Search results for: localized surface plasmon resonance effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20359

Search results for: localized surface plasmon resonance effect

10549 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: subcontracting, optimal control, deterioration, simulation, production planning

Procedia PDF Downloads 585
10548 How Much the Role of Fertilizers Management and Wheat Planting Methods on Its Yield Improvement?

Authors: Ebrahim Izadi-Darbandi, Masoud Azad, Masumeh Dehghan

Abstract:

In order to study the effects of nitrogen and phosphoruse management and wheat sowing method on wheat yield, two experiments was performed as factorial, based on completely randomized design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran in 2009. In the first experiment nitrogen application rates (100kg ha-1, 200 kg ha-1, 300 kg ha-1), phosphorus application rates (100 kg ha-1, 200 kg ha-1) and two levels of their application methods (Broadcast and Band) were studied. The second experiment treatments included of wheat sowing methods (single-row with 30 cm distance and twine row on 60 cm width ridges), as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots (150 kg ha-1). Phosphorus and nitrogen sources for fertilization at both experiment were respectively super phosphate, applied before wheat sowing and incorporated with soil and urea, applied in two phases (50% pre plant) and (50%) near wheat shooting. Results from first experiment showed that the effect of fertilizers application methods were significant (p≤0.01) on wheat yield increasing. Band application of phosphorus and nitrogen were increased biomass and seed yield of wheat with nine and 15% respectively compared to their broadcast application. The interaction between the effects of nitrogen and phosphorus application rate with phosphorus and nitrogen application methods, showed that band application of fertilizers and the rate of application of 200kg/ha phosphorus and 300kg/ha nitrogen were the best methods in wheat yield improvement. The second experiment also showed that the effect of wheat sowing method and fertilizers application methods were significant (p≤0.01) on wheat seed and biomass yield improvement. Wheat twine row on 60 cm width ridges sowing method, increased its biomass and seed yield for 22% and 30% respectively compared to single-row with 30 cm. Wheat sowing method and fertilizers application methods interaction indicated that band application of fertilizers and wheat twine row on 60 cm width ridges sowing method was the best treatment on winter wheat yield improvement. In conclusion these results indicated that nitrogen and phosphorus management in wheat and modifying wheat sowing method have important role in increasing fertilizers use efficiency.

Keywords: band application, broadcast application, rate of fertilizer application, wheat seed yield, wheat biomass yield

Procedia PDF Downloads 467
10547 Study of The Ballistic Impact at Low Speed on Angle-Ply Fibrous Structures

Authors: Daniel Barros, Carlos Mota, Raul Fangueiro, Pedro Rosa, Gonçalo Domingos, Alfredo Passanha, Norberto Almeida

Abstract:

The main aim of the work was to compare the ballistic performance of developed composites using different types of fiber woven fabrics [0,90] and different layers orientation (Angle-ply). The ballistic laminate composites were developed using E-glass, S-glass and aramid fabrics impregnated with thermosetting epoxy resin and using different layers orientation (0,0)º and (0,15)º. The idea of the study is to compare the ballistic performance of each laminate produced by studying the velocity loss of the fragment fired into the laminate surface. There are present some mechanical properties for laminates produced using the different types of fiber, where tensile, flexural and impact Charpy properties were studied. Overall, the angle-ply laminates produced using orientations of (0,15)º, despite the slight loss of mechanical properties compared to the (0,0)º orientation, presents better ballistic resistance and dissipation of energy, for lower ballistic impact velocities (under 290 m/s-1). After treatment of ballistic impact results, the S-Glass with (0,15)º laminate presents better ballistic perforce compared to the other combinations studied.

Keywords: ballistic impact, angle-ply, ballistic composite, s-glass fiber, aramid fiber, fabric fiber, energy dissipation, mechanical performance

Procedia PDF Downloads 213
10546 Evaluation of Key Performance Indicators as Determinants of Dividend Paid on Ordinary Shares in Nigeria Banking Sector

Authors: Oliver Ikechukwu Inyiama, Boniface Uche Ugwuanyi

Abstract:

The aim of the research is to evaluate the key financial performance indicators that help both managers and their shareholders of Nigerian Banks to determine the appropriate dividend payout to their ordinary shareholders in an accounting year. Profitability, total asset, and earnings of commercial banks were selected as key performance indicators in Nigeria Banking Sector. They represent the independent variables of the study while dividend per share is the proxy for the dividend paid on ordinary shares which represent the dependent variable. The effect of profitability, total asset and earnings on dividend per share were evaluated through the ordinary least square method of multiple regression analysis. Test for normality of frequency distribution was conducted through descriptive statistics such as Jacque Bera Statistic, skewness and kurtosis. Rate of dividend payout was subsequently applied as an alternate dependent variable to test for robustness of the earlier results. The 64% adjusted R-squared of the pooled data indicates that profitability, total asset, and earnings explain the variation in dividend per share during the period under research while the remaining 36% variation in dividend per share could be explained by changes in other variables not captured by this study as well as the error term. The study concentrated on four leading Nigeria Commercial Banks namely; First Bank of Nigeria Plc, GTBank Plc, United Bank for Africa Plc and Zenith International Bank Plc. Dividend per share was found to be positively affected by total assets and earnings of the commercial banks. However, profitability which was proxied by profit after tax had a negative effect on dividend per share. The implication of the findings is that commercial banks in Nigeria pay more dividend when they are having a dwindling fortune in order to retain the confidence of the shareholders provided their gross earnings and size is on the increase. Therefore, the management and board of directors of Nigeria commercial banks should apply decent marketing strategies to enhance earnings through investment in profitable ventures for an improved dividend payout rate.

Keywords: assets, banks, indicators, performance, profitability, shares

Procedia PDF Downloads 170
10545 Inhibitory Effects of PPARγ Ligand, KR-62980, on Collagen-Stimulated Platelet Activation

Authors: Su Bin Wang, Jin Hee Ahn, Tong-Shin Chang

Abstract:

The peroxisome proliferator-activated receptors (PPARs) are member of nuclear receptor superfamily that act as a ligand-activated transcription factors. Although platelets lack a nucleus, previous studies have shown that PPARγ agonists, rosiglitazone, inhibited platelet activation induced by collagen. In this study, we investigated the inhibitory effects of KR-62980, a newly synthesized PPARγ agonist, on collagen receptor-stimulated platelet activation. The specific tyrosine phosphorylations of key components (Syk, Vav1, Btk and PLCγ2) for collagen receptor signaling pathways were suppressed by KR-62980. KR-62980 also attenuated downstream responses including cytosolic calcium elevation, P-selectin surface exposure, and integrin αIIbβ3 activation. PPARγ was found to associate with multiple proteins within the LAT signaling complex in collagen-stimulated platelets. This association was prevented by KR-62980, indicating a potential mechanism for PPARγ function in collagen-stimulated platelet activation. Furthermore, KR-62980 inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. Collectively, these data suggest that KR-62980 inhibits collagen-stimulated platelet activation and thrombus formation through modulating the collagen receptor signaling pathways.

Keywords: KR-62980, PPARγ, antiplatelet, thrombosis

Procedia PDF Downloads 339
10544 Tangible Losses, Intangible Traumas: Re-envisioning Recovery Following the Lytton Creek Fire 2021 through Place Attachment Lens

Authors: Tugba Altin

Abstract:

In an era marked by pronounced climate change consequences, communities are observed to confront traumatic events that yield both tangible and intangible repercussions. Such events not only cause discernible damage to the landscape but also deeply affect the intangible aspects, including emotional distress and disruptions to cultural landscapes. The Lytton Creek Fire of 2021 serves as a case in point. Beyond the visible destruction, the less overt but profoundly impactful disturbance to place attachment (PA) is scrutinized. PA, representing the emotional and cognitive bonds individuals establish with their environments, is crucial for understanding how such events impact cultural identity and connection to the land. The study underscores the significance of addressing both tangible and intangible traumas for holistic community recovery. As communities renegotiate their affiliations with altered environments, the cultural landscape emerges as instrumental in shaping place-based identities. This renewed understanding is pivotal for reshaping adaptation planning. The research advocates for adaptation strategies rooted in the lived experiences and testimonies of the affected populations. By incorporating both the tangible and intangible facets of trauma, planning efforts are suggested to be more culturally attuned and emotionally insightful, fostering true resonance with the affected communities. Through such a comprehensive lens, this study contributes enriching the climate change discourse, emphasizing the intertwined nature of tangible recovery and the imperative of emotional and cultural healing after environmental disasters. Following the pronounced aftermath of the Lytton Creek Fire in 2021, research aims to deeply understand its impact on place attachment (PA), encompassing the emotional and cognitive bonds individuals form with their environments. The interpretive phenomenological approach, enriched by a hermeneutic framework, is adopted, emphasizing the experiences of the Lytton community and co-researchers. Phenomenology informed the understanding of 'place' as the focal point of attachment, providing insights into its formation and evolution after traumatic events. Data collection departs from conventional methods. Instead of traditional interviews, walking audio sessions and photo elicitation methods are utilized. These allow co-researchers to immerse themselves in the environment, re-experience, and articulate memories and feelings in real-time. Walking audio facilitates reflections on spatial narratives post-trauma, while photo voices captured intangible emotions, enabling the visualization of place-based experiences. The analysis is collaborative, ensuring the co-researchers' experiences and interpretations are central. Emphasizing their agency in knowledge production, the process is rigorous, facilitated by the harmonious blend of interpretive phenomenology and hermeneutic insights. The findings underscore the need for adaptation and recovery efforts to address emotional traumas alongside tangible damages. By exploring PA post-disaster, the research not only fills a significant gap but advocates for an inclusive approach to community recovery. Furthermore, the participatory methodologies employed challenge traditional research paradigms, heralding potential shifts in qualitative research norms.

Keywords: wildfire recovery, place attachment, trauma recovery, cultural landscape, visual methodologies

Procedia PDF Downloads 102
10543 Bacterial Flora of the Anopheles Fluviatilis S. L. in an Endemic Malaria Area in Southeastern Iran for Candidate Paraterasgenesis Strains

Authors: Seyed Hassan Moosa-kazemi, Jalal Mohammadi Soleimani, Hassan Vatandoost, Mohammad Hassan Shirazi, Sara Hajikhani, Roonak Bakhtiari, Morteza Akbari, Siamak Hydarzadeh

Abstract:

Malaria is an infectious disease and considered most important health problems in the southeast of Iran. Iran is elimination malaria phase and new tool need to vector control. Paraterasgenesis is a new way to cut of life cycle of the malaria parasite. In this study, the microflora of the surface and gut of various stages of Anopheles fluviatilis James as one of the important malaria vector was studied using biochemical and molecular techniques during 2013-2014. Twelve bacteria species were found including; Providencia rettgeri, Morganella morganii, Enterobacter aerogenes, Pseudomonas oryzihabitans, Citrobacter braakii، Citrobacter freundii، Aeromonas hydrophila، Klebsiella oxytoca, Citrobacter koseri, Serratia fonticola، Enterobacter sakazakii and Yersinia pseudotuberculosis. The species of Alcaligenes faecalis, Providencia vermicola and Enterobacter hormaechei were identified in various stages of the vector and confirmed by biochemical and molecular techniques. We found Providencia rettgeri proper candidate for paratransgenesis.

Keywords: Anopheles fluviatilis, bacteria, malaria, Paraterasgenesis, Southern Iran

Procedia PDF Downloads 502
10542 Effect of Climate Variability on Children Health Outcomes in Rural Uganda

Authors: Emily Injete Amondo, Alisher Mirzabaev, Emmanuel Rukundo

Abstract:

Children in rural farming households are often vulnerable to a multitude of risks, including health risks associated with climate change and variability. Cognizant of this, this study empirically traced the relationship between climate variability and nutritional health outcomes in rural children while identifying the cause-and-effect transmission mechanisms. We combined four waves of the rich Uganda National Panel Survey (UNPS), part of the World Bank Living Standards Measurement Studies (LSMS) for the period 2009-2014, with long-term and high-frequency rainfall and temperature datasets. Self-reported drought and flood shock variables were further used in separate regressions for triangulation purposes and robustness checks. Panel fixed effects regressions were applied in the empirical analysis, accounting for a variety of causal identification issues. The results showed significant negative outcomes for children’s anthropometric measurements due to the impacts of moderate and extreme droughts, extreme wet spells, and heatwaves. On the contrary, moderate wet spells were positively linked with nutritional measures. Agricultural production and child diarrhea were the main transmission channels, with heatwaves, droughts, and high rainfall variability negatively affecting crop output. The probability of diarrhea was positively related to increases in temperature and dry spells. Results further revealed that children in households who engaged in ex-ante or anticipatory risk-reducing strategies such as savings had better health outcomes as opposed to those engaged in ex-post coping such as involuntary change of diet. These results highlight the importance of adaptation in smoothing the harmful effects of climate variability on the health of rural households and children in Uganda.

Keywords: extreme weather events, undernutrition, diarrhea, agricultural production, gridded weather data

Procedia PDF Downloads 109
10541 Dynamic Analysis of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Loadings

Authors: Naik Muhammad, Zahid Ullah, Dong-Ho Choi

Abstract:

Submerged floating tunnel (SFT) is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters, and can be a good alternative to long span suspension bridges. SFT is a massive cylindrical structure that floats at a certain depth below the water surface and subjected to extreme environmental conditions. The identification of dominant structural response of SFT becomes more important due to intended environmental conditions for the design of SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic time history analysis of SFT subjected to hydrodynamic and seismic excitations is performed. The SFT is modeled by finite element 3D beam, and the mooring cables are modeled by truss elements. Based on the dynamic time history analysis the displacements and internal forces of SFT were calculated. The response of SFT is presented for hydrodynamic and seismic excitations. The transverse internal forces of SFT were the maximum compared to vertical direction, for both hydrodynamic and seismic cases; this indicates that the cable system provides very small stiffness in transverse direction as compared to vertical direction of SFT.

Keywords: submerged floating tunnel, hydrodynamic analysis, time history analysis, seismic response

Procedia PDF Downloads 330
10540 Life Prediction of Cutting Tool by the Workpiece Cutting Condition

Authors: Noemia Gomes de Mattos de Mesquita, José Eduardo Ferreira de Oliveira, Arimatea Quaresma Ferraz

Abstract:

Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have a direct influence on production. The premature removal of the cutting tool results in high cost of machining since the parcel relating to the cost of the cutting tool increases. On the other hand, the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.

Keywords: machining, productions, cutting condition, design, manufacturing, measurement

Procedia PDF Downloads 639
10539 Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

Authors: Meareg Amare, Senait Aklog

Abstract:

Lignin film was deposited at the surface of the glassy carbon electrode potential-statically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at the modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10⁻⁶ to 100 × 10⁻⁶ mol L⁻¹ with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10⁻⁷ mol L⁻¹, respectively, supplemented by recovery results of 93.79–102.17%, validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected, confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

Keywords: electrochemical, lignin, caffeine, electrode

Procedia PDF Downloads 123
10538 Wearable System for Prolonged Cooling and Dehumidifying of PPE in Hot Environments

Authors: Lun Lou, Jintu Fan

Abstract:

While personal protective equipment (PPE) prevents the healthcare personnel from exposing to harmful surroundings, it creates a barrier to the dissipation of body heat and perspiration, leading to severe heat stress during prolonged exposure, especially in hot environments. It has been found that most of the existed personal cooling strategies have limitations in achieving effective cooling performance with long duration and lightweight. This work aimed to develop a lightweight (<1.0 kg) and less expensive wearable air cooling and dehumidifying system (WCDS) that can be applied underneath the protective clothing and provide 50W mean cooling power for more than 5 hours at 35°C environmental temperature without compromising the protection of PPE. For the WCDS, blowers will be used to activate an internal air circulation inside the clothing microclimate, which doesn't interfere with the protection of PPE. An air cooling and dehumidifying chamber (ACMR) with a specific design will be developed to reduce the air temperature and humidity inside the protective clothing. Then the cooled and dried air will be supplied to upper chest and back areas through a branching tubing system for personal cooling. A detachable ice cooling unit will be applied from the outside of the PPE to extract heat from the clothing microclimate. This combination allows for convenient replacement of the cooling unit to refresh the cooling effect, which can realize a continuous cooling function without taking off the PPE or adding too much weight. A preliminary thermal manikin test showed that the WCDS was able to reduce the microclimate temperature inside the PPE averagely by about 8°C for 60 minutes when the environmental temperature was 28.0 °C and 33.5 °C, respectively. Replacing the ice cooling unit every hour can maintain this cooling effect, while the longest operation duration is determined by the battery of the blowers, which can last for about 6 hours. This unique design is especially helpful for the PPE users, such as health care workers in infectious and hot environments when continuous cooling and dehumidifying are needed, but the change of protective clothing may increase the risk of infection. The new WCDS will not only improve the thermal comfort of PPE users but can also extend their safe working duration.

Keywords: personal thermal management, heat stress, ppe, health care workers, wearable device

Procedia PDF Downloads 83
10537 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China

Authors: Tingke Wu, Man Yuan

Abstract:

“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.

Keywords: driving forces, Hubei, optimizing strategies, spatial pattern, territory

Procedia PDF Downloads 109
10536 Healthy Beverages Made from Grape Juice: Antioxidant, Energetic, and Isotonic Components

Authors: Yasmina Bendaali, Cristian Vaquero, Carlos Escott, Carmen González, Antonio Morata

Abstract:

Consumer tendencies to healthy eating habits and request for organic beverages led to the production of new drinks from fruit juices as a source of nutrients and bioactive compounds. Grape juice is a rich source of sugars, organic acids, and phenolic compounds, which define its beneficial effect on health and the attractive sensory profile for consumers' choices (color, taste, flavor). Thus, grape juice was used as a source of sugars, avoiding the addition of sweeteners by diluting it with mineral water to obtain the sugar concentration recommended for isotonic drinks (6% to 8%) to provide energy during physical activities. In addition, phenolic compounds of grape juice are associated with many human health benefits, mainly antioxidant activity, which helps to prevent different diseases associated with oxidative stress, including cancers and cardiovascular and neurodegenerative diseases. Furthermore, physical exercise has been shown to increase the production of free radicals and other reactive oxygen species. Thus, athletes need to improve their antioxidant defense systems to prevent oxidative damage. Different studies have demonstrated the positive effect of grape juice consumption during physical activities, which improves antioxidant activity and performance, protects against oxidative damage, and reduces inflammation. Thus, the use of grape juice to develop isotonic drinks can provide isotonic drinks with antioxidant and biological activities in addition to their principal role of rehydration and replacement of minerals and carbohydrates during physical exercises. Moreover, attractive sensory characteristics, mainly color, which is provided by anthocyanin content, have a great contribution to making the drinks more natural and help to dispense the use of synthetic dyes in addition to the health benefits which will be a novel product in the field of healthy beverages responding on the demand of consumers for new, innovative, and healthy products.

Keywords: grape juice, isotonic, antioxidants, anthocyanins, natural, sport

Procedia PDF Downloads 81
10535 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells

Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah

Abstract:

Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.

Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell

Procedia PDF Downloads 287
10534 Prevalence Of Periodontal Disease In Felines In The Outskirts Of The City Of Manaus, Brazil: An Epidemiological Study

Authors: Pármenas Costa Macedo do Nascimento

Abstract:

Periodontal disease is the most common disease in the oral cavity of felines. It starts with the accumulation of bacteria on the tooth surface supporting the tissues of the periodontal tissue, namely gums, alveolar bone, cementum, and periodontal ligament. The main clinical symptom observed by the owner is bad breath, which may lead to local and systemic consequences depending on the stage of periodontal disease, such as bleeding and bone loss. Therefore, the study is important to educate tutors to take better care of the felines oral health in order to try to prevent the disease. For this epidemiological study, the target population has been felines, located on the outskirts of Manaus, in the state of Amazonas, with a geographic area of 155.68 km², with no defined breed, from October 1st to 10th, 2021, whose samples has been randomly selected, with a detailed profile. The variables of interest for this study have been: absence or presence of periodontal disease, gender, age (delimited by age group), and condition (domiciled or homeless). Using a sample of 40 felines from 4 districts of the east side of Manaus chosen at random, an oral exam has been made to identify the studied disease. The animal's apparent age, condition, sex, and presence or absence of periodontal disease has been noted. It has been observed that 70% (28/40) of them had periodontal disease, mostly females, aged between 0 and 5 years and domiciled, totaling 30% (12/40).

Keywords: felines, oral cavity, oral exam, periodontal disease

Procedia PDF Downloads 218
10533 One-off Separation of Multiple Types of Oil-In-Water Emulsions With Surface-Engineered Graphene-Based Multilevel Structure Materials

Authors: Han Longxiang

Abstract:

In the process of treating industrial oily wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) which can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM have a wide range of applications in oil-in-water emulsions separation in industry and environmental science.

Keywords: emulsion, filtration, graphene, one-step

Procedia PDF Downloads 95
10532 The Characteristics of Settlement Owing to the Construction of Several Parallel Tunnels with Short Distances

Authors: Lojain Suliman, Xinrong Liu, Xiaohan Zhou

Abstract:

Since most tunnels are built in crowded metropolitan settings, the excavation process must take place in highly condensed locations, including high-density cities. In this way, the tunnels are typically located close together, which leads to more interaction between the parallel existing tunnels, and this, in turn, leads to more settlement. This research presents an examination of the impact of a large-scale tunnel excavation on two forms of settlement: surface settlement and settlement surrounding the tunnel. Additionally, research has been done on the properties of interactions between two and three parallel tunnels. The settlement has been evaluated using three primary techniques: theoretical modeling, numerical simulation, and data monitoring. Additionally, a parametric investigation on how distance affects the settlement characteristic for parallel tunnels with short distances has been completed. Additionally, it has been observed that the sequence of excavation has an impact on the behavior of settlements. Nevertheless, a comparison of the model test and numerical simulation yields significant agreement in terms of settlement trend and value. Additionally, when compared to the FEM study, the suggested analytical solution exhibits reduced sensitivity in the settlement prediction. For example, the settlement of the small tunnel diameter does not appear clearly on the settlement curve, while it is notable in the FEM analysis. It is advised, however, that additional studies be conducted in the future employing analytical solutions for settlement prediction for parallel tunnels.

Keywords: settlement, FEM, analytical solution, parallel tunnels

Procedia PDF Downloads 46
10531 Programmable Shields in Space

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

At the moment earth is in grave danger due to threats of global warming. The temperature of the earth has risen by almost 20C. Glaciers in the Arctic have started to melt. It would be foolhardy to think that this is a small effect and in time it would go away. Global warming is caused by a number of factors. However, one sure and simple way to totally eliminate this problem is to put programmable shields in space. Just as an umbrella blocks sunlight, a programmable shield in space will block sun rays from reaching the earth as in a solar eclipse and cause cooling in the penumbral region just as it happens during an eclipse.

Keywords: glaciers, green house, global warming space, satellites

Procedia PDF Downloads 603
10530 An Analysis of New Service Interchange Designs

Authors: Joseph E. Hummer

Abstract:

An efficient freeway system will be essential to the development of Africa, and interchanges are a key to that efficiency. Around the world, many interchanges between freeways and surface streets, called service interchanges, are of the diamond configuration, and interchanges using roundabouts or loop ramps are also popular. However, many diamond interchanges have serious operational problems, interchanges with roundabouts fail at high demand levels, and loops use lots of expensive land. Newer service interchange designs provide other options. The most popular new interchange design in the US at the moment is the double crossover diamond (DCD), also known as the diverging diamond. The DCD has enormous potential, but also has several significant limitations. The objectives of this paper are to review new service interchange options and to highlight some of the main features of those alternatives. The paper tests four conventional and seven unconventional designs using seven measures related to efficiency, cost, and safety. The results show that there is no superior design in all measures investigated. The DCD is better than most designs tested on most measures examined. However, the DCD was only superior to all other designs for bridge width. The DCD performed relatively poorly for capacity and for serving pedestrians. Based on the results, African freeway designers are encouraged to investigate the full range of alternatives that could work at the spot of interest. Diamonds and DCDs have their niches, but some of the other designs investigated could be optimum at some spots.

Keywords: interchange, diamond, diverging diamond, capacity, safety, cost

Procedia PDF Downloads 280
10529 Varietal Screening of Watermelon against Powdery Mildew Disease and Its Management

Authors: Asim Abbasi, Amer Habib, Sajid Hussain, Muhammad Sufyan, Iqra, Hasnain Sajjad

Abstract:

Except for few scattered cases, powdery mildew disease was not a big problem for watermelon in the past but with the outbreaks of its pathotypes, races 1W and 2W, this disease becomes a serious issue all around the globe. The severe outbreak of this disease also increased the rate of fungicide application for its proper management. Twelve varieties of watermelon were screened in Research Area of Department of Plant pathology, University of Agriculture, Faisalabad to check the incidence of powdery mildew disease. Disease inoculum was prepared and applied with the help of foliar spray method. Fungicides and plants extracts were also applied after the disease incidence. Percentage leaf surface area diseased was assessed visually with a modified Horsfall-Barratt scale. The results of the experiment revealed that among all varieties, WT2257 and Zcugma F1 were highly resistant showing less than 5% disease incidence while Anar Kali and Sugar baby were highly susceptible with disease incidence of more than 65%. Among botanicals neem extract gave best results with disease incidence of less than 20%. Besides neem, all other botanicals also gave significant control of powdery mildew disease than the untreated check. In case of fungicides, Gemstar showed least disease incidence i.e. < 10%, however besides control maximum disease incidence was observed in Curzate (> 30%).

Keywords: botanicals, fungicides, pathotypes, powdery mildew

Procedia PDF Downloads 301
10528 An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation

Authors: K. Veluraja

Abstract:

Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed.

Keywords: glycan, glycoconformatics, molecular dynamics simulation, oligosaccharide

Procedia PDF Downloads 140
10527 The Effectiveness of Cathodic Protection on Microbiologically Influenced Corrosion Control

Authors: S. Taghavi Kalajahi, A. Koerdt, T. Lund Skovhus

Abstract:

Cathodic protection (CP) is an electrochemical method to control and manage corrosion in different industries and environments. CP which is widely used, especially in buried and sub-merged environments, which both environments are susceptible to microbiologically influenced corrosion (MIC). Most of the standards recommend performing CP using -800 mV, however, if MIC threats are high or sulfate reducing bacteria (SRB) is present, the recommendation is to use more negative potentials for adequate protection of the metal. Due to the lack of knowledge and research on the effectiveness of CP on MIC, to the author’s best knowledge, there is no information about what MIC threat is and how much more negative potentials should be used enabling adequate protection and not overprotection (due to hydrogen embrittlement risk). Recently, the development and cheaper price of molecular microbial methods (MMMs) open the door for more effective investigations on the corrosion in the presence of microorganisms, along with other electrochemical methods and surface analysis. In this work, using MMMs, the gene expression of SRB biofilm under different potentials of CP will be investigated. The specific genes, such as pH buffering, metal oxidizing, etc., will be compared at different potentials, enabling to determine the precise potential that protect the metal effectively from SRB. This work is the initial step to be able to standardize the recommended potential under MIC condition, resulting better protection for the infrastructures.

Keywords: cathodic protection, microbiologically influenced corrosion, molecular microbial methods, sulfate reducing bacteria

Procedia PDF Downloads 97
10526 Exploring Urbanization-Induced Wetland Loss within the Greater Toronto Area from 2005 to 2015

Authors: Kaushika Vinotheeswaran

Abstract:

The Greater Toronto Area (GTA), located in Ontario, Canada, is among the fastest-growing metropolitan areas in North America. Rapid urbanization within the GTA has led to increased imperviousness and surface runoff, contributing to wetland loss. Wetland cover and land cover data from the Southern Ontario Land Resource Information System were analyzed to characterize wetland loss to built-up areas and land conversions between 2005 and 2015, evaluating the extent of urbanization-induced wetland loss. Spatial analysis revealed a significant increase in the number of wetlands lost from 2005 to 2011 compared to the period from 2011 to 2015, with these losses attributed to increased urban expansions within the GTA. Non-wetland conversions, such as agricultural and impervious built-up uses to support urban expansions, played a significant role in wetland loss. Current approaches to wetland policy implementation and land-use planning strategies do not effectively identify or mitigate damage to wetlands in advance of development, resulting in significant wetland loss. Therefore, wetland conservation policies must be re-evaluated to address gaps in policy practice and focus on minimizing wetland loss.

Keywords: wetland loss, urbanization, impervious, pervious, wetland conservation

Procedia PDF Downloads 75
10525 Graphene Transistors Based Microwave Amplifiers

Authors: Pejman Hosseinioun, Ali Safari, Hamed Sarbazi

Abstract:

Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers.

Keywords: graphene, microwave FETs, microwave amplifiers, transistors

Procedia PDF Downloads 496
10524 Effects of Carbon Dioxide on the Organoleptic Properties of Hazelnut

Authors: Reza Sadeghi

Abstract:

Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches for postharvest. Hazelnut has a considerable share in the annual exports of Iran. In the present study, hazelnut was studied after being exposed to different CO2 pressures (0.1-0.5bar) within 24 hours. Changes in organoleptic properties (colour, firmness, aroma, crispness, and overall acceptability) during fumigation were studied. The results showed that the sensory evaluation showed that carbon dioxide had no effect on the qualitative characteristics of hazelnut.

Keywords: carbon dioxide, hazelnut, qualitative characteristics, organoleptic

Procedia PDF Downloads 94
10523 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 65
10522 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 391
10521 Effect of Access to Finance on Innovation and Productivity of SMEs in Nigeria: Evidence from the World Bank Enterprise Survey

Authors: Abidemi C. Adegboye, Samuel Iweriebor

Abstract:

The primary link between financial institutions and economic performance is the provision of resources by these institutions to businesses in order to drive enterprise expansion, sustainability, and development. In this study, the role of access to finance in driving innovations and productivity in Nigerian SMEs is investigated using the World Bank Enterprise Survey (ES) dataset. Innovation is defined based on the ES analysis using five compositions including product, method, organisational, use of foreign-licensed technology, and spending on R&D. The study considers finance in terms of source in meeting investment needs and in terms of access. Moreover, finance access is categorized as external and internal to a firm with each having different implications. The research methodology adopted a survey analysis based on the 2014 World Bank Enterprise Survey of 19 states in Nigeria. The survey comprised over 10,000 manufacturing and services firms, both at the small scale and medium scale levels. The logit estimation technique is used to estimate the relationships in the study. The results from the empirical analysis show that in general, access to finance drives SME innovation in Nigeria. In particular, ease of accessing bank loans and credit is shown to be the strongest positive force in driving all types of innovation among SMEs in Nigeria. In the same vein, the type of finance source for investment matters in terms of how it affects innovation: it is shown that both internal and external sources improve investment in product, process, and organisational innovation, but only external financing has effect on R&D spending and use of foreign licensed technology. Overall spending on R&D is only driven by access to external finance by the SMEs. For productivity, the results show that while structure of financing investment improves productivity, increased access to finance may actually lead to productivity decline among SMEs in Nigeria. There is a need for the financial system to evolve structures to increase fund availability to SMEs in Nigeria, especially for the purpose of innovation investment.

Keywords: access to finance, financing investment, innovation, productivity, SMEs

Procedia PDF Downloads 362
10520 Evaluation of the Effect of Milk Recording Intervals on the Accuracy of an Empirical Model Fitted to Dairy Sheep Lactations

Authors: L. Guevara, Glória L. S., Corea E. E, A. Ramírez-Zamora M., Salinas-Martinez J. A., Angeles-Hernandez J. C.

Abstract:

Mathematical models are useful for identifying the characteristics of sheep lactation curves to develop and implement improved strategies. However, the accuracy of these models is influenced by factors such as the recording regime, mainly the intervals between test day records (TDR). The current study aimed to evaluate the effect of different TDR intervals on the goodness of fit of the Wood model (WM) applied to dairy sheep lactations. A total of 4,494 weekly TDRs from 156 lactations of dairy crossbred sheep were analyzed. Three new databases were generated from the original weekly TDR data (7D), comprising intervals of 14(14D), 21(21D), and 28(28D) days. The parameters of WM were estimated using the “minpack.lm” package in the R software. The shape of the lactation curve (typical and atypical) was defined based on the WM parameters. The goodness of fit was evaluated using the mean square of prediction error (MSPE), Root of MSPE (RMSPE), Akaike´s Information Criterion (AIC), Bayesian´s Information Criterion (BIC), and the coefficient of correlation (r) between the actual and estimated total milk yield (TMY). WM showed an adequate estimate of TMY regardless of the TDR interval (P=0.21) and shape of the lactation curve (P=0.42). However, we found higher values of r for typical curves compared to atypical curves (0.9vs.0.74), with the highest values for the 28D interval (r=0.95). In the same way, we observed an overestimated peak yield (0.92vs.6.6 l) and underestimated time of peak yield (21.5vs.1.46) in atypical curves. The best values of RMSPE were observed for the 28D interval in both lactation curve shapes. The significant lowest values of AIC (P=0.001) and BIC (P=0.001) were shown by the 7D interval for typical and atypical curves. These results represent the first approach to define the adequate interval to record the regime of dairy sheep in Latin America and showed a better fitting for the Wood model using a 7D interval. However, it is possible to obtain good estimates of TMY using a 28D interval, which reduces the sampling frequency and would save additional costs to dairy sheep producers.

Keywords: gamma incomplete, ewes, shape curves, modeling

Procedia PDF Downloads 80