Search results for: Features of Bitcoin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3885

Search results for: Features of Bitcoin

2955 Pharyngealization Spread in Ibbi Dialect of Yemeni Arabic: An Acoustic Study

Authors: Fadhl Qutaish

Abstract:

This paper examines the pharyngealization spread in one of the Yemeni Arabic dialects, namely, Ibbi Arabic (IA). It investigates how pharyngealized sounds spread their acoustic features onto the neighboring vowels and change their default features. This feature has been investigated quietly well in MSA but still has to be deeply studied in the different dialect of Arabic which will bring about a clearer picture of the similarities and the differences among these dialects and help in mapping them based on the way this feature is utilized. Though the studies are numerous, no one of them has illustrated how far in the multi-syllabic word the spread can be and whether it takes a steady or gradient manner. This study tries to fill this gap and give a satisfactory explanation of the pharyngealization spread in Ibbi Dialect. This study is the first step towards a larger investigation of the different dialects of Yemeni Arabic in the future. The data recorded are represented in minimal pairs in which the trigger (pharyngealized or the non-pharyngealized sound) is in the initial or final position of monosyllabic and multisyllabic words. A group of 24 words were divided into four groups and repeated three times by three subjects which will yield 216 tokens that are tested and analyzed. The subjects are three male speakers aged between 28 and 31 with no history of neurological, speaking or hearing problems. All of them are bilingual speakers of Arabic and English and native speakers of Ibbi-Dialect. Recordings were done in a sound-proof room and praat software was used for the analysis and coding of the trajectories of F1 and F2 for the low vowel /a/ to see the effect of pharyngealization on the formant trajectory within the same syllable and in other syllables of the same word by comparing the F1 and F2 formants to the non-pharyngealized environment. The results show that pharyngealization spread is gradient (progressively and regressively). The spread is reflected in the gradual raising of F1 as we move closer towards the trigger and the gradual lowering of F2 as well. The results of the F1 mean values in tri-syllabic words when the trigger is word initially show that there is a raise of 37.9 HZ in the first syllable, 26.8HZ in the second syllable and 14.2HZ in the third syllable. F2 mean values undergo a lowering of 239 HZ in the first syllable, 211.7 HZ in the second syllable and 176.5 in the third syllable. This gradual decrease in the difference of F2 values in the non-pharyngealized and pharyngealized context illustrates that the spread is gradient. A similar result was found when the trigger is word-final which proves that the spread is gradient (progressively and regressively.

Keywords: pharyngealization, Yemeni Arabic, Ibbi dialect, pharyngealization spread

Procedia PDF Downloads 222
2954 Three Issues for Integrating Artificial Intelligence into Legal Reasoning

Authors: Fausto Morais

Abstract:

Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.

Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning

Procedia PDF Downloads 145
2953 A Simplified Distribution for Nonlinear Seas

Authors: M. A. Tayfun, M. A. Alkhalidi

Abstract:

The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is re-examined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.

Keywords: ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness

Procedia PDF Downloads 432
2952 Corpus Stylistics and Multidimensional Analysis for English for Specific Purposes Teaching and Assessment

Authors: Svetlana Strinyuk, Viacheslav Lanin

Abstract:

Academic English has become lingua franca for international scientific community which stimulates universities to introduce English for Specific Purposes (EAP) courses into curriculum. Teaching L2 EAP students might be fulfilled with corpus technologies and digital stylistics. A special software developed to reach the manifold task of teaching, assessing and researching academic writing of L2 students on basis of digital stylistics and multidimensional analysis was created. A set of annotations (style markers) – grammar, lexical and syntactic features most significant of academic writing was built. Contrastive comparison of two corpora “model corpus”, subject domain limited papers published by competent writers in leading academic journals, and “students’ corpus”, subject domain limited papers written by last year students allows to receive data about the features of academic writing underused or overused by L2 EAP student. Both corpora are tagged with a special software created in GATE Developer. Style markers within the framework of research might be replaced depending on the relevance and validity of the result which is achieved from research corpora. Thus, selecting relevant (high frequency) style markers and excluding less relevant, i.e. less frequent annotations, high validity of the model is achieved. Software allows to compare the data received from processing model corpus to students’ corpus and get reports which can be used in teaching and assessment. The less deviation from the model corpus students demonstrates in their writing the higher is academic writing skill acquisition. The research showed that several style markers (hedging devices) were underused by L2 EAP students whereas lexical linking devices were used excessively. A special software implemented into teaching of EAP courses serves as a successful visual aid, makes assessment more valid; it is indicative of the degree of writing skill acquisition, and provides data for further research.

Keywords: corpus technologies in EAP teaching, multidimensional analysis, GATE Developer, corpus stylistics

Procedia PDF Downloads 200
2951 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response

Authors: Sharda Kumari

Abstract:

As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.

Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management

Procedia PDF Downloads 101
2950 Human Gait Recognition Using Moment with Fuzzy

Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain

Abstract:

A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.

Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments

Procedia PDF Downloads 758
2949 Second Language Perception of Japanese /Cju/ and /Cjo/ Sequences by Mandarin-Speaking Learners of Japanese

Authors: Yili Liu, Honghao Ren, Mariko Kondo

Abstract:

In the field of second language (L2) speech learning, it is well-known that that learner’s first language (L1) phonetic and phonological characteristics will be transferred into their L2 production and perception, which lead to foreign accent. For L1 Mandarin learners of Japanese, the confusion of /u/ and /o/ in /CjV/ sequences has been observed in their utterance frequently. L1 transfer is considered to be the cause of this issue, however, other factors which influence the identification of /Cju/ and /Cjo/ sequences still under investigation. This study investigates the perception of Japanese /Cju/ and /Cjo/ units by L1 Mandarin learners of Japanese. It further examined whether learners’ proficiency, syllable position, phonetic features of preceding consonants and background noise affect learners’ performance in perception. Fifty-two Mandarin-speaking learners of Japanese and nine native Japanese speakers were recruited to participate in an identification task. Learners were divided into beginner, intermediate and advanced level according to their Japanese proficiency. The average correct rate was used to evaluate learners’ perceptual performance. Furthermore, the comparison of the correct rate between learners’ groups and the control group was conducted as well to examine learners’ nativelikeness. Results showed that background noise tends to pose an adverse effect on distinguishing /u/ and /o/ in /CjV/ sequences. Secondly, Japanese proficiency has no influence on learners’ perceptual performance in the quiet and in background noise. Then all learners did not reach a native-like level without the distraction of noise. Beginner level learners performed less native-like, although higher level learners appeared to have achieved nativelikeness in the multi-talker babble noise. Finally, syllable position tends to affect distinguishing /Cju/ and /Cjo/ only under the noisy condition. Phonetic features of preceding consonants did not impact learners’ perception in any listening conditions. Findings in this study can give an insight into a further understanding of Japanese vowel acquisition by L1 Mandarin learners of Japanese. In addition, this study indicates that L1 transfer is not the only explanation for the confusion of /u/ and /o/ in /CjV/ sequences, factors such as listening condition and syllable position are also needed to take into consideration in future research. It also suggests the importance of perceiving speech in a noisy environment, which is close to the actual conversation required more attention to pedagogy.

Keywords: background noise, Chinese learners of Japanese, /Cju/ and /Cjo/ sequences, second language perception

Procedia PDF Downloads 160
2948 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech

Authors: Monica Gonzalez Machorro

Abstract:

Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.

Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment

Procedia PDF Downloads 127
2947 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: noise signal, pulse interference, signal power, spectrum width, detection

Procedia PDF Downloads 337
2946 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 499
2945 Communication through Technology: SMS Taking Most of the Time Impacting the Standard English

Authors: Nazia Sulemna, Sadia Gul

Abstract:

With the invade of mobile phones text messaging has become a popular medium of communication. Its users are multiplying with every passing day. Its use is not only limites to informal but to formal communication as well. Students are the advent users of mobile phones and of SMS as well. The present study manifests the fact that students are practicing SMS for a number of reasons and a good amount of time is spent upon it which is resulting in typographical features, graphones and rebus writing. Data was collected through questionnaires and came to the conclusion that its effect is obvious in the L2 users and in exam as well.

Keywords: text messaging, technology, exams, formal writing

Procedia PDF Downloads 743
2944 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach

Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo

Abstract:

This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.

Keywords: globular protein, modulating function, white noise, winding probability

Procedia PDF Downloads 477
2943 Locket Application

Authors: Farah Al-Fityani, Aljohara Alsowail, Shatha Bindawood, Heba Balrbeah

Abstract:

Locket is a popular app that lets users share spontaneous photos with a close circle of friends. The app offers a unique way to stay connected with loved ones by allowing users to see glimpses of their day through photos displayed on a widget on their home screen. This summary outlines the process of developing an app like Locket, highlighting the importance of user privacy and security. It also details the findings of a study on user engagement with the Locket app, revealing positive sentiment towards its features and concept but also identifying areas for improvement. Overall, the summary portrays Locket as a successful app that is changing the way people connect on social media.

Keywords: locket, app, machine learning, connect

Procedia PDF Downloads 46
2942 A Task Scheduling Algorithm in Cloud Computing

Authors: Ali Bagherinia

Abstract:

Efficient task scheduling method can meet users' requirements, and improve the resource utilization, then increase the overall performance of the cloud computing environment. Cloud computing has new features, such as flexibility, virtualization and etc., in this paper we propose a two levels task scheduling method based on load balancing in cloud computing. This task scheduling method meet user's requirements and get high resource utilization, that simulation results in CloudSim simulator prove this.

Keywords: cloud computing, task scheduling, virtualization, SLA

Procedia PDF Downloads 401
2941 Load-Deflecting Characteristics of a Fabricated Orthodontic Wire with 50.6Ni 49.4Ti Alloy Composition

Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Peerapong Tua-Ngam

Abstract:

Aims: The objectives of this study was to determine the load-deflecting characteristics of a fabricated orthodontic wire with alloy composition of 50.6% (atomic weight) Ni and 49.4% (atomic weight) Ti and to compare the results with Ormco, a commercially available pre-formed NiTi orthodontic archwire. Materials and Methods: The ingots alloys with atomic weight ratio 50.6 Ni: 49.4 Ti alloy were used in this study. Three specimens were cut to have wire dimensions of 0.016 inch x0.022 inch. For comparison, a commercially available pre-formed NiTi archwire, Ormco, with dimensions of 0.016 inch x 0.022 inch was used. Three-point bending tests were performed at the temperature 36+1 °C using a Universal Testing Machine on the newly fabricated and commercial archwires to assess the characteristics of the load-deflection curve with loading and unloading forces. The loading and unloading features at the deflection points 0.25, 0.50, 0.75. 1.0, 1.25, and 1.5 mm were compared. Descriptive statistics was used to evaluate each variables, and independent t-test at p < 0.05 was used to analyze the mean differences between the two groups. Results: The load-deflection curve of the 50.6Ni: 49.4Ti wires exhibited the characteristic features of superelasticity. The curves at the loading and unloading slope of Ormco NiTi archwire were more parallel than the newly fabricated NiTi wires. The average deflection force of the 50.6Ni: 49.4Ti wire was 304.98 g and 208.08 g for loading and unloading, respectively. Similarly, the values were 358.02 g loading and 253.98 g for unloading of Ormco NiTi archwire. The interval difference forces between each deflection points were in the range 20.40-121.38 g and 36.72-92.82 g for the loading and unloading curve of 50.6Ni: 49.4Ti wire, respectively, and 4.08-157.08 g and 14.28-90.78 g for the loading and unloading curve of commercial wire, respectively. The average deflection force of the 50.6Ni: 49.4Ti wire was less than that of Ormco NiTi archwire, which could have been due to variations in the wire dimensions. Although a greater force was required for each deflection point of loading and unloading for the 50.6Ni: 49.4Ti wire as compared to Ormco NiTi archwire, the values were still within the acceptable limits to be clinically used in orthodontic treatment. Conclusion: The 50.6Ni: 49.4Ti wires presented the characteristics of a superelastic orthodontic wire. The loading and unloading force were also suitable for orthodontic tooth movement. These results serve as a suitable foundation for further studies in the development of new orthodontic NiTi archwires.

Keywords: 50.6 ni 49.4 Ti alloy wire, load deflection curve, loading and unloading force, orthodontic

Procedia PDF Downloads 303
2940 Assessing Circularity Potentials and Customer Education to Drive Ecologically and Economically Effective Materials Design for Circular Economy - A Case Study

Authors: Mateusz Wielopolski, Asia Guerreschi

Abstract:

Circular Economy, as the counterargument to the ‘make-take-dispose’ linear model, is an approach that includes a variety of schools of thought looking at environmental, economic, and social sustainability. This, in turn, leads to a variety of strategies and often confusion when it comes to choosing the right one to make a circular transition as effective as possible. Due to the close interplay of circular product design, business model and social responsibility, companies often struggle to develop strategies that comply with all three triple-bottom-line criteria. Hence, to transition to circularity effectively, product design approaches must become more inclusive. In a case study conducted with the University of Bayreuth and the ISPO, we correlated aspects of material choice in product design, labeling and technological innovation with customer preferences and education about specific material and technology features. The study revealed those attributes of the consumers’ environmental awareness that directly translate into an increase of purchase power - primarily connected with individual preferences regarding sports activity and technical knowledge. Based on this outcome, we constituted a product development approach that incorporates the consumers’ individual preferences towards sustainable product features as well as their awareness about materials and technology. It allows deploying targeted customer education campaigns to raise the willingness to pay for sustainability. Next, we implemented the customer preference and education analysis into a circularity assessment tool that takes into account inherent company assets as well as subjective parameters like customer awareness. The outcome is a detailed but not cumbersome scoring system, which provides guidance for material and technology choices for circular product design while considering business model and communication strategy to the attentive customers. By including customer knowledge and complying with corresponding labels, companies develop more effective circular design strategies, while simultaneously increasing customers’ trust and loyalty.

Keywords: circularity, sustainability, product design, material choice, education, awareness, willingness to pay

Procedia PDF Downloads 200
2939 A Political-Economic Analysis of Next Generation EU Recovery Fund

Authors: Fernando Martín-Espejo, Christophe Crombez

Abstract:

This paper presents a political-economic analysis of the reforms introduced during the coronavirus crisis at the EU level with a special emphasis on the recovery fund Next Generation EU (NGEU). It also introduces a spatial model to evaluate whether the governmental features of the recovery fund can be framed inside the community method. Particularly, by evaluating the brake clause in the NGEU legislation, this paper analyses theoretically the political and legislative implications of the introduction of flexibility clauses in the EU decision-making process.

Keywords: EU, legislative procedures, spatial model, coronavirus

Procedia PDF Downloads 177
2938 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 54
2937 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
2936 Testing the Simplification Hypothesis in Constrained Language Use: An Entropy-Based Approach

Authors: Jiaxin Chen

Abstract:

Translations have been labeled as more simplified than non-translations, featuring less diversified and more frequent lexical items and simpler syntactic structures. Such simplified linguistic features have been identified in other bilingualism-influenced language varieties, including non-native and learner language use. Therefore, it has been proposed that translation could be studied within a broader framework of constrained language, and simplification is one of the universal features shared by constrained language varieties due to similar cognitive-physiological and social-interactive constraints. Yet contradicting findings have also been presented. To address this issue, this study intends to adopt Shannon’s entropy-based measures to quantify complexity in language use. Entropy measures the level of uncertainty or unpredictability in message content, and it has been adapted in linguistic studies to quantify linguistic variance, including morphological diversity and lexical richness. In this study, the complexity of lexical and syntactic choices will be captured by word-form entropy and pos-form entropy, and a comparison will be made between constrained and non-constrained language use to test the simplification hypothesis. The entropy-based method is employed because it captures both the frequency of linguistic choices and their evenness of distribution, which are unavailable when using traditional indices. Another advantage of the entropy-based measure is that it is reasonably stable across languages and thus allows for a reliable comparison among studies on different language pairs. In terms of the data for the present study, one established (CLOB) and two self-compiled corpora will be used to represent native written English and two constrained varieties (L2 written English and translated English), respectively. Each corpus consists of around 200,000 tokens. Genre (press) and text length (around 2,000 words per text) are comparable across corpora. More specifically, word-form entropy and pos-form entropy will be calculated as indicators of lexical and syntactical complexity, and ANOVA tests will be conducted to explore if there is any corpora effect. It is hypothesized that both L2 written English and translated English have lower entropy compared to non-constrained written English. The similarities and divergences between the two constrained varieties may provide indications of the constraints shared by and peculiar to each variety.

Keywords: constrained language use, entropy-based measures, lexical simplification, syntactical simplification

Procedia PDF Downloads 94
2935 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light

Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci

Abstract:

At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.

Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating

Procedia PDF Downloads 229
2934 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 334
2933 About the Number of Fundamental Physical Interactions

Authors: Andrey Angorsky

Abstract:

In the article an issue about the possible number of fundamental physical interactions is studied. The theory of similarity on the dimensionless quantity as the damping ratio serves as the instrument of analysis. The structure with the features of Higgs field comes out from non-commutative expression for this ratio. The experimentally checked up supposition about the nature of dark energy is spoken out.

Keywords: damping ratio, dark energy, dimensionless quantity, fundamental physical interactions, Higgs field, non-commutative expression

Procedia PDF Downloads 140
2932 Google Translate: AI Application

Authors: Shaima Almalhan, Lubna Shukri, Miriam Talal, Safaa Teskieh

Abstract:

Since artificial intelligence is a rapidly evolving topic that has had a significant impact on technical growth and innovation, this paper examines people's awareness, use, and engagement with the Google Translate application. To see how familiar aware users are with the app and its features, quantitative and qualitative research was conducted. The findings revealed that consumers have a high level of confidence in the application and how far people they benefit from this sort of innovation and how convenient it makes communication.

Keywords: artificial intelligence, google translate, speech recognition, language translation, camera translation, speech to text, text to speech

Procedia PDF Downloads 154
2931 Design of Broadband Power Divider for 3G and 4G Applications

Authors: A. M. El-Akhdar, A. M. El-Tager, H. M. El-Hennawy

Abstract:

This paper presents a broadband power divider with equal power division ratio. Two sections of transmission line transformers based on coupled microstrip lines are applied to obtain broadband performance. In addition, design methodology is proposed for the novel structure. A prototype is designed, simulated to operate in the band from 2.1 to 3.8 GHz to fulfill the requirements of 3G and 4G applications. The proposed structure features reduced size and less resistors than other conventional techniques. Simulation verifies the proposed idea and design methodology.

Keywords: power dividers, coupled lines, microstrip, 4G applications

Procedia PDF Downloads 477
2930 A Semantic and Concise Structure to Represent Human Actions

Authors: Tobias Strübing, Fatemeh Ziaeetabar

Abstract:

Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.

Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis

Procedia PDF Downloads 126
2929 Artificial Intelligence and Development: The Missing Link

Authors: Driss Kettani

Abstract:

ICT4D actors are naturally attempted to include AI in the range of enabling technologies and tools that could support and boost the Development process, and to refer to these as AI4D. But, doing so, assumes that AI complies with the very specific features of ICT4D context, including, among others, affordability, relevance, openness, and ownership. Clearly, none of these is fulfilled, and the enthusiastic posture that AI4D is a natural part of ICT4D is not grounded and, to certain extent, does not serve the purpose of Technology for Development at all. In the context of Development, it is important to emphasize and prioritize ICT4D, in the national digital transformation strategies, instead of borrowing "trendy" waves of the IT Industry that are motivated by business considerations, with no specific care/consideration to Development.

Keywords: AI, ICT4D, technology for development, position paper

Procedia PDF Downloads 88
2928 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 72
2927 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 183
2926 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 162