Search results for: optimal tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3926

Search results for: optimal tracking

3026 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification

Authors: Rebecca Angeles

Abstract:

This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.

Keywords: Internet of Things (IOT), radio frequency identification (RFID), structurational model of technology (Orlikowski), supply chain management

Procedia PDF Downloads 232
3025 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks

Authors: Anuradha Banerjee

Abstract:

A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.

Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery

Procedia PDF Downloads 347
3024 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 302
3023 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: distribution system, loss, photovoltaic generation, primal-dual interior point method

Procedia PDF Downloads 332
3022 Optimal Health and Older Adults: The Existential Health Dimension as a Health-Promoting Potential

Authors: Jessica Hemberg, Anna K. Forsman, Johanna Nordmyr

Abstract:

With a considerable increase in the aging population in the Nordic countries there is a call for a deeper understanding of healthy aging and its underlying mechanisms. The aim of this study is to uncover health and well-being for older adults according to their own views and understand what role the existential dimension play? The study uses a hermeneutical approach. Material was collected through focus group interviews with 18 older adults. The texts were interpreted through hermeneutical reading. The underlying mechanisms of health among older adults are described, illustrating the key prerequisites for health as being in the present. This implies ‘living on the continuums of life and death’ and in this field of forces also ‘living on the continuum of the past and the future’. Important aspects for being in the present was balancing ambivalent emotions, considering existential issues, and being in connectedness. Health for older adults may be understood in the light of the metaphor of taking it one day at a time. Being in the present was emphasized as a health potential for older adults highlighting the existential health dimension. From a societal point of view, this implies that health promotion should focus on highlighting the importance of the existential dimension of health since it holds health-promoting potentials for older adults. Optimal health for older adults requires awareness of one’s attitude to life through being in the present as a basis for a positive and healthy outlook on life.

Keywords: focus group interviews, hermeneutics, life experiences, older adults

Procedia PDF Downloads 189
3021 Constructing Notation for Music Learning in Athletes: Identifying Key Concepts in Music and Body Movements

Authors: Fung Chiat Loo, Fung Ying Loo

Abstract:

This paper discusses, suggests, and constructs a notation system to facilitate the learning and understanding of the two aspects of music and movement in a sports routine. This model serves to provide a simple and logical notation that does not require training in both music and choreography. Notation is an important medium in many art forms, particularly in music and dance, transmitting information that cannot easily be expressed using words or language. Another field that is closely associated with dance and music is sports routine, which equally requires choreography and music. However, from the perspective of music, it is common to observe many incongruencies appearing between the music used and the choreography that impede an optimal perception of the performance. The concept of the notation proceeds with a discussion and review of existing dance notations that could contribute to sports routines, along with rules and a code of points in selected sports routines. The author's involvement as an insider of numerous musical theatre productions also contributed to this study. The notation constructed includes time (tempo), significances of musical accents, direction, and phrasing, along with significances of movements (jump, punch, shape). It is believed that the level of congruence between music and movement will provide optimal visualization, and in that, the notation serves to provide adequate information on both entities for the understanding of athletes and coaches.

Keywords: notation, choreography, music learning, sports routines, congruence

Procedia PDF Downloads 83
3020 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 489
3019 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 101
3018 Effects of Transcranial Direct Current Stimulation on Post-Stroke Dysphagia

Authors: Ehsan Kaviani, Azin Golmoradizade

Abstract:

Introduction: Traditionally, tendons are considered to only contain tenocytes that are responsible for the maintenance, repair, and remodeling of tendons. Stem cells, which are termed tendon-derived stem cells, so this study we investigate the effect of transcranial direct current stimulation combined with swallowing training on post-stroke dysphagia. Methods: This review article is about effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia that were extracted from Science Direct, Pro quest, and Pub med Data Bases. 15 articles had been selected according to inclusion criteria from 2014 to 2019, and 6 of them had been deleted by exclusion criteria. Results: The results of our systematic review suggest that tDCS may represent a promising novel treatment for post-stroke dysphagia. However, to date, little is known about the optimal parameters of tDCS for relieving post-stroke dysphagia. Further studies are warranted to refine this promising intervention by exploring the optimal parameters of tDCS. Conclusion: anodal tDCS over the affected hemisphere may be as effective as cathodal tDCS on the unaffected hemisphere to enhance recovery after subacute ischemic stroke and anodal tdcs applied over the affected pharyngeal motor cortex can enhance the outcome of swallowing training in post-stroke dysphagia.

Keywords: dysphagia, stroke, cortical stimulation, transcranial direct current stimulation

Procedia PDF Downloads 135
3017 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals

Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam

Abstract:

The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study

Procedia PDF Downloads 320
3016 Experimental Study of Impregnated Diamond Bit Wear During Sharpening

Authors: Rui Huang, Thomas Richard, Masood Mostofi

Abstract:

The lifetime of impregnated diamond bits and their drilling efficiency are in part governed by the bit wear conditions, not only the extent of the diamonds’ wear but also their exposure or protrusion out of the matrix bonding. As much as individual diamonds wear, the bonding matrix does also wear through two-body abrasion (direct matrix-rock contact) and three-body erosion (cuttings trapped in the space between rock and matrix). Although there is some work dedicated to the study of diamond bit wear, there is still a lack of understanding on how matrix erosion and diamond exposure relate to the bit drilling response and drilling efficiency, as well as no literature on the process that governs bit sharpening a procedure commonly implemented by drillers when the extent of diamond polishing yield extremely low rate of penetration. The aim of this research is (i) to derive a correlation between the wear state of the bit and the drilling performance but also (ii) to gain a better understanding of the process associated with tool sharpening. The research effort combines specific drilling experiments and precise mapping of the tool-cutting face (impregnated diamond bits and segments). Bit wear is produced by drilling through a rock sample at a fixed rate of penetration for a given period of time. Before and after each wear test, the bit drilling response and thus efficiency is mapped out using a tailored design experimental protocol. After each drilling test, the bit or segment cutting face is scanned with an optical microscope. The test results show that, under the fixed rate of penetration, diamond exposure increases with drilling distance but at a decreasing rate, up to a threshold exposure that corresponds to the optimum drilling condition for this feed rate. The data further shows that the threshold exposure scale with the rate of penetration up to a point where exposure reaches a maximum beyond which no more matrix can be eroded under normal drilling conditions. The second phase of this research focuses on the wear process referred as bit sharpening. Drillers rely on different approaches (increase feed rate or decrease flow rate) with the aim of tearing worn diamonds away from the bit matrix, wearing out some of the matrix, and thus exposing fresh sharp diamonds and recovering a higher rate of penetration. Although a common procedure, there is no rigorous methodology to sharpen the bit and avoid excessive wear or bit damage. This paper aims to gain some insight into the mechanisms that accompany bit sharpening by carefully tracking diamond fracturing, matrix wear, and erosion and how they relate to drilling parameters recorded while sharpening the tool. The results show that there exist optimal conditions (operating parameters and duration of the procedure) for sharpening that minimize overall bit wear and that the extent of bit sharpening can be monitored in real-time.

Keywords: bit sharpening, diamond exposure, drilling response, impregnated diamond bit, matrix erosion, wear rate

Procedia PDF Downloads 99
3015 Gesture-Controlled Interface Using Computer Vision and Python

Authors: Vedant Vardhan Rathour, Anant Agrawal

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks

Procedia PDF Downloads 12
3014 Disposition Kinetics of Ciprofloxacin after Intramuscular Administration in Lohi Sheep

Authors: Zahid Iqbal, Ijaz Javed, Riaz Hussain, Ibadullah Jan, Amir Ali Khan

Abstract:

This study was conducted to investigate the disposition kinetics of ciprofloxacin and calculate its optimal dosage in Pakistani sheep of Lohi breed. Injectable preparation of ciprofloxacin was given intramuscularly to eight sheep at a dose of 5 mg/Kg. Before administration of drug blood sample was drawn from each animal. Post drug administration, blood samples were also drawn at various predetermined time periods. Drug concentration in the blood samples was assessed through high performance liquid chromatograph (HPLC). Data were best described by two compartment open model and different pharmacokinetic (PK) parameters were calculated. Cmax of 1.97 ± 0.15 µg/ml was reached at Tmax of 0.88 ± 0.09 hours. Half life of absorption (t1/2 abs) was observed to be 0.63 ± 0.16 hours while t1/2 α (distribution half life) and t1/2 ß (elimination half life) were found to be 0.46 ± 0.05 and 2.93 ± 0.45 hours, respectively. Vd (apparent volume of distribution) was calculated as 2.89 ± 0.30 L/kg while AUC (area under the curve) was 7.19 ± 0.38 µg.hr/mL and CL (total body clearance) was 0.75 ± 0.04 L/hr/kg. Using these parameters, an optimal intramuscular dosage of ciprofloxacin in adult Lohi sheep was calculated as 21.43 mg/kg, advised to be repeated after 24 hours. From this, we came to the conclusion that calculated dose was much higher than the dose advised by the foreign manufacturer and to avoid antimicrobial resistance, it is advised that this locally investigated dosage regimen should be strictly followed in local sheep.

Keywords: pharmacokinetics, dosage regimen, ciprofloxacin, HPLC, sheep

Procedia PDF Downloads 539
3013 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Taiki Baba, Tomoaki Hashimoto

Abstract:

The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.

Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization

Procedia PDF Downloads 282
3012 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 142
3011 Flood Planning Based on Risk Optimization: A Case Study in Phan-Calo River Basin in Vinh Phuc Province, Vietnam

Authors: Nguyen Quang Kim, Nguyen Thu Hien, Nguyen Thien Dung

Abstract:

Flood disasters are increasing worldwide in both frequency and magnitude. Every year in Vietnam, flood causes great damage to people, property, and environmental degradation. The flood risk management policy in Vietnam is currently updated. The planning of flood mitigation strategies is reviewed to make a decision how to reach sustainable flood risk reduction. This paper discusses the basic approach where the measures of flood protection are chosen based on minimizing the present value of expected monetary expenses, total residual risk and costs of flood control measures. This approach will be proposed and demonstrated in a case study for flood risk management in Vinh Phuc province of Vietnam. Research also proposed the framework to find a solution of optimal protection level and optimal measures of the flood. It provides an explicit economic basis for flood risk management plans and interactive effects of options for flood damage reduction. The results of the case study are demonstrated and discussed which would provide the processing of actions helped decision makers to choose flood risk reduction investment options.

Keywords: drainage plan, flood planning, flood risk, residual risk, risk optimization

Procedia PDF Downloads 242
3010 Optimal Opportunistic Maintenance Policy for a Two-Unit System

Authors: Nooshin Salari, Viliam Makis, Jane Doe

Abstract:

This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out.

Keywords: condition-based maintenance, opportunistic maintenance, preventive maintenance, two-unit system

Procedia PDF Downloads 200
3009 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study

Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott

Abstract:

In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.

Keywords: discrete event simulation, flexible manufacturing system, capacity performance, automotive

Procedia PDF Downloads 327
3008 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 140
3007 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: cell response, excimer laser, polymer treatment, periodic pattern, surface morphology

Procedia PDF Downloads 236
3006 Optrix: Energy Aware Cross Layer Routing Using Convex Optimization in Wireless Sensor Networks

Authors: Ali Shareef, Aliha Shareef, Yifeng Zhu

Abstract:

Energy minimization is of great importance in wireless sensor networks in extending the battery lifetime. One of the key activities of nodes in a WSN is communication and the routing of their data to a centralized base-station or sink. Routing using the shortest path to the sink is not the best solution since it will cause nodes along this path to fail prematurely. We propose a cross-layer energy efficient routing protocol Optrix that utilizes a convex formulation to maximize the lifetime of the network as a whole. We further propose, Optrix-BW, a novel convex formulation with bandwidth constraint that allows the channel conditions to be accounted for in routing. By considering this key channel parameter we demonstrate that Optrix-BW is capable of congestion control. Optrix is implemented in TinyOS, and we demonstrate that a relatively large topology of 40 nodes can converge to within 91% of the optimal routing solution. We describe the pitfalls and issues related with utilizing a continuous form technique such as convex optimization with discrete packet based communication systems as found in WSNs. We propose a routing controller mechanism that allows for this transformation. We compare Optrix against the Collection Tree Protocol (CTP) and we found that Optrix performs better in terms of convergence to an optimal routing solution, for load balancing and network lifetime maximization than CTP.

Keywords: wireless sensor network, Energy Efficient Routing

Procedia PDF Downloads 391
3005 Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India

Authors: Anurakti Shukla, Sudhakar Srivastava

Abstract:

Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer.

Keywords: cyanoclean, gloeotrichia, oscillatoria, phormidium, phycoremediation

Procedia PDF Downloads 143
3004 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 506
3003 Optimal Design of Submersible Permanent Magnet Linear Synchronous Motor Based Design of Experiment and Genetic Algorithm

Authors: Xiao Zhang, Wensheng Xiao, Junguo Cui, Hongmin Wang

Abstract:

Submersible permanent magnet linear synchronous motors (SPMLSMs) are electromagnetic devices, which can directly drive plunger pump to obtain the crude oil. Those motors have been gradually applied in oil fields due to high thrust force density and high efficiency. Since the force performance closely depends on the concrete structural parameters, the seven different structural parameters are investigated in detail. This paper presents an optimum design of an SPMLSM to minimize the detent force and maximize the thrust by using design of experiment (DOE) and genetic algorithm (GA). The three significant structural parameters (air-gap length, slot width, pole-arc coefficient) are separately screened using 27 1/16 fractional factorial design (FFD) to investigate the significant effect of seven parameters used in this research on the force performance. Response surface methodology (RSM) is well adapted to make analytical model of thrust and detent force with constraints of corresponding significant parameters and enable objective function to be easily created, respectively. GA is performed as a searching tool to search for the Pareto-optimal solutions. By finite element analysis, the proposed PMLSM shows merits in improving thrust and reducing the detent force dramatically.

Keywords: optimization, force performance, design of experiment (DOE), genetic algorithm (GA)

Procedia PDF Downloads 290
3002 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 21
3001 Iterative Dynamic Programming for 4D Flight Trajectory Optimization

Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho

Abstract:

4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.

Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization

Procedia PDF Downloads 162
3000 Sustained-Release Persulfate Tablets for Groundwater Remediation

Authors: Yu-Chen Chang, Yen-Ping Peng, Wei-Yu Chen, Ku-Fan Chen

Abstract:

Contamination of soil and groundwater has become a serious and widespread environmental problem. In this study, sustained-release persulfate tablets were developed using persulfate powder and a modified cellulose binder for organic-contaminated groundwater remediation. Conventional cement-based persulfate-releasing materials were also synthesized for the comparison. The main objectives of this study were to: (1) evaluate the release rates of the remedial tablets; (2) obtain the optimal formulas of the tablets; and (3) evaluate the effects of the tablets on the subsurface environment. The results of batch experiments show that the optimal parameter for the preparation of the persulfate-releasing tablet was persulfate:cellulose = 1:1 (wt:wt) with a 5,000 kg F/cm2 of pressure application. The cellulose-based persulfate tablet was able to release 2,030 mg/L of persulfate per day for 10 days. Compared to cement-based persulfate-releasing materials, the persulfate release rates of the cellulose-based persulfate tablets were much more stable. Moreover, since the tablets are soluble in water, no waste will be produced in the subsurface. The results of column tests show that groundwater flow would shorten the release time of the tablets. This study successfully developed unique persulfate tablets based on green remediation perspective. The efficacy of the persulfate-releasing tablets on the removal of organic pollutants needs to be further evaluated. The persulfate tablets are expected to be applied for site remediation in the future.

Keywords: sustained-release persulfate tablet, modified cellulose, green remediation, groundwater

Procedia PDF Downloads 290
2999 Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight

Authors: E. Vlachopapadopoulou, E. Dikaiakou, E. Anagnostou, I. Panagiotopoulos, E. Kaloumenou, M. Kafetzi, A. Fotinou, S. Michalacos

Abstract:

Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance.

Keywords: body fat weight, body mass index, insulin resistance, obese children, waist circumference

Procedia PDF Downloads 320
2998 Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption

Authors: H. Mokaddem, D. Miroud, N. Azouaou, F. Si-Ahmed, Z. Sadaoui

Abstract:

The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution.

Keywords: activated carbon, adsorption, cationic dyes, Algerian alfa

Procedia PDF Downloads 228
2997 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.

Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink

Procedia PDF Downloads 596