:

The objectives of this research are: 1) to discover the mechanism in the restoration process of the old district, and 2) to study the people participation in the community with related units. This research utilizes qualitative research method together with the tools used in the study of historical and anthropological disciplines. The research revealed that the restoration process of the old district started with the needs of the local people in the community. These people are considered as a young generation in the community. The leading group of the community played a vital role in the restoration process by igniting the whole idea and followed by the help from those who have lived in the area of more than fifty years. The restoration process is the genuine desire of the local people without the intervention of the local politics. The core group would coordinate with the related units in which there were, for instance, the academic institutions in order to find out the most dominant historical features of the community including its settlement. The Crown Property Bureau, as the sole-owner of the land, joined the restoration in the physical development dimension. The restoration was possible due to the cooperation between local people and related units, under the designated plans, budget, and social activities.

Keywords: restoration, urban area, old district, people participation

Procedia PDF Downloads 412
14810 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 370
14809 System Identification and Controller Design for a DC Electrical Motor

Authors: Armel Asongu Nkembi, Ahmad Fawad

Abstract:

The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.

Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols

Procedia PDF Downloads 55
14808 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning

Authors: ChoLiang Chung, YuMin Chen

Abstract:

C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.

Keywords: carbon, TiO2, chitosan, electrospinning

Procedia PDF Downloads 257
14807 Multiple Identity Construction among Multilingual Minorities: A Quantitative Sociolinguistic Case Study

Authors: Stefanie Siebenhütter

Abstract:

This paper aims to reveal criterions involved in the process of identity-forming among multilingual minority language speakers in Northeastern Thailand and in the capital Bangkok. Using sociolinguistic interviews and questionnaires, it is asked which factors are important for speakers and how they define their identity by their interactions socially as well as linguistically. One key question to answer is how sociolinguistic factors may force or diminish the process of forming social identity of multilingual minority speakers. However, the motivation for specific language use is rarely overt to the speaker’s themselves as well as to others. Therefore, identifying the intentions included in the process of identity construction is to approach by scrutinizing speaker’s behavior and attitudes. Combining methods used in sociolinguistics and social psychology allows uncovering the tools for identity construction that ethnic Kui uses to range themselves within a multilingual setting. By giving an overview of minority speaker’s language use in context of the specific border near multilingual situation and asking how speakers construe identity within this spatial context, the results exhibit some of the subtle and mostly unconscious criterions involved in the ongoing process of identity construction.

Keywords: social identity, identity construction, minority language, multilingualism, social networks, social boundaries

Procedia PDF Downloads 267
14806 A New Approach to the Boom Welding Technique by Determining Seam Profile Tracking

Authors: Muciz Özcan, Mustafa Sacid Endiz, Veysel Alver

Abstract:

In this paper we present a new approach to the boom welding related to the mobile cranes manufacturing, implementing a new method in order to get homogeneous welding quality and reduced energy usage during booms production. We aim to get the realization of the same welding quality carried out on the boom in every region during the manufacturing process and to detect the possible welding errors whether they could be eliminated using laser sensors. We determine the position of the welding region directly through our system and with the help of the welding oscillator we are able to perform a proper boom welding. Errors that may occur in the welding process can be observed by monitoring and eliminated by means of an operator. The major modification in the production of the crane booms will be their form of the booms. Although conventionally, more than one welding is required to perform this process, with the suggested concept, only one particular welding is sufficient, which will be more energy and environment-friendly. Consequently, as only one welding is needed for the manufacturing of the boom, the particular welding quality becomes more essential. As a way to satisfy the welding quality, a welding manipulator was made and fabricated. By using this welding manipulator, the risks of involving dangerous gases formed during the welding process for the operator and the surroundings are diminished as much as possible.

Keywords: boom welding, seam tracking, energy saving, global warming

Procedia PDF Downloads 346
14805 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun

Abstract:

Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.

Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics

Procedia PDF Downloads 469
14804 Mechanical Properties of Die-Cast Nonflammable Mg Alloy

Authors: Myoung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy.

Keywords: non-flammable magnesium alloy, AZ91D, die-casting, microstructure, mechanical properties

Procedia PDF Downloads 308
14803 Using the Nonlocal Theory of Free Vibrations Nanobeam

Authors: Ali Oveysi Sarabi

Abstract:

The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.

Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories

Procedia PDF Downloads 536
14802 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Authors: Buket Metin

Abstract:

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Keywords: construction process, construction technology, decision making, environmental performance, subcontractor

Procedia PDF Downloads 247
14801 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, pure Al, mechanical properties

Procedia PDF Downloads 179
14800 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network

Authors: Prateeksha Mahamallik, Anjali Pal

Abstract:

In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.

Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology

Procedia PDF Downloads 254
14799 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 541
14798 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model

Authors: Zina Benouaret, Djamil Aissani

Abstract:

In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.

Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis

Procedia PDF Downloads 249
14797 The Bioaccumulation of Lead (Pb), Cadmium (Cd), and Chromium (Cr) in Relation to Personal and Social Habits in Electronic Repair Technicians in Kaduna Metropolis, Nigeria: A Pilot Study

Authors: M. A. Lawal, A. Uzairu, M. S. Sallau

Abstract:

The presence and bioaccumulation of lead (Pb), cadmium (Cd), and chromium (Cr) in blood, urine, nail, and hair samples of electronic repair technicians in Kaduna-Nigeria were assessed using Fast Sequential Atomic Absorption Spectrophotometry. 10 electronic repair technicians from within Kaduna Metropolis volunteered for the pilot study. The mean blood concentrations of Pb, Cd, and Cr in the subjects were 29.33 ± 4.80, 7.78 ± 10.57, and 24.78 ± 21.77 µg/dL, respectively. The mean urine concentrations of Pb, Cd, and Cr were 24.18 ± 2.98, 6.81 ± 10.05, and 14.78 ± 14.20 µg/dL, respectively. Mean nail metal values of 37.13 ± 4.08, 1.00 ± 1.21, and 18.49 ± 12.71 µg/g were obtained for Pb, Cd, and Cr, respectively while mean hair metal values of 39.41 ± 5.63, 1.09 ± 1.14, and 19.13 ± 11.61 µg/g for Pb, Cd, and Cr, respectively. Positive Pearson correlation coefficients were observed between Pb/Cd, Pb/Cr, and Cd/Cr in all samples and they indicate the metals are likely from the same pollution source. The mean concentrations of the metals in all samples were higher than the WHO, ILO, and ACGIH standards, implying the repairers are likely occupationally exposed and are subject to serious health concerns. Social habits like smoking were found to significantly affect the concentrations of these metals. The level of education, use of safety devices, period of exposure, the nature of electronics and the age of the repairers were also found to remarkably affect the concentrations of the metals.

Keywords: bioaccumulation, electronic repair technicians, heavy metals, occupational hazard

Procedia PDF Downloads 371
14796 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap

Authors: Sabri Serkan Gulluoglu

Abstract:

It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.

Keywords: remote sensing, satellite imaging, gis, computer science, information

Procedia PDF Downloads 318
14795 Formation and Development of Polyspecies Biofilm on the Surface of Ti-7.5Mo Nanotubes Growth

Authors: Escada A. L. A., Pereira C. A., Jorge A. O. C., Alves Claro A. P. R.

Abstract:

In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy to bacterial biofilm formation after surface treatment was evaluated. The Ti–7.5Mo alloy was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 ◦C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Nanotubes were processed using anodic oxidation in 0.25% NH4F electrolyte solution. Biofilms were grown in discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groupswas performed, atomic force microscope (AFM) and contact angle. The results show that there is no difference in bacterial adhesion between Ti–7.5Mo alloy nanotube pure titanium and Ti–7.5Mo alloy.

Keywords: biofilm, titanium alloy, brain heart infusion, scanning electron microscopy

Procedia PDF Downloads 318
14794 Investigation of the Properties of Biochar Obtained by Dry and Wet Torrefaction in a Fixed and in a Fluidized Bed

Authors: Natalia Muratova, Dmitry Klimov, Rafail Isemin, Sergey Kuzmin, Aleksandr Mikhalev, Oleg Milovanov

Abstract:

We investigated the processing of poultry litter into biochar using dry torrefaction methods (DT) in a fixed and fluidized bed of quartz sand blown with nitrogen, as well as wet torrefaction (WT) in a fluidized bed in a medium of water steam at a temperature of 300 °C. Torrefaction technology affects the duration of the heat treatment process and the characteristics of the biochar: the process of separating CO₂, CO, H₂ and CH₄ from a portion of fresh poultry litter during torrefaction in a fixed bed is completed after 2400 seconds, but in a fluidized bed — after 480 seconds. During WT in a fluidized bed of quartz sand, this process ends in 840 seconds after loading a portion of fresh litter, but in a fluidized bed of litter particles previously subjected to torrefaction, the process ends in 350 - 450 seconds. In terms of the ratio between (H/C) and (O/C), the litter obtained after DT and WT treatment corresponds to lignite. WT in a fluidized bed allows one to obtain biochar, in which the specific pore area is two times larger than the specific pore area of biochar obtained after DT in a fluidized bed. Biochar, obtained as a result of the poultry litter treatment in a fluidized bed using DT or WT method, is recommended to be used not only as a biofuel but also as an adsorbent or the soil fertilizer.

Keywords: biochar, poultry litter, dry and wet torrefaction, fixed bed, fluidized bed

Procedia PDF Downloads 157
14793 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand

Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee

Abstract:

Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.

Keywords: e-waste, environmental contamination, informal recycling, metals

Procedia PDF Downloads 362
14792 Coal Preparation Plant:Technology Overview and New Adaptations

Authors: Amit Kumar Sinha

Abstract:

A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.

Keywords: intermediate circuit, overlapping process, reflux classifier

Procedia PDF Downloads 136
14791 Emergentist Metaphorical Creativity: Towards a Model of Analysing Metaphorical Creativity in Interactive Talk

Authors: Afef Badri

Abstract:

Metaphorical creativity does not constitute a static property of discourse. It is an interactive dynamic process created online. There has been a lack of research concerning online produced metaphorical creativity. This paper intends to account for metaphorical creativity in online talk-in-interaction as a dynamic process that emerges as discourse unfolds. It brings together insights from the emergentist approach to the study of metaphor in verbal interactions and insights from conceptual blending approach as a model for analysing online metaphorical constructions to propose a model for studying metaphorical creativity in interactive talk. The model is based on three focal points. First, metaphorical creativity is a dynamic emergent and open-to-change process that evolves in real time as interlocutors constantly blend and re-blend previous metaphorical contributions. Second, it is not a product of isolated individual minds but a joint achievement that is co-constructed and co-elaborated by interlocutors. The third and most important point is that the emergent process of metaphorical creativity is tightly shaped by contextual variables surrounding talk-in-interaction. It is grounded in the framework of interpretation of interlocutors. It is constrained by preceding contributions in a way that creates textual cohesion of the verbal exchange and it is also a goal-oriented process predefined by the communicative intention of each participant in a way that reveals the ideological coherence/incoherence of the entire conversation.

Keywords: communicative intention, conceptual blending, the emergentist approach, metaphorical creativity

Procedia PDF Downloads 259
14790 Examining the Impact of Degrees of Slag Replacement on the Carbonation Process of Slag-Blended Cement

Authors: Geta Bekalu Belayneh, Solmoi Park

Abstract:

This study examines the role of slag in the process of hydration and carbonation of carbonation-cured slag cement. Carbonation-cured slag-blended cement paste samples were prepared with varying slag percentages of 0%, 10%, 30%, and 50%. The curing process lasted for a maximum of 28 days. The findings demonstrated that the carbonation depth increased as the curing period was extended, and a larger slag percentage promoted a more extensive penetration of carbonation. The degree of belite reaction was greatly enhanced in the slag-blended cement, resulting in an increased ability to bind CO₂ in the blended cement. These findings enhance comprehension of the behaviour of blended cement produced through carbonation-curing, facilitating the advancement of more environmentally friendly and long-lasting concrete constructions.

Keywords: carbonation curing, blast furnace slag, characterization, Portland cement

Procedia PDF Downloads 71
14789 A Family Development Approach to Understanding the Transfer of Family Business Ownership

Authors: Susan Lanz, Gary T. Burke, Omid Omidvar

Abstract:

The intention to transfer ownership control across family generations is acknowledged to be central to developing a theoretical understanding of how family businesses differ and are distinct as a business group. However, in practice, most business-owning families face challenges to transfer their business ownership from one family generation to the next. To date, researchers have paid little attention to how and when ownership is passed across family generations and what the dynamics of such transitions are. This is primarily due to the prevailing assumption that ownership transfer is an unimportant and legalistic issue that occurs within a wider family management succession process. Yet, the limited evidence available suggests that family ownership transfer occurs inside and outside of the management succession process and is a difficult process for business-owning families to navigate. As a result, many otherwise viable family businesses are closing, leading to unnecessary loss of jobs and knowledge. This qualitative paper examines how family members understand and navigate the ownership transfer process. This study uses an inductive qualitative research design, conducted through in-depth interviews within eight business-owning families. It draws on family development theory and shows how a wide range of family-related events and dynamics outside of family business involvement underlie and shape the ownership transfer process. The findings extend the theory on how these events trigger ownership transfer and how they shape the ownership meanings held within business-owning families. This study found that ownership transfer meanings extend beyond that of transferring the legal control and financial appropriation rights of shareholders. The study concludes there are three different stages in the process of ownership transfer -symbolic, re-balancing, and protectionist. Each stage creates distinct family social constructions of the rights of family members to hold business ownership, and each stage occurs within a specific family development phase.

Keywords: business-owning family, family development theory, ownership transfer, process

Procedia PDF Downloads 155