Search results for: score prediction
3222 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis
Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar
Abstract:
Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR
Procedia PDF Downloads 873221 Profiling on the Holistic Identity of Malaysian Gifted Learners
Authors: Rorlinda Yusof, Siti Aishah Hassan, Afifah Mohamad Radzi, Mohd Hakimie Zainal Abidin, Amran Rasli, Inderbir Sandhu
Abstract:
The purpose of this study is to examine the self-identities of gifted and talented students and the relationship between self-identity and academic accomplishment. A random sample of 300 students enrolled in a secondary education programme at the Pusat GENIUS@pintar Negara was chosen as respondents of a 151-item holistic-identity component development tool. The validity of the instrument was assessed using Principal Components Analysis and Factor Analysis via an inter-Item Correlation Matrix (Loading values 0.44 to 0.86), which resulted in the formation of eight dimensions. The Cronbach's Alpha was calculated to determine the instrument's reliability (the overall result was 0.98). The results showed that students' holistic-identity profiles were relatively high (mean=4.09, standard deviation=0.449). In addition, spiritual identity received the greatest mean score (4.34) out of the eight components of identity investigated, while leadership identity received the lowest mean score (3.88). A conceptual framework for Islamic school leadership is recommended to implement spiritual values without differentiation to harmonize spiritual and intellectual intelligence among all the students. Some benchmarking studies with other centres for gifted and talented students are recommended for further research.Keywords: holistic self-identity, academic achievement, self-development programme, counselling services, gifted and talented students
Procedia PDF Downloads 1123220 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis
Authors: Kuixi Du, Thomas J. Lipscomb
Abstract:
The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies
Procedia PDF Downloads 973219 The Coexistence of Dual Form of Malnutrition among Portuguese Institutionalized Elderly People
Authors: C. Caçador, M. J. Reis Lima, J. Oliveira, M. J. Veiga, M. Teixeira Veríssimo, F. Ramos, M. C. Castilho, E. Teixeira-Lemos
Abstract:
In the present study we evaluated the nutritional status of 214 institutionalized elderly residents of both genders, aged 65 years and older of 11 care homes located in the district of Viseu (center of Portugal). The evaluation was based on anthropometric measurements and the Mini Nutritional Assessment (MNA) score. The mean age of the subjects was 82.3 ± 6.1 years-old. Most of the elderly residents were female (72.0%). The majority had 4 years of formal education (51.9%) and was widowed (74.3%) or married (14.0%). Men presented a mean age of 81.2±8.5 years-old, weight 69.3±14.5 kg and BMI 25.33±6.5 kg/m2. In women, the mean age was 84.5±8.2 years-old, weight 61.2±14.7 kg and BMI 27.43±5.6 kg/m2. The evaluation of the nutritional status using the MNA score showed that 24.0% of the residents show a risk of undernutrition and 76.0% of them were well nourished. There was a high prevalence of obese (24.8%) and overweight residents (33.2%) according to the BMI. 7.5% were considered underweight. We also found that according to their waist circumference measurements 88.3% of the residents were at risk for cardiovascular disease (CVD) and 64.0% of them presented very high risk for CVD (WC≥88 cm for women and WC ≥102 cm for men). The present study revealed the coexistence of a dual form of malnutrition (undernourished and overweight) among the institutionalized Portuguese concomitantly with an excess of abdominal adiposity. The high prevalence of residents at high risk for CVD should not be overlooked. Given the vulnerability of the group of institutionalized elderly, our study highlights the importance of the classification of nutritional status based on both instruments: the BMI and the MNA.Keywords: nutritional satus, MNA, BMI, elderly
Procedia PDF Downloads 3273218 Adequate Dietary Intake to Improve Outcome of Urine: Urea Nitrogen with Balance Nitrogen and Total Lymphocyte Count
Authors: Mardiana Madjid, Nurpudji Astuti Taslim, Suryani As'ad, Haerani Rasyid, Agussalim Bukhari
Abstract:
The high level of Urine Urea Nitrogen (UUN) indicates hypercatabolism occurs in hospitalized patients. High levels of Total Lymphocyte Count (TLC) indicates the immune system condition, adequate wound healing, and limit complication. Adequate dietary intake affects to decrease of hypercatabolism status in treated patient’s hospitals. Nitrogen Balance (NB) is simply the difference between nitrogen (N₂) intake and output. If more N₂ intake than output, then positive NB or anabolic will occur. This study aims to evaluate the effect of dietary intake in influencing balance nitrogen and total lymphocyte count. Method: A total of 43 patients admitted to a Wahidin Sudirohusodo Hospital between 2018 and 2019 for 10 days' treats are included. The inclusion criteria were patients who were treated for 10 days and receives food from the hospital orally. Patients did not experience gastrointestinal disorders such as vomiting and diarrhea and experience impair kidney function and liver function and expressed approval to participate in this study. During hospitalization, food intake, UUN, albumin serum, balance nitrogen, and TLC was assessed twice on day 1 and day 10. There is no Physician Clinical Nutritional intervention to correct food intake. UUN is 24 hours of urine collected on the second day after admission and the tenth day. Statistical analysis uses SPSS 24 with observational cohort methods. Result: The Forty-three participants completed the follow-up (27 men and 18 women). The age of fewer than 4 years is 22 people, 45 to 60 years is 16 people, and over 60 years is 4 people. The result of the study on day 1 obtained SGA score A, SGA score B, SGA score C are 8, 32, 3 until day 10 are 8, 31, 4, respectively. According to 24h dietary recalls, the energy intake during observation was from 522.5 ± 400.4 to 1011.9 ± 545.1 kcal/day P < 0.05, protein intake from 20.07 ± 17.2 to 40.3 ± 27.3 g/day P < 0.05, carbohydrates from 92.5 ± 71.6 to 184.8 ± 87.4 g/day, and fat from 5.5 ± 3.86 to 13.9 ± 13.9 g/day. The UUN during the observation was from 6.6 ± 7.3 to 5.5 ± 3.9 g/day, TLC decreased from 1622.9 ± 897.2 to 1319.9 ± 636.3/mm³ value target 1800/mm³, albumin serum from 3.07 ± 0.76 to 2.9 ± 0.57 g/day, and BN from -7.5 ± 7.2 to -3.1 ± 4.86. Conclusion: The high level of UUN needs to correct adequate dietary intake to improve NB and TLC status on hospitalized patients.Keywords: adequate dietary intake, balance nitrogen, total lymphocyte count, urine urea nitrogen
Procedia PDF Downloads 1273217 Dietary Index Associated With Plantar Pressure in Older Women
Authors: Lovro Štefan
Abstract:
The main purpose of the study was to explore if a higher level of Elderly Dietary index score was correlated with lower peak plantar pressures. One-hundred and twenty older adults aged ≥60 years participated in this cross-sectional study. To assess the level of adherence to nutritional recommendations for older adults, we used Elderly Dietary Index score. Plantar pressures beneath the forefoot, midfootandhindfootregions of the foot were determined by pressure platform. Pearson’s coefficient of correlations and partial correlations were used to calculate the relationships. In the unadjusted model, higher Elderly Dietary Index was significantly correlated with lower peak plantar pressure beneath the forefoot (r = -0.45, p<0.001) and hindfoot (r = -0.37, p<0.001) the region, while no significant correlation with peak plantar pressure beneath the (r = -0.15, p=0.113) was observed. When we adjusted for age, body-mass index and gait velocity, higher Elderly Dietary Index remained significantly correlated with lower peak plantar pressure beneath the forefoot (r = -0.41, p<0.001) and hintfoot (r = -0.32, p<0.001) region. This study shows that higher adherence to nutritional recommendations is significantly correlated with lower forefoot and hindfoot peak plantar pressures in older women.Keywords: elderly, biomechanics, nutrition, associations, force
Procedia PDF Downloads 863216 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: real estate price, least-square, grey correlation, macroeconomics
Procedia PDF Downloads 2013215 Fusion Models for Cyber Threat Defense: Integrating Clustering, Random Forests, and Support Vector Machines to Against Windows Malware
Authors: Azita Ramezani, Atousa Ramezani
Abstract:
In the ever-escalating landscape of windows malware the necessity for pioneering defense strategies turns into undeniable this study introduces an avant-garde approach fusing the capabilities of clustering random forests and support vector machines SVM to combat the intricate web of cyber threats our fusion model triumphs with a staggering accuracy of 98.67 and an equally formidable f1 score of 98.68 a testament to its effectiveness in the realm of windows malware defense by deciphering the intricate patterns within malicious code our model not only raises the bar for detection precision but also redefines the paradigm of cybersecurity preparedness this breakthrough underscores the potential embedded in the fusion of diverse analytical methodologies and signals a paradigm shift in fortifying against the relentless evolution of windows malicious threats as we traverse through the dynamic cybersecurity terrain this research serves as a beacon illuminating the path toward a resilient future where innovative fusion models stand at the forefront of cyber threat defense.Keywords: fusion models, cyber threat defense, windows malware, clustering, random forests, support vector machines (SVM), accuracy, f1-score, cybersecurity, malicious code detection
Procedia PDF Downloads 723214 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 1193213 Is Socio-Economic Characteristic is Associated with Health-Related Quality of Life among Elderly: Evidence from SAGE Data in India
Authors: Mili Dutta, Lokender Prashad
Abstract:
Introduction: Population ageing is a phenomenon that can be observed around the globe. The health-related quality of life (HRQOL) is a measurement of health status of an individual, and it describes the effect of physical and mental health disorders on the well-being of a person. The present study is aimed to describe the influence of socio-economic characteristics of elderly on their health-related quality of life in India. Methods: EQ-5D instrument and population-based EQ-5D index score has been measured to access the HRQOL among elderly. Present study utilized the Study on Global Ageing and Adult Health (SAGE) data which was conducted in 2007 in India. Multiple Logistic Regression model and Multivariate Linear Regression model has been employed. Result: In the present study, it was found that the female are more likely to have problems in mobility (OR=1.41, 95% Cl: 1.14 to 1.74), self-care (OR=1.26, 95% Cl: 1.01 to 1.56) and pain or discomfort (OR=1.50, 95% Cl: 1.16 to 1.94). Elderly residing in rural area are more likely to have problems in pain/discomfort (OR=1.28, 95% Cl: 1.01 to 1.62). More older and non-working elderly are more likely whereas higher educated and highest wealth quintile elderly are less likely to have problems in all the dimensions of EQ-5D viz. mobility, self-care, usual activity, pain/discomfort and anxiety/depression. The present study has also shown that oldest old people, residing in rural area and currently not working elderly are more likely to report low EQ-5D index score whereas elderly with high education level and high wealth quintile are more likely to report high EQ-5D index score than their counterparts. Conclusion: The present study has found EQ-5D instrument as the valid measure for assessing the HRQOL of elderly in India. The study indicates socio-economic characteristics of elderly such as female, more older people, residing in rural area, non-educated, poor and currently non-working as the major risk groups of having poor HRQOL in India. Findings of the study will be helpful for the programmes and policy makers, researchers, academician and social workers who are working in the field of ageing.Keywords: ageing, HRQOL, India, EQ-5D, SAGE, socio-economic characteristics
Procedia PDF Downloads 4023212 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening
Authors: X. Wang, J. S. Kuang
Abstract:
The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.Keywords: bisection method, FASTMT, iterative root-finding technique, reinforced concrete membrane
Procedia PDF Downloads 2743211 Training Can Increase Knowledge and Skill of Teacher's on Measurement and Assessment Nutritional Status Children
Authors: Herawati Tri Siswati, Nurhidayat Ana Sıdık Fatimah
Abstract:
The Indonesia Basic Health Research, 2013 showed that prevalence of stunting of 6–12 children years old was 35,6%, wasting was 12,2% and obesiy was 9,2%. The Indonesian Goverment have School Health Program, held in coordination, plans, directing and responsible, developing and implement health student. However, it's implementation still under expected, while Indonesian Ministry of Health has initiated the School Health Program acceleration. This aimed is to know the influencing of training to knowledge and skill of elementary school teacher about measurement and assesment nutrirional status children. The research is quasy experimental with pre-post design, in Sleman disctrict, Yogyakarta province, Indonesia, 2015. Subject was all of elementary school teacher’s who responsible in School Health Program in Gamping sub-district, Sleman, Yogyakarta, i.e. 32 persons. The independent variable is training, while the dependent variable are teacher’s klowledge and skill on measurement and assesment nutrirional status children. The data was analized by t-test. The result showed that the knowledge score before training is 31,6±9,7 and after 56,4±12,6, with an increase 24,8±15,7, and p=0.00. The skill score before training is 46,6±11,1 and after 61,7±13, with an increase 15,2±14,2, p = 0.00. Training can increase the teacher’s klowledge and skill on measurement and assesment nutrirional status.Keywords: training, school health program, nutritional status, children.
Procedia PDF Downloads 3933210 A Comparative and Mixed Methods Study of Possible Selves of Adolescent Boys in an Observation Home and a Children's Home in India
Authors: Apurva Sapra
Abstract:
The aim of this research was to study and compare the nature of expected, feared and hoped-for selves in institutionalized adolescent boys in two residential settings – an observation home with children in conflict with the law, and a children’s home with children in need of care and protection. The study uses a concurrent mixed methods design, in which eight adolescent boys from each group, aged 13-17, were asked to respond to a questionnaire, followed by an in-depth interview. The questionnaire looked into the total scores on current, probable and hoped-for/feared positive and negative self-descriptors. Possible selves of both groups were found to be influenced by their unique histories, such as with their experience of violence, interaction with the police and emphasis given on education. Expected selves and hoped-for selves were similar within the two groups. However, they were more concrete and attainable in the observation home and more ambitious in the children’s home. Quantitative results showed that on the positive self-descriptors, the participants in the observation home had a slightly lower total score on the current parameter as on the probable and hoped-for parameters. The participants in the children’s home showed similar results on current and probable positive self-descriptors, with higher scores on the hoped-for parameter. For most of the negative self-descriptors, the current score for the observation home group was lower than the expected score, and for the children’s home group, they were feared slightly more than they were expected. Along with the nature of possible selves, the study also looked into threats and support to desired and feared possible selves, as well as strategies to attain the desired possible selves and avoid feared possible selves. While threats to possible selves were identified as external and internal in both groups, the participants in the children’s home tended to identify threats as external. The categories of support were similar across the two groups, although the nature of support provided differed. Strategies adopted by participants in the observation home could be clearly divided as past, present and future strategies, while those adopted by participants in the children’s home had an overlap with past and future strategies. The institution was perceived as having a negative influence for the future in the observation home group, but positive in the children’s home group. Limitations of the study and recommendations for future research, policy setting and the counselling profession are discussed.Keywords: adolescents, expected self, feared self, hoped-for self, institutions, possible selves
Procedia PDF Downloads 2393209 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1943208 Pain Control by Ketamine in Combat Situation; Consideration and Outcomes
Authors: Mohammad Javad Behzadnia, Hamidreza Javadzadeh
Abstract:
Background: Pain management is essential to surmounting multi-injured people in an overcrowded emergency setting. Its role would be more apparent when the physician encounters a mass casualty in a war zone or even a military prehospital. Having sedative and analgesic properties, rapid onset and offset effects, and maintaining the cardiovascular and respiratory contain are the main reason for selecting Ketamine as a good choice in the war zone. Methods: In a prospective interventional study in a war zone, we have selected and followed two groups of casualties for pain management. All were men with an average age of 26.6±8 y/o and 27.5 ±7 y/o in A and B groups, respectively. Group A received only Ketamine and Group B received Ketamine and diazepam. Results: This study showed that all of the injured patients who received Ketamine had experienced some agitation, and they may finally need benzodiazepines for sedation, but in group B that received benzodiazepine before or simultaneous with Ketamine, the agitation was significantly reduced. (P Value ≤0.05) Conclusion: Various factors may affect pain score and perception; patients' culture, mental health, previous drug usage, and addiction could alter the pain score in similar situations. It seems that the significant agitation is due to catecholamine release in stressful Moments of the battlefield. Accordingly, this situation could be exacerbated due to ketamine properties. Nonetheless, as a good choice in the war zone, Ketamine is now recommended to combine with benzodiazepines for procedural sedation and analgesia (PSA).Keywords: battlefield, ketamine, benzodiazepine, pain control
Procedia PDF Downloads 1033207 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System
Authors: Belalia Douma Omar, Bakhta Boukhatem, Mohamed Ghrici
Abstract:
Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Adaptive Neuro-Fuzzy Inference System (ANFIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, super plasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.Keywords: self-compacting concrete, fly ash, strength prediction, fuzzy logic
Procedia PDF Downloads 3363206 Protein Quality of Game Meat Hunted in Latvia
Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna
Abstract:
Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.Keywords: dietic product, game meat, amino acids, scores
Procedia PDF Downloads 3243205 Holistic Approach Illustrating the Use of Complementary and Alternative Medicine in Pain and Stress Management for Spinal Cord Injury
Authors: Priyanka Kalra
Abstract:
Background: Complementary and alternative medicine (CAM) includes various practices like Ayurveda, Yoga & Meditation Acupressure Acupuncture and Reiki. These practices are frequently used by patients with spinal cord injury (SCI). They have shown effectiveness in the management of pain and stress consequently improving overall quality of life post injury. Objective: The goals of the present case series were to evaluate the feasibility of 1) Using of Ayurvedic herbal oil massages in shoulder pain management, 2) Using yoga & meditation on managing the stress in spinal cord injury. Methodology: 15 SCI cases with muscular pain around shoulder were treated with Ayurvedic herbal oil massage for 10 days in CAM Department. Each session consisted of 30 min oil massage followed by 10 min hot towel fomentation. The patients continued regular therapy medications along with CAM. Another 15 SCI cases were treated with yoga and meditation for 15 days 30 min yoga (20 min Asana+ 10 min Pranayam + 15 min Meditation) in isolated yoga room of CAM department. Results: On the VAS scale the patients reported a reduction in their pain score by 70 %. On the PSS scale, the patients reported a reduction in their stress score by 80 %. Conclusion: These case series may encourage more people to explore CAM therapies.Keywords: spinal cord injury, Ayurveda, complementary and alternative medicine, yoga, meditation
Procedia PDF Downloads 3033204 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations
Authors: Fatemeh Sadat Sharifi
Abstract:
In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW
Procedia PDF Downloads 2083203 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 3113202 Insecurity as a Challenge to Nutritional Status of Children and Mothers in Dansadau, Maru Local Government Area Zamfara State, North Western Nigeria
Authors: Mohammed Hussaini
Abstract:
This paper discusses insecurity as a challenge to the nutritional Status of children and mothers in Dansadau, Maru Local Government area of Zamfara state, Northwestern Nigeria. A Descriptive survey design was used in the study. Objectives of the study were formulated to guide the study. 20 Health workers and 100 mothers were used as population of the study; the instrument validation for data collection was interview. The interview structure was validated by 3 experts, the data collected was analyzed and presented using descriptive standard score (Z-score). The study revealed that, Nutritional Status of children and mothers in Northwest Nigeria specifically Zamfara state is low. This mostly affect children and mother as a result of serious insecurity challenge in the region, consisting of banditry and kidnapping, killing of farmers, destruction of farmland, burning of farm products. The study recommended that the focus is on implementing strong communication strategies to enhance short-term relief initiatives, both governmental and non-governmental organizations should actively play a role in initiating lasting change, especially when tackling issues of insecurity and effectively addressing the rise of armed banditry and other security concerns requires a sophisticated and nuanced strategy.Keywords: insecurity, malnutrition, children, mothers
Procedia PDF Downloads 553201 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 443200 A Comparison of Anger State and Trait Anger Among Adolescents with and without Visual Impairment
Authors: Sehmus Aslan, Sibel Karacaoglu, Cengiz Sevgin, Ummuhan Bas Aslan
Abstract:
Objective: Anger expression style is an important moderator of the effects on the person and person’s environment. Anger and anger expression have become important constructs in identifying individuals at high risk for psychological difficulties. To our knowledge, there is no information about anger and anger expression of adolescents with visual impairment. The aim of this study was to compare anger and anger expression among adolescents with and without visual impairment. Methods: Thirty-eight adolescents with visual impairment (18 female, 20 male) and 44 adolescents without visual impairment (22 female, 24 male), in totally 84 adolescents aged between 12 to 15 years, participated in the study. Anger and anger expression of the participants assessed with The State-Trait Anger Scale (STAS). STAS, a self-report questionnaire, is designed to measure the experience and expression of anger. STAS has four subtitles including continuous anger, anger in, anger out and anger control. Reliability and validity of the STAS have been well established among adolescents. Mann-Whitney U Test was used for statistical analysis. Results: No significant differences were found in the scores of continuous anger and anger out between adolescents with and without visual impairment (p < 0.05). On the other hand, there were differences in scores of anger control and anger in between adolescents with and without visual impairment (p>0.05). The score of anger control in adolescents with visual impairment were higher compared with adolescents without visual impairment. Meanwhile, the adolescents with visual impairment had lower score for anger in compared with adolescents without visual impairment. Conclusions: The results of this study suggest that there is no difference in anger level among adolescents with and without visual impairment meanwhile there is difference in anger expression.Keywords: adolescent, anger, impaired, visual
Procedia PDF Downloads 4153199 Relationship of Silent Myocardial Ischemia to Erectile Dysfunction in Patients with Diabetes Mellitus
Authors: Ali Kassem, Esam Nada, Amro Abdelhamed, Shigeo Horie
Abstract:
Objective: Diabetes mellitus (DM) is associated with macrovascular complications, including coronary artery disease (CAD), and microvascular complications that contribute to the pathogenesis of erectile dysfunction (ED). On the other hand, silent myocardial ischemia (SMI) is more common in diabetic patients and is a strong predictor of cardiac events and mortality in diabetic and non-diabetic patients. Recently, Multidetector computed tomographic coronary angiography (MDCT-CA) has become a reliable non-invasive imaging modality for screening diabetic patients for SMI. We aim to evaluate the presence of SMI using (MDCT-CA) in patients with type 2DM having ED. Methods: This study evaluated 20 patients (mean age 61.45 ± 10.7 years), with DM and ED without any history of angina or angina equivalent. ED was tested with the Sexual Health Inventory for Men score, erection hardness score (EHS), and maximal penile circumferential change by an erect meter. Results: Of twenty studied patients, coronary artery stenosis was detected in 13 (65%) patients in the form of one-vessel disease (n = 6, 30%), two-vessel disease (n = 2, 10%), and three-vessel disease (n = 5, 25%). Maximum coronary artery stenosis was positively correlated with age (P < 0.016,) and negatively correlated with EHS (P <04). Multivariate regression analysis using age and EHS showed that age was the only independent predictor of SMI (P <04). Conclusion: MDCT-CA is a useful tool to identify SMI in patients with diabetes mellitus and ED. One should consider the possibility of SMI especially in elderly patients with DM who have ED.Keywords: diabetes mellitus, erectile dysfunction, microvascular, silent ischemia
Procedia PDF Downloads 1733198 A Contemporary Advertising Strategy on Social Networking Sites
Authors: M. S. Aparna, Pushparaj Shetty D.
Abstract:
Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints
Procedia PDF Downloads 2633197 The Psychosis Prodrome: Biomarkers of the Glutamatergic System and Their Potential Role in Prediction and Treatment
Authors: Peter David Reiss
Abstract:
The concept of the psychosis prodrome has allowed for the identification of adolescent and young adult patients who have a significantly elevated risk of developing schizophrenia spectrum disorders. A number of different interventions have been tested in order to prevent or delay progression of symptoms. To date, there has been no consistent meta-analytical evidence to support efficacy of antipsychotic treatment for patients in the prodromal state, and their use remains therefore inconclusive. Although antipsychotics may manage symptoms transiently, they have not been found to prevent or delay onset of psychotic disorders. Furthermore, pharmacological intervention in high-risk individuals remains controversial, because of the antipsychotic side effect profile in a population in which only about 20 to 35 percent will eventually convert to psychosis over a two-year period, with even after two years conversion rates not exceeding 30 to 40 percent. This general estimate is additionally problematic, in that it ignores the fact that there is significant variation in individual risk among clinical high-risk cases. The current lack of reliable tests for at-risk patients makes it difficult to justify individual treatment decisions. Preventive treatment should ideally be dictated by an individual’s risk while minimizing potentially harmful medication exposure. This requires more accurate predictive assessments by using valid and accessible prognostic markers. The following will compare prediction and risk modification potential of behavioral biomarkers such as disturbances of basic sense of self and emotion awareness, neurocognitive biomarkers such as attention, working and declarative memory, and neurophysiological biomarkers such as glutamatergic abnormalities and NMDA receptor dysfunction. Identification of robust biomarkers could therefore not only provide more reliable means of psychosis prediction, but also help test and develop new clinical interventions targeted at the prodromal state.Keywords: at-risk mental state, biomarkers, glutamatergic system, NMDA receptor, psychosis prodrome, schizophrenia
Procedia PDF Downloads 1963196 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks
Authors: Juan Sebastián Hernández
Abstract:
The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR
Procedia PDF Downloads 1043195 BiFormerDTA: Structural Embedding of Protein in Drug Target Affinity Prediction Using BiFormer
Authors: Leila Baghaarabani, Parvin Razzaghi, Mennatolla Magdy Mostafa, Ahmad Albaqsami, Al Warith Al Rushaidi, Masoud Al Rawahi
Abstract:
Predicting the interaction between drugs and their molecular targets is pivotal for advancing drug development processes. Due to the time and cost limitations, computational approaches have emerged as an effective approach to drug-target interaction (DTI) prediction. Most of the introduced computational based approaches utilize the drug molecule and protein sequence as input. This study does not only utilize these inputs, it also introduces a protein representation developed using a masked protein language model. In this representation, for every individual amino acid residue within the protein sequence, there exists a corresponding probability distribution that indicates the likelihood of each amino acid being present at that particular position. Then, the similarity between each pair of amino-acids is computed to create similarity matrix. To encode the knowledge of the similarity matrix, Bi-Level Routing Attention (BiFormer) is utilized, which combines aspects of transformer-based models with protein sequence analysis and represents a significant advancement in the field of drug-protein interaction prediction. BiFormer has the ability to pinpoint the most effective regions of the protein sequence that are responsible for facilitating interactions between the protein and drugs, thereby enhancing the understanding of these critical interactions. Thus, it appears promising in its ability to capture the local structural relationship of the proteins by enhancing the understanding of how it contributes to drug protein interactions, thereby facilitating more accurate predictions. To evaluate the proposed method, it was tested on two widely recognized datasets: Davis and KIBA. A comprehensive series of experiments was conducted to illustrate its effectiveness in comparison to cuttingedge techniques.Keywords: BiFormer, transformer, protein language processing, self-attention mechanism, binding affinity, drug target interaction, similarity matrix, protein masked representation, protein language model
Procedia PDF Downloads 153194 Strategies in Customer Relationship Management and Customers’ Behavior in Making Decision on Buying Car Insurance of Southeast Insurance Co. Ltd. in Bangkok
Authors: Nattapong Techarattanased, Paweena Sribunrueng
Abstract:
The objective of this study is to investigate strategies in customer relationship management and customers’ behavior in making decision on buying car insurance of Southeast Insurance Co. Ltd. in Bangkok. Subjects in this study included 400 customers with the age over 20 years old to complete questionnaires. The data were analyzed by arithmetic mean and multiple regressions. The results revealed that the customers’ opinions on the strategies in customer relationship management, i.e. customer relationship, customer feedback, customer follow-up, useful service suggestions, customer communication, and service channels were in moderate level but on the customer retention was in high level. Moreover, the strategy in customer relationship management, i.e. customer relationship, and customer feedback had an influence on customers’ buying decision on buying car insurance. The two factors above can be used for the prediction at the rate of 34%. In addition, the strategy in customer relationship management, i.e. customer retention, customer feedback, and useful service suggestions had an influence on the customers’ buying decision on period of being customers. The three factors could be used for the prediction at the rate of 45%.Keywords: strategies, customer relationship management, behavior in buying decision, car insurance
Procedia PDF Downloads 4063193 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 137