Search results for: efficiency index of audit committee
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10451

Search results for: efficiency index of audit committee

971 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 114
970 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing

Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang

Abstract:

The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.

Keywords: additive manufacturing, generative design, robot, sustainability

Procedia PDF Downloads 129
969 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 117
968 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 70
967 Exergetic Optimization on Solid Oxide Fuel Cell Systems

Authors: George N. Prodromidis, Frank A. Coutelieris

Abstract:

Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.

Keywords: biogas, exergy, efficiency, optimization

Procedia PDF Downloads 363
966 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 55
965 COVID-19: Potential Effects of Nutritional Factors on Inflammation Relief

Authors: Maryam Nazari

Abstract:

COVID-19 is a respiratory disease triggered by the novel coronavirus, SARS-CoV-2, that has reached pandemic status today. Acute inflammation and immune cells infiltration into lung injuries result in multi-organ failure. The presence of other non-communicable diseases (NCDs) with systemic inflammation derived from COVID-19 may exacerbate the patient's situation and increase the risk for adverse effects and mortality. This pandemic is a novel situation and the scientific community at this time is looking for vaccines or drugs to treat the pathology. One of the biggest challenges is focused on reducing inflammation without compromising the correct immune response of the patient. In this regard, addressing the nutritional factors should not be overlooked not only as a matter of avoiding the presence of NCDs with severe infections but also as an adjunctive way to modulate the inflammatory status of the patients. Despite the pivotal role of nutrition in modifying immune response, due to the novelty of the COVID-19 disease, information about the effects of specific dietary agents is limited in this area. From the macronutrients point of view, protein deficiency (quantity or quality) has negative effects on the number of functional immunoglobulins and gut-associated lymphoid tissue (GALT). High biological value proteins or some amino acids like arginine and glutamine are well known for their ability to augment the immune system. Among lipids, fish oil has the ability to inactivate enveloped viruses, suppress pro-inflammatory prostaglandin production and block platelet-activating factors and their receptors. In addition, protectin D1, which is an Omega-3 PUFAs derivation, is a novel antiviral drug. So it seems that these fatty acids can reduce the severity and/or improve recovery of patients with COVID-19. Carbohydrates with lower glycemic index and fibers are associated with lower levels of inflammatory cytokines (CRP, TNF-α, and IL-6). Short-Chain Fatty acids not only exert a direct anti-inflammatory effect but also provide appropriate gut microbial, which is important in gastrointestinal issues related to COVID-19. From the micronutrients point of view, Vitamins A, C, D, E, iron, magnesium, zinc, selenium and copper play a vital role in the maintenance of immune function. Inadequate status in these nutrients may result in decreased resistance against COVID-19 infection. There are specific bioactive compounds in the diet that interact with the ACE2 receptor, which is the gateway for SARS and SARS-CoV-2, and thus controls the viral infection. Regarding this, the potential benefits of probiotics, resveratrol (a polyphenol found in grape), oleoylethanolamide (derived from oleic acid), and natural peroxisome proliferator-activated receptor γ agonists in foodstuffs (like curcumin, pomegranate, hot pepper) are suggested. Yet, it should be pointed out that most of these results have been reported in animal models and further human studies are needed to be verified.

Keywords: Covid-19, inflammation, nutrition, dietary agents

Procedia PDF Downloads 173
964 An Integrated Approach to Solid Waste Management of Karachi, Pakistan (Waste-to-Energy Options)

Authors: Engineer Dilnawaz Shah

Abstract:

Solid Waste Management (SWM) is perhaps one of the most important elements constituting the environmental health and sanitation of the urban developing sector. The management system has several components that are integrated as well as interdependent; thus, the efficiency and effectiveness of the entire system are affected when any of its functional components fails or does not perform up to the level mark of operation. Sindh Solid Waste Management Board (SSWMB) is responsible for the management of solid waste in the entire city. There is a need to adopt the engineered approach in the redesigning of the existing system. In most towns, street sweeping operations have been mechanized and done by machinery operated by vehicles. Construction of Garbage Transfer Stations (GTS) at a number of locations within the city will cut the cost of transportation of waste to disposal sites. Material processing, recovery of recyclables, compaction, volume reduction, and increase in density will enable transportation of waste to disposal sites/landfills via long vehicles (bulk transport), minimizing transport/traffic and environmental pollution-related issues. Development of disposal sites into proper sanitary landfill sites is mandatory. The transportation mechanism is through garbage vehicles using either hauled or fixed container systems employing crew for mechanical or manual loading. The number of garbage vehicles is inadequate, and due to comparatively long haulage to disposal sites, there are certain problems of frequent vehicular maintenance and high fuel costs. Foreign investors have shown interest in enterprising improvement schemes and proposed operating a solid waste management system in Karachi. The waste to Energy option is being considered to provide a practical answer to be adopted to generate power and reduce waste load – a two-pronged solution for the increasing environmental problem. The paper presents results and analysis of a recent study into waste generation and characterization probing into waste-to-energy options for Karachi City.

Keywords: waste to energy option, integrated approach, solid waste management, physical and chemical composition of waste in Karachi

Procedia PDF Downloads 42
963 Design of Large Parallel Underground Openings in Himalayas: A Case Study of Desilting Chambers for Punatsangchhu-I, Bhutan

Authors: Kanupreiya, Rajani Sharma

Abstract:

Construction of a single underground structure is itself a challenging task, and it becomes more critical in tectonically active young mountains such as the Himalayas which are highly anisotropic. The Himalayan geology mostly comprises of incompetent and sheared rock mass in addition to fold/faults, rock burst, and water ingress. Underground tunnels form the most essential and important structure in run-of-river hydroelectric projects. Punatsangchhu I hydroelectric project (PHEP-I), Bhutan (1200 MW) is a run-of-river scheme which has four parallel underground desilting chambers. The Punatsangchhu River carries a large quantity of silt load during monsoon season. Desilting chambers were provided to remove the silt particles of size greater than and equal to 0.2 mm with 90% efficiency, thereby minimizing the rate of damage to turbines. These chambers are 330 m long, 18 m wide at the center and 23.87 m high, with a 5.87 m hopper portion. The geology of desilting chambers was known from an exploratory drift which exposed low dipping foliation joint and six joint sets. The RMR and Q value in this reach varied from 40 to 60 and 1 to 6 respectively. This paper describes different rock engineering principles undertaken for safe excavation and rock support of the moderately jointed, blocky and thinly foliated biotite gneiss. For the design of rock support system of desilting chambers, empirical and numerical analysis was adopted. Finite element analysis was carried out for cavern design and finalization of pillar width using Phase2. Phase2 is a powerful tool for simulation of stage-wise excavation with simultaneous provision of support system. As the geology of the region had 7 sets of joints, in addition to FEM based approach, safety factors for potentially unstable wedges were checked using UnWedge. The final support recommendations were based on continuous face mapping, numerical modelling, empirical calculations, and practical experiences.

Keywords: dam siltation, Himalayan geology, hydropower, rock support, numerical modelling

Procedia PDF Downloads 88
962 Correlates of Comprehensive HIV/AIDS Knowledge and Acceptance Attitude Towards People Living with HIV/AIDS: A Cross-Sectional Study among Unmarried Young Women in Uganda

Authors: Tesfaldet Mekonnen Estifanos, Chen Hui, Afewerki Weldezgi

Abstract:

Background: Youth in general and young females in particular, remain at the center of the HIV/AIDS epidemic. Sexual risk-taking among young unmarried women is relatively high and are the most vulnerable and highly exposed to HIV/AIDS. Improvements in the status of HIV/AIDS knowledge and acceptance attitude towards people living with HIV (PLWHIV) plays a great role in averting the incidence of HIV/AIDS. Thus, the aim of the study was to explore the level and correlates of HIV/AIDS knowledge and accepting attitude toward PLWHIV. Methods: A cross-sectional study was conducted using data from the Uganda Demographic Health Survey 2016 (UDHS-2016). National level representative household surveys using a multistage cluster probability sampling method, face to face interviews with standard questionnaires were performed. Unmarried women aged 15-24 years with a sample size of 2019 were selected from the total sample of 8674 women aged 15-49 years and were analyzed using SPSS version 23. Independent variables such as age, religion, educational level, residence, and wealth index were included. Two binary outcome variables (comprehensive HIV/AIDS knowledge and acceptance attitude toward PLWHIV) were utilized. We used the chi-square test as well as multivariate regression analysis to explore correlations of explanatory variables with the outcome variables. The results were reported by odds ratios (OR) with 95% confidence interval (95% CI), taking a p-value less than 0.05 as significant. Results: Almost all (99.3%) of the unmarried women aged 15-24 years were aware of HIV/AIDS, but only 51.2% had adequate comprehensive knowledge on HIV/AIDS. Only 69.4% knew both methods: using a condom every time had sex, and having only one faithful uninfected partner can prevent HIV/AIDS transmission. About 66.6% of the unmarried women reject at least two common local misconceptions about HIV/AIDS. Moreover, an alarmingly few (20.3%) of the respondents had a positive acceptance attitude to PLWHIV. On multivariate analysis, age (20-24 years), living in urban, being educated and wealthier, were predictors of having adequate comprehensive HIV/AIDS knowledge. On the other hand, research participants with adequate comprehensive knowledge about HIV/AIDS were highly likely (OR, 1.94 95% CI, 1.52-2.46) to have a positive acceptance attitude to PLWHIV than those with inadequate knowledge. Respondents with no education, Muslim, and Pentecostal religion were emerged less likely to have a positive acceptance attitude to PLWHIV. Conclusion: This study found out the highly accepted level of awareness, but the knowledge and positive acceptance attitude are not encouraging. Thus, expanding access to comprehensive sexuality and strengthening educational campaigns on HIV/AIDS in communities, health facilities, and schools is needed with a greater focus on disadvantaged women having low educational level, poor socioeconomic status, and those residing in rural areas. Sexual risk behaviors among the most affected people - young women have also a role in the spread of HIV/AIDS. Hence, further research assessing the significant contributing factors for sexual risk-taking might have a positive impact on the fight against HIV/AIDS.

Keywords: acceptance attitude, HIV/AIDS, knowledge, unmarried women

Procedia PDF Downloads 143
961 Emotional Characteristics of Preschoolers Due to Parameters of Family Interaction

Authors: Nadezda Sergunicheva, Victoria Vasilenko

Abstract:

The emotional sphere is one of the most important aspects of the child's development and significant factor in his psychological well-being. Present research aims to identify the relationships between emotional characteristics of preschoolers and parameters of family interaction: emotional interaction, parental styles, family adaptation, and cohesion. The study involved 40 people from Saint-Petersburg: 20 children (10 boys and 10 girls) from 5 to 6 years, Mage = 5 years 4 months and 20 mothers. Methods used were: Test 'Emotional identification' by E.Izotova, Empathy test by T. Gavrilova, Children's fears test by A. Zakharov, M. Panfilova, 'Parent-child emotional interaction questionnaire' by E. Zakharova, 'Analysis of family relationships questionnaire by E. Eidemiller and V. Yustitskis, Family Adaptation and Cohesion Scales (FACES III) by D. X. Olson, J. Portner, I. Lavi. Сorrelation analysis revealed that the higher index of underdevelopment of parental feelings, the lower the child’s ability to identify emotions (p < 0,05), but at the same time, the higher ability to understand emotional states (p < 0,01), as in the case of hypoprotection (p < 0,05). Two last correlations can be explained by compensatory mechanism. This is also confirmed by negative correlations between maternal educational uncertainty and child’s ability to understand emotional states and between indulgence and child’s ability to perceive emotional states (p < 0,05). The more pronounced the phobia of a child's loss, the higher egocentric nature of child’s empathy (p < 0,05). The child’s fears have the greatest number of relationships with the characteristics of family interaction. The more pronounced mother’s positive feelings in interaction, emotional support, acceptance of himself as a parent, desire for physical contact with child and the more adaptive the family system, the less the total number of child’s fears (p < 0,05). The more the mother's ability to perceive the child's state, positive feelings in interaction, emotional support (p < 0,01), unconditional acceptance of the child, acceptance of himself as a parent and the desire for physical contact (p < 0,05), the less the amount child’s spatial fears. Socially-mediated fears are associated with less pronounced mother's positive feelings in interaction, less emotional support and deficiency of demands, obligations (p < 0,05). Fears of animals and fairy-tale characters positively correlated with the excessive demands, obligations and excessive sanctions (p < 0,05). The more emotional support (p < 0,01), mother's ability to perceive the child's state, positive feelings in interaction, unconditional acceptance of the child, acceptance of himself as a parent (p < 0,05), the less the amount child’s fears of nightmares. This kind of fears is positively correlated with excessive demands, prohibitions (p < 0,05). The more adaptive the family system (p < 0,01), the higher family cohesion, mother's acceptance of himself as a parent and preference to childish traits (p < 0,05), the less fear of death. Thus, the children's fears have the closest relationships with the characteristics of family interaction. The severity of fears, especially spatial, is connected, first of all, with the emotional side of the mother-parent interaction. Fears of animals and fairy-tale characters are associated with some characteristics of the parental styles, connected with the rigor of mothers. Correlations of the emotional identification are contradictory and require further clarification. Research is supported by RFBR №18-013-00990.

Keywords: emotional characteristics, family interaction, fears, parental styles, preschoolers

Procedia PDF Downloads 265
960 The Effects of Feeding the African Catfish, Clarias gariepinus with Fermented Sweet Potato (Ipomoea batatas Lam) Peels on Growth, Nutrient Utilization and Some Physiological Responses

Authors: Adejoke Abeni Adewumi, Eunice Opeyemi Idowu, Kehinde Sunday Ayeni, Dolapo Funmi Odeyemi

Abstract:

This study examined the growth, nutrient utilization, hematology, and enzyme activities of the African catfish, Clarias gariepinus, juveniles (mean weight 27.69 ±0.51g) fed diets with varying levels of fermented sweet potato (Ipomoea batatas Lam) peels (SPP), for a period of 10 weeks, in the laboratory. Five iso-caloric and iso-nitrogenous diets were formulated containing 0% (control diet), 25%, 50%, 75% and 100% SPP-maize replacements tagged diets D0, D25, D50, D75 and D100 respectively. The crude protein content of the test diets ranged from 39.04%-39.92% and crude fibre, 10.52%-11.51%. The growth response of the fish fed the four experimental diets compared favourably with the control diet, as significantly (P>0.05) higher values were observed for Mean Final Weight, Mean Weight Gain, Specific Growth Rate, Food Conversion Ratio, Protein Efficiency Ratio and Net Protein Utilization. However, fish fed diets D50 and D75 demonstrated superior growth. Carcass of fish fed experimental diets also indicated significantly higher (p>0.05) protein and lipid content compared to the initial and fish fed control diet. There was an increase in the white blood cells (WBC) and the lymphocytes as the SPP increased in the diet. The results obtained for mean corpuscular hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH) and mean cell volume (MCV) showed that the fish fed the diet containing 75% SPP had significantly higher (p>0.05) values of MCH (48.00 pg) and MCV (155.00 fl) than the other diets. The lipase activity of the fish fed the 100% SPP meal (0.81U/mg) was significantly higher (p>0.05) than the other diets. These results show that Clarias gariepinus could tolerate up to 75% level of inclusion of fermented sweet potato peel in the diet without any deleterious effect on growth, nutrient utilization, hematological responses and enzymatic activities. Fermented sweet potato peels can conveniently replace conventional energy sources and this could become a means of recycling massive potato peel wastes being generated daily.

Keywords: hematology, fermentation, carcass, growth, African catfish

Procedia PDF Downloads 24
959 Anticancer Potentials of Aqueous Tinospora cordifolia and Its Bioactive Polysaccharide, Arabinogalactan on Benzo(a)Pyrene Induced Pulmonary Tumorigenesis: A Study with Relevance to Blood Based Biomarkers

Authors: Vandana Mohan, Ashwani Koul

Abstract:

Aim: To evaluate the potential of Aqueous Tinospora cordifolia stem extract (Aq.Tc) and Arabinogalactan (AG) on pulmonary carcinogenesis and associated tumor markers. Background: Lung cancer is one of the most frequent malignancy with high mortality rate due to limitation of early detection resulting in low cure rates. Current research effort focuses on identifying some blood-based biomarkers like CEA, ctDNA and LDH which may have potential to detect cancer at an early stage, evaluation of therapeutic response and its recurrence. Medicinal plants and their active components have been widely investigated for their anticancer potentials. Aqueous preparation of T. Cordifolia extract is enriched in the polysaccharide fraction i.e., AG when compared with other types of extract. Moreover, reports are available of polysaccharide fraction of T. Cordifolia in in vitro lung cancer models which showed profound anti-metastatic activity against these cell lines. However, not much has been explored about its effect in in vivo lung cancer models and the underlying mechanism involved. Experimental Design: Mice were randomly segregated into six groups. Group I animals served as control. Group II animals were administered with Aq. Tc extract (200 mg/kg b.w.) p.o.on the alternate days. Group III animals were fed with AG (7.5 mg/kg b.w.) p.o. on the alternate days (thrice a week). Group IV animals were installed with Benzo(a)pyrene (50 mg/kg b.w.), i.p. twice within an interval of two weeks. Group V animals received Aq. Tc extract as in group II along with it B(a)P was installed after two weeks of Aq. Tc administration following the same protocol as for group IV. Group VI animals received AG as in group III along with it B(a)P was installed after two weeks of AG administration. Results: Administration of B(a)P to mice resulted in increased tumor incidence, multiplicity and pulmonary somatic index with concomitant increase in serum/plasma markers like CEA, ctDNA, LDH and TNF-α.Aq.Tc and AG supplementation significantly attenuated these alterations at different stages of tumorigenesis thereby showing potent anti-cancer effect in lung cancer. A pronounced decrease in serum/plasma markers were observed in animals treated with Aq.Tc as compared to those fed with AG. Also, extensive hyperproliferation of alveolar epithelium was prominent in B(a)P induced lung tumors. However, treatment of Aq.Tc and AG to lung tumor bearing mice exhibited reduced alveolar damage evident from decreased number of hyperchromatic irregular nuclei. A direct correlation between the concentration of tumor markers and the intensity of lung cancer was observed in animals bearing cancer co-treated with Aq.Tc and AG. Conclusion: These findings substantiate the chemopreventive potential of Aq.Tc and AG against lung tumorigenesis. Interestingly, Aq.Tc was found to be more effective in modulating the cancer as reflected by various observations which may be attributed to the synergism offered by various components of Aq.Tc. Further studies are in progress to understand the underlined mechanism in inhibiting lung tumorigenesis by Aq.Tc and AG.

Keywords: Arabinogalactan, Benzo(a)pyrene B(a)P, carcinoembryonic antigen (CEA), circulating tumor DNA (ctDNA), lactate dehydrogenase (LDH), Tinospora cordifolia

Procedia PDF Downloads 180
958 Cost Effectiveness Analysis of a Community Intervention for Anti-Retroviral Therapy Delivery in Cambodia

Authors: Esabelle Lo Yan Yam, Pheak Chhoun, Sovannary Tuot, Emily Lancsar, Siyan Yi

Abstract:

Persons living with HIV (PLHIV) need lifelong antiretroviral treatment (ART) to keep their viral load suppressed to an undetectable level, maintain a healthy immune system, and reduce the risk of transmitting HIV to others. However, many factors affect PLHIV's adherence to ART, including access to antiretrovirals (ARV), stigma, lack of social support, and the burden of seeking lifelong care. Community-based care has been shown to be instrumental in the experience of PLHIV in many countries, including Cambodia. In this study based in Cambodia, a community-based ART delivery (CAD) intervention involving community action workers (CAWs) who are PLHIVs was introduced. These workers collect pre-packaged ARVs from the ART clinics and dispense them to PLHIVs in the communities. The quasi-experimental study involved approximately 2000 stable PLHIV in the intervention arm and another 2000 PLHIV in the control arm (receiving usual care). A cost-effectiveness analysis is currently conducted to complement the clinical effectiveness of the CAD intervention on the care continuum and treatment outcomes for stable PLHIV, as well as the operational effectiveness in increasing the efficiency of the ART clinics and the health system. The analysis will consider health system and societal perspectives based on primary outcomes, including retention in care, viral load suppression, and adherence to ART. Additionally, a consultation with the National Centre for HIV/AIDS, Dermatology, and STD under the Cambodia Ministry of Health will be done to discuss the conduct of a budget impact analysis that can quantify the financial impact on the government's budget when adopting the CAD intervention at the provincial and national levels. The budget impact analysis will take into consideration various scaling-up scenarios for the interventions in the country. The research will assess the cost-effectiveness of the CAD intervention to support national stakeholders in Cambodia to make an informed decision on the adoption and scaling up of the intervention in Cambodia. The results are currently being analyzed and will be available at the time of the conference.

Keywords: Cambodia, community intervention, economic evaluation, global health, HIV/AIDs, implementation research

Procedia PDF Downloads 44
957 Effect of Lactone Glycoside on Feeding Deterrence and Nutritive Physiology of Tobacco Caterpillar Spodoptera litura Fabricius (Noctuidae: Lepidoptera)

Authors: Selvamuthukumaran Thirunavukkarasu, Arivudainambi Sundararajan

Abstract:

The plant active molecules with their known mode of action are important leads to the development of newer insecticides. Lactone glycoside was identified earlier as the active principle in Cleistanthus collinus (Roxb.) Benth. (Fam: Euphorbiaceae). It possessed feeding deterrent, insecticidal and insect growth regulatory actions at varying concentrations. Deducing its mode of action opens a possibility of its further development. A no-choice leaf disc bioassay was carried out with lactone glycoside at different doses for different instars and Deterrence Indices were worked out. Using regression analysis concentrations imparting 10, 30 and 50 per cent deterrence (DI10, DI30 & DI50) were worked out. At these doses, effect on nutritional indices like Relative Consumption and Growth Rates (RCR & RGR), Efficiencies of Conversion of Ingested and Digested food (ECI & ECD) and Approximate Digestibility (AD) were worked out. The Relative Consumption and Growth Rate of control and lactone glycoside larva were compared by regression analysis. Regression analysis of deterrence indices revealed that the concentrations needed for imparting 50 per cent deterrence was 60.66, 68.47 and 71.10 ppm for third, fourth and fifth instars respectively. Relative consumption rate (RCR) and relative growth rate (RGR) were reduced. This confirmed the antifeedant action of the fraction. Approximate digestibility (AD) was found greater in treatments indicating reduced faeces because of poor digestibility and retention of food in the gut. Efficiency of conversion of both ingested and digested (ECI and ECD) food was also found to be greatly reduced. This indicated presence of toxic action. This was proved by comparing growth efficiencies of control and lactone glycoside treated larvae. Lactone glycoside was found to possess both feeding deterrent and toxic modes of action. Studies on molecular targets based on this preliminary site of action lead to new insecticide development.

Keywords: Spodoptera litura Fabricius, Cleistanthus collinus (Roxb.) Benth, feeding deterrence, mode of action

Procedia PDF Downloads 151
956 Task-Based Teaching for Developing Communication Skills in Second Language Learners

Authors: Geeta Goyal

Abstract:

Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.

Keywords: communication skills, English, second language, task-based teaching

Procedia PDF Downloads 83
955 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities

Authors: Abdelghani Qadem

Abstract:

Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.

Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development

Procedia PDF Downloads 51
954 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 297
953 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2

Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim

Abstract:

Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.

Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici

Procedia PDF Downloads 147
952 Association between a Serotonin Re-Uptake Transporter Gene Polymorphism and Mucosal Serotonin Level in Women Patients with Irritable Bowel Syndrome and Healthy Control: A Pilot Study from Northern India

Authors: Sunil Kumar, Uday C. Ghoshal

Abstract:

Background and aims: Serotonin (5-hydroxtryptamine, 5-HT) is an important factor in gut function, playing key roles in intestinal peristalsis and secretion, and in sensory signaling in the brain-gut axis. Removal from its sites of action is mediated by a specific protein called the serotonin reuptake transporter (SERT). Polymorphisms in the promoter region of the SERT gene have effects on transcriptional activity, resulting in altered 5-HT reuptake efficiency. Functional polymorphisms may underlie disturbance in gut function in individuals suffering with disorders such as irritable bowel syndrome (IBS). The aim of this study was to assess the potential association between SERT polymorphisms and the diarrhea predominant IBS (D-IBS) phenotype Subjects: A total of 36 northern Indian female patients and 55 female northern Indian healthy controls (HC) were subjected to genotyping. Methods: Leucocyte DNA of all subjects was analyzed by polymerase chain reaction based technologies for SERT polymorphisms, specifically the insertion/deletion polymorphism in the promoter (SERT-P). Statistical analysis was performed to assess association of SERT polymorphism allele with the D-IBS phenotype. Results: The frequency of distribution of SERT-P gene was comparable between female patients with IBS and HC (p = 0.086). However, frequency of SERT-P deletion/deletion genotype was significantly higher in female patients with D-IBS compared to C-IBS and A-IBS [17/19 (89.5%) vs. 4/12 (33.3%) vs. 1/5 (20%), p=0.001, respectively]. The mucosal level of serotonin was higher in D-IBS compared to C-IBS and A-IBS [Median, range (159.26, 98.78–212.1) vs. 110.4, 67.87–143.53 vs. 92.34, 78.8–166.3 pmol/mL, p=0.001, respectively]. The mucosal level of serotonin was higher in female patients with IBS with SERT-P deletion/deletion genotype compared deletion/insertion and insertion/insertion [157.65, 67.87–212.1 vs. 110.4, 78.1–143.32 vs. 100.5, 69.1–132.03 pmol/mL, p=0.001, respectively]. Patients with D-IBS with deletion/deletion genotype more often reported symptoms of abdominal pain, discomfort (p=0.025) and bloating (p=0.039). Symptoms development following lactose ingestion was strongly associated with D-IBS and SERT-P deletion/deletion genotype (p=0.004). Conclusions: Significant association was observed between D-IBS and the SERT-P deletion/deletion genotype, suggesting that the serotonin transporter is a potential candidate gene for D-IBS in women.

Keywords: serotonin, SERT, inflammatory bowel disease, genetic polymorphism

Procedia PDF Downloads 331
951 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary

Abstract:

The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.

Keywords: chemical deposition, CdS, optical properties, surface, thin film

Procedia PDF Downloads 160
950 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation

Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier

Abstract:

Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.

Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet

Procedia PDF Downloads 267
949 Chemically Enhanced Primary Treatment: Full Scale Trial Results Conducted at a South African Wastewater Works

Authors: Priyanka Govender, S. Mtshali, Theresa Moonsamy, Zanele Mkwanazi, L. Mthembu

Abstract:

Chemically enhanced primary treatment (CEPT) can be used at wastewater works to improve the quality of the final effluent discharge, provided that the plant has spare anaerobic digestion capacity. CEPT can transfer part of the organic load to the digesters thereby effectively relieving the hydraulic loading on the plant and in this way can allow the plant to continue operating long after the hydraulic capacity of the plant has been exceeded. This can allow a plant to continue operating well beyond its original design capacity, requiring only fairly simple and inexpensive modifications to the primary settling tanks as well as additional chemical costs, thereby delaying or even avoiding the need for expensive capital upgrades. CEPT can also be effective at plants where high organic loadings prevent the wastewater discharge from meeting discharge standards, especially in the case of COD, phosphates and suspended solids. By increasing removals of these pollutants in the primary settling tanks, CEPT can enable the plant to conform to specifications without the need for costly upgrades. Laboratory trials were carried out recently at the Umbilo WWTW in Durban and these were followed by a baseline assessment of the current plant performance and a subsequent full scale trial on the Conventional plant i.e. West Plant. The operating conditions of the plant are described and the improvements obtained in COD, phosphate and suspended solids, are discussed. The PST and plant overall suspended solids removal efficiency increased by approximately 6% during the trial. Details regarding the effect that CEPT had on sludge production and the digesters are also provided. The cost implications of CEPT are discussed in terms of capital costs as well as operation and maintenance costs and the impact of Ferric chloride on the infrastructure was also studied and found to be minimal. It was concluded that CEPT improves the final quality of the discharge effluent, thereby improving the compliance of this effluent with the discharge license. It could also allow for a delay in upgrades to the plant, allowing the plant to operate above its design capacity. This will be elaborated further upon presentation.

Keywords: chemically enhanced, ferric, wastewater, primary

Procedia PDF Downloads 297
948 Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite

Authors: Chen Chuanzhi, Guo Yunyun

Abstract:

The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas.

Keywords: linear array feed antenna, truss type, parabolic cylindrical antenna, spaceborne antenna

Procedia PDF Downloads 151
947 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis

Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos

Abstract:

Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.

Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent

Procedia PDF Downloads 275
946 The ReliVR Project: Feasibility of a Virtual Reality Intervention in the Psychotherapy of Depression

Authors: Kyra Kannen, Sonja D. Roelen, Sebastian Schnieder, Jarek Krajewski, Steffen Holsteg, André Karger, Johanna Askeridis, Celina Slawik, Philip Mildner, Jens Piesk, Ruslan David, Holger Kürten, Benjamin Oster, Robert Malzan, Mike Ludemann

Abstract:

Virtual Reality (VR) is increasingly recognized for its potential in transforming mental disorder treatment, offering advantages such as cost-effectiveness, time efficiency, accessibility, reduced stigma, and scalability. While the application of VR in the context of anxiety disorders has been extensively evaluated and demonstrated to be effective, the utilization of VR as a therapeutic treatment for depression remains under-investigated. Our goal is to pioneer immersive VR therapy modules for treating major depression, alongside a web-based system for home use. We develop a modular digital therapy platform grounded in psychodynamic therapy interventions which addresses stress reduction, exploration of social situations and relationship support, social skill training, avoidance behavior analysis, and psychoeducation. In addition, an automated depression monitoring system, based on acoustic voice analysis, is implemented in the form of a speech-based diary to track the affective state of the user and depression severity. The use of immersive VR facilitates patient immersion into complex and realistic interpersonal interactions with high emotional engagement, which may contribute to positive treatment acceptance and satisfaction. In a proof-of-concept study, 45 depressed patients were assigned to VR or web-platform modules, evaluating user experience, usability and additional metrics including depression severity, mindfulness, interpersonal problems, and treatment satisfaction. The findings provide valuable insights into the effectiveness and user-friendliness of VR and web modules for depression therapy and contribute to the refinement of more tailored digital interventions to improve mental health.

Keywords: virtual reality therapy, digital health, depression, psychotherapy

Procedia PDF Downloads 60
945 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts

Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu

Abstract:

Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.

Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria

Procedia PDF Downloads 71
944 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 440
943 Human Development as an Integral Part of Human Security within the Responsibility to Rebuild

Authors: Themistoklis Tzimas

Abstract:

The proposed paper focuses on a triangular relationship, between human security, human development and responsibility to rebuild. This relationship constitutes the innovative contribution to the debate about human security. Human security constitutes a generic and legally binding notion, which orientates from an integrated approach the UN Charter principles and of the collective security system. Such an approach brings at the forefront of international law and of international relations not only states but non- state actors as well. Several doctrines attempt to implement the fore-mentioned approach among which the Responsibility to Protect- hereinafter R2P- doctrine and its aspect of Responsibility to Rebuild- hereinafter R2R. In this sense, R2P in general and R2R are supposed to be guided by human security imperatives. Human security because of its human- centered approach encompasses as an integral part of it, human development. Human development constitutes part of the backbone of human security, since it deals with the social and economic root- causes of the threats, which human security attempts to confront. In this sense, doctrines which orientate from human security, such as R2P and its R2R aspect should also take into account human development imperatives, in order to improve their efficiency. On the contrary though, R2R is more often linked with market- orientated policies, which are often imposed under transitional authorities, regardless of local needs. The implementation of such policies can be identified as a cause for striking failures in the framework of R2R. In addition it is a misinterpretation of the essence of human security and subsequently of R2P as well. The findings of the article, on the basis of the fore-mentioned argument is that a change must take place from a market- orientated misinterpretation of R2R to an approach attempting to implement human development doctrines, since the latter lie at the heart of human security and can be proven more effective in dealing with the root- causes of conflicts. Methodologically, the article begins with an examination of human security and of its binding nature on the basis of its orientation from the UN Charter. It also examines its significance in the framework of the collective security system. Then, follows the analysis of why and how human development constitutes an integral part of human security. At the next part it is proven that R2P in general and R2R more specifically constitute or should constitute an attempt to implement human security doctrines within the collective security system. Having built this triangular relationship it is argued that human development is proven to be the most suitable notion, so that the spirit of human security and the scopes of R2P are successfully implemented.

Keywords: human security, un charter, responsibility to protect, responsibility to rebuild, human development

Procedia PDF Downloads 276
942 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 112