Search results for: deep wells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2487

Search results for: deep wells

1557 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 73
1556 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework

Authors: Abbas Raza Ali

Abstract:

Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.

Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation

Procedia PDF Downloads 176
1555 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria

Authors: M. Benhamza, M. Touati, M. Aissaoui

Abstract:

The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.

Keywords: Algeria, groundwater, irrigated perimeter, pollution

Procedia PDF Downloads 123
1554 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
1553 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 44
1552 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 103
1551 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study

Authors: Hamidoddin Yousife

Abstract:

Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.

Keywords: drlling, cost, optimization, parameters

Procedia PDF Downloads 170
1550 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 97
1549 Aire-Dependent Transcripts have Shortened 3’UTRs and Show Greater Stability by Evading Microrna-Mediated Repression

Authors: Clotilde Guyon, Nada Jmari, Yen-Chin Li, Jean Denoyel, Noriyuki Fujikado, Christophe Blanchet, David Root, Matthieu Giraud

Abstract:

Aire induces ectopic expression of a large repertoire of tissue-specific antigen (TSA) genes in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in maturing T cells. Although important mechanisms of Aire-induced transcription have recently been disclosed through the identification and the study of Aire’s partners, the fine transcriptional functions underlied by a number of them and conferred to Aire are still unknown. Alternative cleavage and polyadenylation (APA) is an essential mRNA processing step regulated by the termination complex consisting of 85 proteins, 10 of them have been related to Aire. We evaluated APA in MECs in vivo by microarray analysis with mRNA-spanning probes and RNA deep sequencing. We uncovered the preference of Aire-dependent transcripts for short-3’UTR isoforms and for proximal poly(A) site selection marked by the increased binding of the cleavage factor Cstf-64. RNA interference of the 10 Aire-related proteins revealed that Clp1, a member of the core termination complex, exerts a profound effect on short 3’UTR isoform preference. Clp1 is also significantly upregulated in the MECs compared to 25 mouse tissues in which we found that TSA expression is associated with longer 3’UTR isoforms. Aire-dependent transcripts escape a global 3’UTR lengthening associated with MEC differentiation, thereby potentiating the repressive effect of microRNAs that are globally upregulated in mature MECs. Consistent with these findings, RNA deep sequencing of actinomycinD-treated MECs revealed the increased stability of short 3’UTR Aire-induced transcripts, resulting in TSA transcripts accumulation and contributing for their enrichment in the MECs.

Keywords: Aire, central tolerance, miRNAs, transcription termination

Procedia PDF Downloads 384
1548 CFD Simulation and Investigation of Critical Two-Phase Flow Rate in Wellhead Choke

Authors: Alireza Rafie Boldaji, Ahmad Saboonchi

Abstract:

Chokes are commonly used in oil and gas production systems. A choke is a restriction basically designed to control flow rates of oil and gas wells, to prevent the downstream disturbances from propagating upstream (critical flow), and to protect the surface equipment facilities against slugging at high flowing pressures. There are different methods to calculate the multiphase flow rate, one of the multiphase flow measurement methods is the separation and measurement by on¬e-phaseFlow meter, another common method is the use of movable separator, their operations are very labor-intensive and costly. The current method used is based on the flow differential pressure on both sides of choke. Three groups of correlations describing two-phase flow through wellhead chokes were examined. The first group involved simple empirical equations similar to those of Gilbert, the second group comprised derived equations of two-phase flow incorporating PVT properties, and third group is computational method. In the article we calculate the flow of oil and gas through choke with simulation of this two phase flow bye computational fluid dynamic method, we use Ansys- fluent for this simulation and finally compared results of computational simulation whit empirical equations, the results show good agreement between experimental and numerical results.

Keywords: CFD, two-phase, choke, critical

Procedia PDF Downloads 278
1547 Characteristics and Challenges of Post-Burn Contractures in Adults and Children: A Descriptive Study

Authors: Hardisiswo Soedjana, Inne Caroline

Abstract:

Deep dermal or full thickness burns are inevitably lead to post-burn contractures. These contractures remain to be one of the most concerning late complications of burn injuries. Surgical management includes releasing the contracture followed by resurfacing the defect accompanied by post-operative rehabilitation. Optimal treatment of post-burn contractures depends on the characteristics of the contractures. This study is aimed to describe clinical characteristics, problems, and management of post-burn contractures in adults and children. A retrospective analysis was conducted from medical records of patients suffered from contractures after burn injuries admitted to Hasan Sadikin general hospital between January 2016 and January 2018. A total of 50 patients with post burn contractures were included in the study. There were 17 adults and 33 children. Most patients were male, whose age range within 15-59 years old and 5-9 years old. Educational background was mostly senior high school among adults, while there was only one third of children who have entered school. Etiology of burns was predominantly flame in adults (82.3%); whereas flame and scald were the leading cause of burn injury in children (11%). Based on anatomical regions, hands were the most common affected both in adults (35.2%) and children (48.5%). Contractures were identified in 6-12 months since the initial burns. Most post-burn hand contractures were resurfaced with full-thickness skin graft (FTSG) both in adults and children. There were 11 patients who presented with recurrent contracture after previous history of contracture release. Post-operative rehabilitation was conducted for all patients; however, it is important to highlight that it is still challenging to control splinting and exercise when patients are discharged and especially the compliance in children. In order to improve quality of life in patients with history of deep burn injuries, prevention of contractures should begin right after acute care has been established. Education for the importance of splinting and exercise should be administered as comprehensible as possible for adult patients and parents of pediatric patients.

Keywords: burn, contracture, education, exercise, splinting

Procedia PDF Downloads 130
1546 Estimation of Aquifer Parameters Using Vertical Electrical Sounding in Ochudo City, Abakaliki Urban Nigeria

Authors: Moses. O. Eyankware, Benard I. Odoh, Omoleomo O. Omo-Irabor, Alex O. I. Selemo

Abstract:

Knowledge of hydraulic conductivity and transmissivity is essential for the determination of natural water flow through an aquifer. These parameters are commonly estimated from the analysis of electrical conductivity, soil properties and fluid flow data. In order to achieve a faster and cost effective analysis of aquifer parameters in Ochudo City in Abakaliki, this study relied on non-invasive geophysical methods. As part of this approach, Vertical Electrical Sounding (VES) was conducted at 20 sites in the study area for the identification of the vertical variation in subsurface lithology and for the characterization of the groundwater system. The area variously consists of between five to seven geoelectric layers of different thicknesses. Depth to aquifer ranges from 9.94 m-134.0 m while the thickness of the identified aquifer varies between 8.43 m and 44.31 m. Based on the electrical conductivity values of water samples collected from two boreholes and two hand-dug wells within the study area, the hydraulic conductivity was determined to range from 0.10 to 0.433 m/day. The estimated thickness of the aquifer and calculated hydraulic conductivity were used to derive the aquifer transmissivity. The results indicate that this parameter ranges from 1.58-7.56 m²/day with a formation factor of between 0.31-3.6.

Keywords: Asu river group, transmissivity, hydraulic conductivity, abakaliki, vertical electrical sounding (VES)

Procedia PDF Downloads 395
1545 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 74
1544 Identification of Deposition Sequences of the Organic Content of Lower Albian-Cenomanian Age in Northern Tunisia: Correlation between Molecular and Stratigraphic Fossils

Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The present work is an organic geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a mixed origin (type II and III), as indicated by the relatively high values of hydrogen index. This origin is confirmed by the C29 Steranes abundance and also by tricyclic terpanes C19/(C19+C23) and tetracyclic terpanes C24/(C24+C23) ratios, that suggest a marine environment of deposit with high plants contribution. We have demonstrated that the heterogeneity of organic matter between the marine aspect, confirmed by the presence of foraminifera, and the continental contribution, is the result of an episodic anomaly in relation to the sequential stratigraphy. Given that the study area is defined as an outer platform forming a transition zone between a stable continental domain to the south and a deep basin to the north, we have explained the continental contribution by successive forced regressions, having blocked the albian transgression, allowing the installation of the lowstand system tracts. This aspect is represented by the incised valleys filling, in direct contact with the pelagic and deep sea facies. Consequently, the Fahdene Formation, in the Kef-Tedjerouine area, consists of transgressive system tracts (TST) brutally truncated by extras of continental progradation; resulting in a mixed influence deposition having retained a heterogeneous organic material.

Keywords: molecular geochemistry, biomarkers, forced regression, deposit environment, mixed origin, Northern Tunisia

Procedia PDF Downloads 250
1543 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 108
1542 Closed Incision Negative Pressure Therapy Dressing as an Approach to Manage Closed Sternal Incisions in High-Risk Cardiac Patients: A Multi-Centre Study in the UK

Authors: Rona Lee Suelo-Calanao, Mahmoud Loubani

Abstract:

Objective: Sternal wound infection (SWI) following cardiac operation has a significant impact on patient morbidity and mortality. It also contributes to longer hospital stays and increased treatment costs. SWI management is mainly focused on treatment rather than prevention. This study looks at the effect of closed incision negative pressure therapy (ciNPT) dressing to help reduce the incidence of superficial SWI in high-risk patients after cardiac surgery. The ciNPT dressing was evaluated at 3 cardiac hospitals in the United Kingdom". Methods: All patients who had cardiac surgery from 2013 to 2021 were included in the study. The patients were classed as high risk if they have two or more of the recognised risk factors: obesity, age above 80 years old, diabetes, and chronic obstructive pulmonary disease. Patients receiving standard dressing (SD) and patients using ciNPT were propensity matched, and the Fisher’s exact test (two-tailed) and unpaired T-test were used to analyse categorical and continuous data, respectively. Results: There were 766 matched cases in each group. Total SWI incidences are lower in the ciNPT group compared to the SD group (43 (5.6%) vs 119 (15.5%), P=0.0001). There are fewer deep sternal wound infections (14(1.8%) vs. 31(4.04%), p=0.0149) and fewer superficial infections (29(3.7%) vs. 88 (11.4%), p=0.0001) in the ciNPT group compared to the SD group. However, the ciNPT group showed a longer average length of stay (11.23 ± 13 days versus 9.66 ± 10 days; p=0.0083) and higher mean logistic EuroSCORE (11.143 ± 13 versus 8.094 ± 11; p=0.0001). Conclusion: Utilization of ciNPT as an approach to help reduce the incidence of superficial and deep SWI may be effective in high-risk patients requiring cardiac surgery.

Keywords: closed incision negative pressure therapy, surgical wound infection, cardiac surgery complication, high risk cardiac patients

Procedia PDF Downloads 99
1541 Improvement of Analysis Vertical Oil Exploration Wells (Case Study)

Authors: Azza Hashim Abbas, Wan Rosli Wan Suliman

Abstract:

The old school of study, well testing reservoir engineers used the transient pressure analyses to get certain parameters and variable factors on the reservoir's physical properties, such as, (permeability-thickness). Recently, the difficulties facing the newly discovered areas are the convincing fact that the exploration and production (E&p) team should have sufficiently accurate and appropriate data to work with due to different sources of errors. The well-test analyst does the work without going through well-informed and reliable data from colleagues which may consequently cause immense environmental damage and unnecessary financial losses as well as opportunity losses to the project. In 2003, new potential oil field (Moga) face circulation problem well-22 was safely completed. However the high mud density had caused an extensive damage to the nearer well area which also distracted the hypothetical oil rate of flow that was not representive of the real reservoir characteristics This paper presents methods to analyze and interpret the production rate and pressure data of an oil field. Specifically for Well- 22 using the Deconvolution technique to enhance the transient pressure .Applying deconvolution to get the best range of certainty of results needed for the next subsequent operation. The range determined and analysis of skin factor range was reasonable.

Keywords: well testing, exploration, deconvolution, skin factor, un certainity

Procedia PDF Downloads 446
1540 Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka

Authors: Iranga Weerakkody, Palitha Sri Geegana Arachchige, Dasith Tilakaratna

Abstract:

The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys.

Keywords: folklife, Ingini seeds, Strychnos potatorum, organic forest produce, water purification

Procedia PDF Downloads 198
1539 Determination of Inflow Performance Relationship for Naturally Fractured Reservoirs: Numerical Simulation Study

Authors: Melissa Ramirez, Mohammad Awal

Abstract:

The Inflow Performance Relationship (IPR) of a well is a relation between the oil production rate and flowing bottom-hole pressure. This relationship is an important tool for petroleum engineers to understand and predict the well performance. In the petroleum industry, IPR correlations are used to design and evaluate well completion, optimizing well production, and designing artificial lift. The most commonly used IPR correlations models are Vogel and Wiggins, these models are applicable to homogeneous and isotropic reservoir data. In this work, a new IPR model is developed to determine inflow performance relationship of oil wells in a naturally fracture reservoir. A 3D black-oil reservoir simulator is used to develop the oil mobility function for the studied reservoir. Based on simulation runs, four flow rates are run to record the oil saturation and calculate the relative permeability for a naturally fractured reservoir. The new method uses the result of a well test analysis along with permeability and pressure-volume-temperature data in the fluid flow equations to obtain the oil mobility function. Comparisons between the new method and two popular correlations for non-fractured reservoirs indicate the necessity for developing and using an IPR correlation specifically developed for a fractured reservoir.

Keywords: inflow performance relationship, mobility function, naturally fractured reservoir, well test analysis

Procedia PDF Downloads 284
1538 Sewage Sludge Management: A Case Study of Monrovia, Montserrado County, Liberia

Authors: Victor Emery David Jr, Md S. Hossain

Abstract:

Sewage sludge management has been a problem faced by most developing cities as in the case of Monrovia. The management of sewage sludge in Monrovia is still in its infant stage. The city is still struggling with poor sanitation, clogged pipes, shortage of septic tanks, lack of resources/human capacity, inadequate treatment facilities, open defecation, the absence of clear guidelines, etc. The rapid urban population growth of Monrovia has severely stressed Monrovia’s marginally functional urban WSS system caused by the civil conflict which led to break down in many sectors as well as infrastructure. The sewerage system which originally covered 17% of the population of Monrovia was down to serving about 7% because of bursts and blockages causing backflows in other areas. Prior to the Civil War, the average water production for Monrovia was about 68,000 m3/day but has now dropped to about 10,000 m3/day. Only small parts of Monrovia currently have direct access to the piped water supply while most areas depend on trucked water delivered to community collection points or household tanks, and/or on water from unprotected dug wells or hand pumps. There are only two functional treatment plants; The Fiamah Treatment plant and the White Plains Treatment Plant.

Keywords: Fiamah Treatment plant, management, Monrovia/Montserrado County, sewage, sludge

Procedia PDF Downloads 290
1537 Case Report: Massive Deep Venous Thrombosis in a Young Female: A Rare and Fatal Presentation of May-Thurner Syndrome

Authors: Mahmoud Eldeeb, Yousri Mohamed

Abstract:

Background: May-Thurner Syndrome (MTS) is a rare vascular condition caused by the compression of the left common iliac vein by the overlying right common iliac artery, leading to venous stasis and an increased risk of deep vein thrombosis (DVT). While MTS typically presents in young adults, its diagnosis is often delayed due to its nonspecific presentation, which can lead to catastrophic complications like massive pulmonary embolism (PE). Early recognition and intervention are paramount to prevent fatal outcomes. Objectives: Highlight the importance of early recognition and management of critically ill patients presenting with life- and limb-threatening conditions. Raise awareness of May-Thurner Syndrome as a rare but significant cause of extensive DVT in young adults. Emphasize the necessity of a multidisciplinary approach to managing complex vascular emergencies. Methodology: A 21-year-old female presented with a 7-day history of progressive left leg swelling, pain, and skin discoloration following immobilization due to gastroenteritis. Clinical suspicion for massive DVT and compartment syndrome prompted immediate initiation of a heparin bolus and referrals to vascular and orthopedic surgery teams. Bedside Doppler ultrasound confirmed extensive DVT, and subsequent CT venography revealed thrombi extending to the inferior vena cava, consistent with MTS. Despite anticoagulation therapy, angioplasty and stenting were required to restore venous patency. Tragically, the patient experienced a massive PE during the procedure, requiring cardiopulmonary resuscitation (CPR) and transfer to a tertiary center for cardiothoracic intervention. Results: The case highlights the aggressive and life-threatening progression of MTS. The patient’s presentation was characterized by massive DVT with severe pain and discoloration, rapidly culminating in a PE during intervention. The combination of bedside imaging and CT venography facilitated an accurate diagnosis. Despite timely management, the patient’s course underscores the high mortality risk associated with MTS-related thromboembolism. Conclusion: May-Thurner Syndrome, though rare, can lead to devastating complications in young adults if not promptly recognized and treated. This case emphasizes the need for a high index of suspicion in patients presenting with unexplained extensive DVT, especially in the context of limited mobility or other precipitating factors. Multidisciplinary collaboration, including vascular imaging, anticoagulation, and interventional procedures, is critical to optimize outcomes. Urgent recognition and treatment of MTS are vital to prevent progression to massive PE and death.

Keywords: may-thurner syndrome, deep venous thrombosis, pulmonary embolism, vascular emergency, iliac vein compression syndrome

Procedia PDF Downloads 11
1536 The Advancements in Non-Invasive Brain Stimulation Techniques and Their Application to Parkinson’s Disease

Authors: Izadpanh Shaghayegh, Adli Fateme

Abstract:

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms, including tremors, bradykinesia, rigidity, and freezing of gait (FOG), which arise from degeneration of the basal ganglia. While pharmacological treatments, particularly dopaminergic therapies, remain the primary approach for managing PD, their long-term effectiveness diminishes due to complications such as dyskinesia and motor fluctuations. Deep brain stimulation (DBS) has emerged as an alternative for symptom management but remains invasive, costly, and associated with significant risks. In light of these challenges, non-invasive brain stimulation (NIBS) techniques are gaining attention as promising alternatives for treating PD. These methods, including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and microwave brain stimulation (MBS), offer advantages such as reduced risk and non-invasiveness while providing targeted modulation of brain activity. Recent innovations, such as hemispherical antenna arrays for focused stimulation and advanced signal patterns like high-frequency prime harmonics and temporal interference (TI), have further enhanced the precision and efficacy of NIBS. These techniques have shown potential in modulating neuronal excitability, improving gait, and reducing motor symptoms in PD patients, with some approaches demonstrating effectiveness in treating FOG. Despite promising results, continued research is necessary to refine these technologies, optimize treatment protocols, and evaluate their long-term impact on PD progression. This review highlights recent advances in non-invasive brain stimulation for PD and discusses their potential as adjunctive therapies for managing motor symptoms and improving quality of life in PD patients.

Keywords: Parkinson’s disease, non-invasive brain stimulation, deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, freezing of gait, microwave brain stimulation, neuromodulation

Procedia PDF Downloads 4
1535 The Evaluation of Superiority of Foot Local Anesthesia Method in Dairy Cows

Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage

Abstract:

Background: Nowadays, bovine limb interventions, especially any claw surgeries, raises selection of the most qualified and appropriate local anesthesia technique applicable for any superficial or deep interventions of the limbs. Currently, two local anesthesia methods of Intravenous Regional Anesthesia (IVRA), as well as Nerve Blocks, have been routine to apply. However, the lack of studies investigating the quality and duration as well as quantity and onset of full (complete) local anesthesia, is noticeable. Therefore, the aim of our study was comparing the onset and quality of both IVRA and our modified NBA at the hind limb of dairy cows. For this abstract, only the onset of full local anesthesia would be consider. Materials and Methods: For that reason, we used six healthy non pregnant non lactating Holestein Frisian cows in a cross-over study design. Those cows divided into two groups to receive IVRA and our modified four-point NBA. For IVRA, 20 ml procaine without epinephrine was injected into the vein digitalis dorsalis communis III and for our modified four-point NBA, 10-15 ml procaine without epinephrine preneurally to the nerves, superficial and deep peroneal as well as lateral and medial branches of metatarsal nerves. For pain stimulation, electrical stimulator Grass S48 was applied. Results: The results of electrical stimuli revealed the faster onset of full local anesthesia (p < 0.05) by application of our modified NBA in comparison to IVRA about 10 minutes. Conclusion and discussion: Despite of available references showing faster onset of foot local anesthesia of IVRA, our study demonstrated that our modified four point NBA not only can be well known as a standard foot local anesthesia method applicable to desensitize the hind limb of dairy cows, but also, selection of this modified validated local anesthesia method can lead to have a faster start of complete desensitization of distal hind limb that is remarkable in any bovine limb interventions under time constraint.

Keywords: IVRA, four point NBA, dairy cow, hind limb, full onset

Procedia PDF Downloads 151
1534 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 22
1533 Risk Assessment Tools Applied to Deep Vein Thrombosis Patients Treated with Warfarin

Authors: Kylie Mueller, Nijole Bernaitis, Shailendra Anoopkumar-Dukie

Abstract:

Background: Vitamin K antagonists particularly warfarin is the most frequently used oral medication for deep vein thrombosis (DVT) treatment and prophylaxis. Time in therapeutic range (TITR) of the international normalised ratio (INR) is widely accepted as a measure to assess the quality of warfarin therapy. Multiple factors can affect warfarin control and the subsequent adverse outcomes including thromboembolic and bleeding events. Predictor models have been developed to assess potential contributing factors and measure the individual risk of these adverse events. These predictive models have been validated in atrial fibrillation (AF) patients, however, there is a lack of literature on whether these can be successfully applied to other warfarin users including DVT patients. Therefore, the aim of the study was to assess the ability of these risk models (HAS BLED and CHADS2) to predict haemorrhagic and ischaemic incidences in DVT patients treated with warfarin. Methods: A retrospective analysis of DVT patients receiving warfarin management by a private pathology clinic was conducted. Data was collected from November 2007 to September 2014 and included demographics, medical and drug history, INR targets and test results. Patients receiving continuous warfarin therapy with an INR reference range between 2.0 and 3.0 were included in the study with mean TITR calculated using the Rosendaal method. Bleeding and thromboembolic events were recorded and reported as incidences per patient. The haemorrhagic risk model HAS BLED and ischaemic risk model CHADS2 were applied to the data. Patients were then stratified into either the low, moderate, or high-risk categories. The analysis was conducted to determine if a correlation existed between risk assessment tool and patient outcomes. Data was analysed using GraphPad Instat Version 3 with a p value of <0.05 considered to be statistically significant. Patient characteristics were reported as mean and standard deviation for continuous data and categorical data reported as number and percentage. Results: Of the 533 patients included in the study, there were 268 (50.2%) female and 265 (49.8%) male patients with a mean age of 62.5 years (±16.4). The overall mean TITR was 78.3% (±12.7) with an overall haemorrhagic incidence of 0.41 events per patient. For the HAS BLED model, there was a haemorrhagic incidence of 0.08, 0.53, and 0.54 per patient in the low, moderate and high-risk categories respectively showing a statistically significant increase in incidence with increasing risk category. The CHADS2 model showed an increase in ischaemic events according to risk category with no ischaemic events in the low category, and an ischaemic incidence of 0.03 in the moderate category and 0.47 high-risk categories. Conclusion: An increasing haemorrhagic incidence correlated to an increase in the HAS BLED risk score in DVT patients treated with warfarin. Furthermore, a greater incidence of ischaemic events occurred in patients with an increase in CHADS2 category. In an Australian population of DVT patients, the HAS BLED and CHADS2 accurately predicts incidences of haemorrhage and ischaemic events respectively.

Keywords: anticoagulant agent, deep vein thrombosis, risk assessment, warfarin

Procedia PDF Downloads 264
1532 Management Methods of Food Losses in Polish Processing Plants

Authors: Beata Bilska, Marzena Tomaszewska, Danuta Kolozyn-Krajewska

Abstract:

Food loss and food waste are a global problem of the modern economy. The research undertaken aimed to analyze how food is handled in catering establishments when it comes to food waste and to demonstrate the main ways of management with foods/dishes not served to consumers. A survey study was conducted from January to June 2019. The selection of catering establishments participating in the study was deliberate. The study included establishments located only in Mazowieckie Voivodeship (Poland). Forty-two completed questionnaires were collected. In some questions, answers were based on a 5-point scale of 1 to 5 (from "always" / "every day" to "never"). The survey also included closed questions with a suggested cafeteria of answers. The respondents stated that in their workplaces, dishes served cold and hot ready meals are discarded every day or almost every day (23.7% and 20.5% of answers respectively). A procedure most frequently used for dealing with dishes not served to consumers on a given day is their storage at a cool temperature until the following day. In the research, 1/5 of respondents admitted that consumers "always" or "usually" leave uneaten meals on their plates, and over 41% "sometimes" do so. It was found additionally that food not used in the foodservice sector is most often thrown into a public container for rubbish. Most often thrown into the public container (with communal trash) were: expired products (80.0%), plate waste (80.0%) and inedible products (fruit and vegetable peels, eggshells) (77.5%). Most frequently into the container dedicated only to food waste were thrown out used deep-frying oil (62.5%). 10% of respondents indicated that inedible products in their workplaces are allocated for animal feeds. Food waste in the foodservice sector remains an insufficiently studied issue, as owners of these objects are often unwilling to disclose data about the subject. Incorrect ways of management with foods not served to consumers were observed. There is a need to develop educational activities for employees and management in the context of food waste management in the foodservice sector.

Keywords: food waste, inedible products, plate waste, used deep-frying oil

Procedia PDF Downloads 127
1531 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon

Authors: A. Hamieh, Z. Olama, H. Holail

Abstract:

Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.

Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion

Procedia PDF Downloads 435
1530 Physicochemical and Bacteriological Assessment of Water Resources in Ughelli and Its Environs, Delta State Nigeria

Authors: M. O. Eyankware, D. O. Ufomata

Abstract:

Groundwater samples were collected from Otovwodo-Ughelli and Environ with the aim of assessing groundwater quality of the area. Twenty (20) water samples from Boreholes (BH) (six) and Hand Dug Wells (HDW) (fourteen) were randomly sampled and were analysed for different physiochemical and bacteriological parameters. The following 16 parameters have been considered viz: pH, electrical conductivity, temperature, total hardness, total dissolved solids, dissolved oxygen, biological oxygen demand, phosphate, sulphate, chloride, nitrate, calcium, sodium, chloride, magnesium, and total suspended solids. On comparing the results against drinking quality standards laid by World Health Organization and Nigeria industrial standard, it was found that the water quality parameters were not above the (WHO, 2011 and NIS, 2007) permissible limit. Microbial analysis reveals the presence of coliform and E.coli in two hand-dug well (HDW7 and 13) and one borehole well (BH20). These contaminations are perhaps traceable to have originated from human activities (septic tanks, latrines, dumpsites) and have affected the quality of groundwater in Otovwodo-Ughelli. From the piper trilinear diagram, the dominant ionic species is alkali bicarbonate water type, with bicarbonate as the predominant ion (Na+ + K+)-HCO3.

Keywords: groundwater, surface water, Ughelli, Nigeria industrial standard, who standard

Procedia PDF Downloads 447
1529 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 131
1528 A Comprehensive Review of Foam Assisted Water Alternating Gas (FAWAG) Technique: Foam Applications and Mechanisms

Authors: A. Shabib-Asl, M. Abdalla Ayoub Mohammed, A. F. Alta’ee, I. Bin Mohd Saaid, P. Paulo Jose Valentim

Abstract:

In the last few decades, much focus has been placed on enhancing oil recovery from existing fields. This is accomplished by the study and application of various methods. As for recent cases, the study of fluid mobility control and sweep efficiency in gas injection process as well as water alternating gas (WAG) method have demonstrated positive results on oil recovery and thus gained wide interest in petroleum industry. WAG injection application results in an increased oil recovery. Its mechanism consists in reduction of gas oil ratio (GOR). However, there are some problems associated with this which includes poor volumetric sweep efficiency due to its low density and high mobility when compared with oil. This has led to the introduction of foam assisted water alternating gas (FAWAG) technique, which in contrast with WAG injection, acts in improving the sweep efficiency and reducing the gas oil ration therefore maximizing the production rate from the producer wells. This paper presents a comprehensive review of FAWAG process from perspective of Snorre field experience. In addition, some comparative results between FAWAG and the other EOR methods are presented including their setbacks. The main aim is to provide a solid background for future laboratory research and successful field application-extend.

Keywords: GOR, mobility ratio, sweep efficiency, WAG

Procedia PDF Downloads 455