Search results for: cancer detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5321

Search results for: cancer detection

4421 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 169
4420 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm

Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene

Abstract:

Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.

Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest

Procedia PDF Downloads 116
4419 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 115
4418 Pattern of Adverse Drug Reactions with Platinum Compounds in Cancer Chemotherapy at a Tertiary Care Hospital in South India

Authors: Meena Kumari, Ajitha Sharma, Mohan Babu Amberkar, Hasitha Manohar, Joseph Thomas, K. L. Bairy

Abstract:

Aim: To evaluate the pattern of occurrence of adverse drug reactions (ADRs) with platinum compounds in cancer chemotherapy at a tertiary care hospital. Methods: It was a retrospective, descriptive case record study done on patients admitted to the medical oncology ward of Kasturba Hospital, Manipal from July to November 2012. Inclusion criteria comprised of patients of both sexes and all ages diagnosed with cancer and were on platinum compounds, who developed at least one adverse drug reaction during or after the treatment period. CDSCO proforma was used for reporting ADRs. Causality was assessed using Naranjo Algorithm. Results: A total of 65 patients was included in the study. Females comprised of 67.69% and rest males. Around 49.23% of the ADRs were seen in the age group of 41-60 years, followed by 20 % in 21-40 years, 18.46% in patients over 60 years and 12.31% in 1-20 years age group. The anticancer agents which caused adverse drug reactions in our study were carboplatin (41.54%), cisplatin (36.92%) and oxaliplatin (21.54%). Most common adverse drug reactions observed were oral candidiasis (21.53%), vomiting (16.92%), anaemia (12.3%), diarrhoea (12.3%) and febrile neutropenia (0.08%). The results of the causality assessment of most of the cases were probable. Conclusion: The adverse effect of chemotherapeutic agents is a matter of concern in the pharmacological management of cancer as it affects the quality of life of patients. This information would be useful in identifying and minimizing preventable adverse drug reactions while generally enhancing the knowledge of the prescribers to deal with these adverse drug reactions more efficiently.

Keywords: adverse drug reactions, platinum compounds, cancer, chemotherapy

Procedia PDF Downloads 428
4417 A Next Generation Multi-Scale Modeling Theatre for in silico Oncology

Authors: Safee Chaudhary, Mahnoor Naseer Gondal, Hira Anees Awan, Abdul Rehman, Ammar Arif, Risham Hussain, Huma Khawar, Zainab Arshad, Muhammad Faizyab Ali Chaudhary, Waleed Ahmed, Muhammad Umer Sultan, Bibi Amina, Salaar Khan, Muhammad Moaz Ahmad, Osama Shiraz Shah, Hadia Hameed, Muhammad Farooq Ahmad Butt, Muhammad Ahmad, Sameer Ahmed, Fayyaz Ahmed, Omer Ishaq, Waqar Nabi, Wim Vanderbauwhede, Bilal Wajid, Huma Shehwana, Muhammad Tariq, Amir Faisal

Abstract:

Cancer is a manifestation of multifactorial deregulations in biomolecular pathways. These deregulations arise from the complex multi-scale interplay between cellular and extracellular factors. Such multifactorial aberrations at gene, protein, and extracellular scales need to be investigated systematically towards decoding the underlying mechanisms and orchestrating therapeutic interventions for patient treatment. In this work, we propose ‘TISON’, a next-generation web-based multiscale modeling platform for clinical systems oncology. TISON’s unique modeling abstraction allows a seamless coupling of information from biomolecular networks, cell decision circuits, extra-cellular environments, and tissue geometries. The platform can undertake multiscale sensitivity analysis towards in silico biomarker identification and drug evaluation on cellular phenotypes in user-defined tissue geometries. Furthermore, integration of cancer expression databases such as The Cancer Genome Atlas (TCGA) and Human Proteome Atlas (HPA) facilitates in the development of personalized therapeutics. TISON is the next-evolution of multiscale cancer modeling and simulation platforms and provides a ‘zero-code’ model development, simulation, and analysis environment for application in clinical settings.

Keywords: systems oncology, cancer systems biology, cancer therapeutics, personalized therapeutics, cancer modelling

Procedia PDF Downloads 221
4416 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel

Procedia PDF Downloads 447
4415 Increased Retention of Nanoparticle by Small Molecule Inhibitor in Cancer Cells

Authors: Neha Singh

Abstract:

Background: Nowadays, the nanoparticle is gaining unexceptional attention in targeted drug delivery. But before proceeding to this episode of accomplishment, the journey and closure of these nanoparticles inside the cells should be disentangle. Being foreign for the cells, nanoparticles will easily getcleared off without any effective outcome. As the cancer cells withhold these nanoparticles for a longer period of time, more will be the drug’s effect. Chlorpromazine is a cationic amphiphilic drug which is believed to inhibit clathrin-coated pit formation by a reversible translocation of clathrin and its adapter proteins from the plasma membrane to intracellular vesicles. Chlorpromazine has a role in increasing the retention of nanoparticles in cancer cells. The mechanism of action how this small molecule increases the retention of nanoparticles is still uncovered. Method: Polymeric nanoparticle (PLGA) with Cyanine3.5 dye were synthesized by solvent evaporation method and characterized for size and zeta potential. FTIR was also done. Pulse and chase studies with and without inhibitor were done to check the retention of nanoparticle using fluorescence microscopy. Mean fluorescence intensity was measured by ImageJ software. Results: Increased retention of nanoparticle with inhibitor was observed in both pulse and chase studies. Conclusion: Our results demonstrate that by repurposing these small molecule inhibitor, we can increase the retention of nanoparticle at the targeted site.

Keywords: nanoparticle, endocytosis, clathrin inhibitor, cancer cell

Procedia PDF Downloads 101
4414 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 121
4413 Strengthening Service Delivery to Improving Cervical Cancer Screening in Southwestern Nigeria: A Pilot Project

Authors: Afolabi K. Esther, Kuye Tolulope, Babafemi, L. Olayemi, Omikunle Yemisi

Abstract:

Background: Cervical cancer is a potentially preventable disease of public significance. All sexually active women are at risk of cervical cancer; however, the uptake and coverage are low in low-middle resource countries. Hence, the programme explored the feasibility of demonstrating an innovative and low-cost system approach to cervical cancer screening service delivery among reproductive-aged women in low–resource settings in Southwestern Nigeria. This was to promote the uptake and quality improvement of cervical cancer screening services. Methods: This study was an intervention project in three senatorial districts in Osun State that have primary, secondary and tertiary health facilities. The project was in three phases; Pre-intervention, Intervention, and Post-intervention. The study utilised the existing infrastructure, facilities and staff in project settings. The study population was nurse-midwives, community health workers and reproductive-aged women (30-49 years). The intervention phase entailed using innovative, culturally appropriate strategies to create awareness of cervical cancer and preventive health-seeking behaviour among women in the reproductive-aged group (30-49) years. Also, the service providers (community health workers, Nurses, and Midwives) were trained on screening methods and treatment of pre-cancerous lesions, and there was the provision of essential equipment and supplies for cervical cancer screening services at health facilities. Besides, advocacy and engagement were made with relevant stakeholders to integrate the cervical cancer screening services into related reproductive health services and greater allocation of resources. The expected results compared the pre and post-intervention using the baseline and process indicators and the effect of the intervention phase on screening coverage using a plausibility assessment design. The project lasted 12 months; visual Inspection with Acetic acid (VIA) screening for the women for six months and follow-up in 6 months for women receiving treatment. Results: The pre-intervention phase assessed baseline service delivery statistics in the previous 12 months drawn from the retrospective data collected as part of the routine monitoring and reporting systems. The uptake of cervical cancer screening services was low as the number of women screened in the previous 12 months was 156. Service personnel's competency level was fair (54%), and limited availability of essential equipment and supplies for cervical cancer screening services. At the post-intervention phase, the level of uptake had increased as the number of women screened was 1586 within six months in the study settings. This showed about a 100-%increase in the uptake of cervical cancer screening services compared with the baseline assessment. Also, the post-intervention level of competency of service delivery personnel had increased to 86.3%, which indicates quality improvement of the cervical cancer screening service delivery. Conclusion: the findings from the study have shown an effective approach to strengthening and improving cervical cancer screening service delivery in Southwestern Nigeria. Hence, the intervention promoted a positive attitude and health-seeking behaviour among the target population, significantly influencing the uptake of cervical cancer screening services.

Keywords: cervical cancer, screening, nigeria, health system strengthening

Procedia PDF Downloads 103
4412 Symphony of Healing: Exploring Music and Art Therapy’s Impact on Chemotherapy Patients with Cancer

Authors: Sunidhi Sood, Drashti Narendrakumar Shah, Aakarsh Sharma, Nirali Harsh Panchal, Maria Karizhenskaia

Abstract:

Cancer is a global health concern, causing a significant number of deaths, with chemotherapy being a standard treatment method. However, chemotherapy often induces side effects that profoundly impact the physical and emotional well-being of patients, lowering their overall quality of life (QoL). This research aims to investigate the potential of music and art therapy as holistic adjunctive therapy for cancer patients undergoing chemotherapy, offering non-pharmacological support. This is achieved through a comprehensive review of existing literature with a focus on the following themes, including stress and anxiety alleviation, emotional expression and coping skill development, transformative changes, and pain management with mood upliftment. A systematic search was conducted using Medline, Google Scholar, and St. Lawrence College Library, considering original, peer-reviewed research papers published from 2014 to 2023. The review solely incorporated studies focusing on the impact of music and art therapy on the health and overall well-being of cancer patients undergoing chemotherapy in North America. The findings from 16 studies involving pediatric oncology patients, females affected by breast cancer, and general oncology patients show that music and art therapies significantly reduce anxiety (standardized mean difference: -1.10) and improve perceived stress (median change: -4.0) and overall quality of life in cancer patients undergoing chemotherapy. Furthermore, music therapy has demonstrated the potential to decrease anxiety, depression, and pain during infusion treatments (average changes in resilience scale: 3.4 and 4.83 for instrumental and vocal music therapy, respectively). This data calls for consideration of the integration of music and art therapy into supportive care programs for cancer patients undergoing chemotherapy. Moreover, it provides guidance to healthcare professionals and policymakers, facilitating the development of patient-centered strategies for cancer care in Canada. Further research is needed in collaboration with qualified therapists to examine its applicability and explore and evaluate patients' perceptions and expectations in order to optimize the therapeutic benefits and overall patient experience. In conclusion, integrating music and art therapy in cancer care promises to substantially enhance the well-being and psychosocial state of patients undergoing chemotherapy. However, due to the small population size considered in existing studies, further research is needed to bridge the knowledge gap and ensure a comprehensive, patient-centered approach, ultimately enhancing the quality of life (QoL) for individuals facing the challenges of cancer treatment.

Keywords: anxiety, cancer, chemotherapy, depression, music and art therapy, pain management, quality of life

Procedia PDF Downloads 73
4411 LncRNA NEAT1 Promotes NSCLC Progression through Acting as a ceRNA of miR-377-3p

Authors: Chengcao Sun, Shujun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, Dejia Li

Abstract:

Recently, the long non-coding RNA (lncRNA) NEAT1 has been identified as an oncogenic gene in multiple cancer types and elevated expression of NEAT1 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in progression of non-small cell lung cancer (NSCLC). In our studies, we identified NEAT1 was highly expressed in NSCLC patients and was a novel regulator of NSCLC progression. Patients whose tumors had high NEAT1 expression had a shorter overall survival than patients whose tumors had low NEAT1 expression. Further, NEAT1 significantly accelerates NSCLC cell growth and metastasis in vitro and tumor growth in vivo. Additionally, by using bioinformatics study and RNA pull down combined with luciferase reporter assays, we demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for has-miR-377-3p, antagonized its functions and led to the de-repression of its endogenous targets E2F3, which was a core oncogene in promoting NSCLC progression. Taken together, these observations imply that the NEAT1 modulated the expression of E2F3 gene by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and NSCLC progression.

Keywords: long non-coding RNA NEAT1, hsa-miRNA-377-3p, E2F3, non-small cell lung cancer, tumorigenesis

Procedia PDF Downloads 368
4410 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: differentially expressed genes, early and late-stages, gene ontology, non-small cell lung cancer transcriptomics

Procedia PDF Downloads 114
4409 Synergistic Effects of Chrysin-Curcumin Loaded in PLGA-PEG Nanoparticles on Inhibiting Breast Cancer Cell Line Growth

Authors: N. Zarghami, M. Mohammadinejad, A. Akbarzadeh, Y. Pilehvar-Soltanahmadi, F. Zarghami

Abstract:

Breast cancer is known to be the most common cancer in women. Cyclin D1 is a proto-oncogene and over expression of cyclin D1 is directly associated with tumorgenesis. Cyclin D1 is overexpressed in more than 50% of breast cancer cases. Curcumin is derived from turmeric (curcuma longa) and chrysin is a component that could be extracted from many plants and honey. These two plants derived compounds are believed to assist in inhibition of the cancer cells growth and reducing cyclin D1 expression. In this work, the hypothesis is to combine curcumin and chrysin in order to analyze the potential synergistic effect in inhibition of cell proliferation and down regulation of cyclin D1. In addition, use of PLGA-PEG to improve bioavailability of pure curcumin and chrysin, while reinforcing the potential effect of this combination. PLGA-PEG nanoparticles were synthesized and characterized with FT-IR and 1HNMR methods. Although morphological features were analyzed by SEM. Afterward curcumin and chrysin were encapsulated with synthesized PLGA-PEG and MTT-assay was performed to measure cytotoxicity effect of these plant constitutes. T-47D cells were treated with proper concentration of these constituents and Real-time PCR was carried out to evaluate cyclin D1 expression levels. Curcumin, chrysin and combination of curcumin –chrysin in intact and nano-capsulated form affected T-47D cells in time and dose dependent manner and the combination of these compounds had synergistic effects. Real-time PCR results, revealed that curcumin, chrysin and combination of curcumin-chrysin in pure and encapsulated form inhibited cyclin D1 expression. Compared to pure components, different concentrations of nano-curcumin, nano chrysin and nano-combination caused further decline in cyclin D12 expression by 5-11%, 8-22% and 6-18% respectively. Our results demonstrated that, combination of chrysin-curcumin had synergistic effect and nano capsulated form of this component had grater inhibition on cyclin D1 expression.

Keywords: breast cancer, cyclin D1, curcumin, chrysin, nanoparticles

Procedia PDF Downloads 271
4408 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 81
4407 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells

Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard

Abstract:

Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.

Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics

Procedia PDF Downloads 247
4406 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 113
4405 hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen's Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients

Authors: Mahsa Taghavi

Abstract:

In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug.

Keywords: tamoxifen, breast cancer, bioinformatics analysis, EMT, miRNAs

Procedia PDF Downloads 127
4404 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking

Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu

Abstract:

Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.

Keywords: Chirality, detection, molecule, spin

Procedia PDF Downloads 91
4403 Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter

Authors: Lina Pan

Abstract:

In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator.

Keywords: non-Gaussian clutter, covariance matrix estimation, target detection, maximum likelihood

Procedia PDF Downloads 462
4402 Current Status of Ir-192 Brachytherapy in Bangladesh

Authors: M. Safiqul Islam, Md Arafat Hossain Sarkar

Abstract:

Brachytherapy is one of the most important cancer treatment management systems in radiotherapy department. Brachytherapy treatment is moved into High Dose Rate (HDR) after loader from Low Dose Rate (LDR) after loader due to radiation protection advantage. HDR Brachytherapy is a highly multipurpose system for enhancing cure and achieving palliation in many common cancers disease of developing countries. High-dose rate (HDR) Brachytherapy is a type of internal radiation therapy that delivers radiation from implants placed close to or inside, the tumor(s) in the body. This procedure is very effective at providing localized radiation to the tumor site while minimizing the patient’s whole body dose. Brachytherapy has proven to be a highly successful treatment for cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck, as well as soft tissue sarcomas and several other types of cancer. For the time being in our country we have 10 new HDR Remote after loading Brachytherapy. Right now 4 HDR Brachytherapy is already installed and running for patient’s treatment out of 10 HDR Brachytherapy. Ir-192 source is more comfortable than Co-60. In that case people or expert personnel prefer Ir-192 source for different kind of cancer patients. Ir-192 are economically, more flexible and familiar in our country.

Keywords: Ir-192, brachytherapy, cancer treatment, prostate, cervix, endometrium, breast, skin, bronchus, esophagus, soft tissue sarcomas

Procedia PDF Downloads 431
4401 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks

Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner

Abstract:

Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.

Keywords: USB, device, cyber security, attack, detection

Procedia PDF Downloads 396
4400 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 257
4399 Automatic Segmentation of Lung Pleura Based On Curvature Analysis

Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.

Abstract:

Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).

Keywords: curvature analysis, image segmentation, morphological operators, thresholding

Procedia PDF Downloads 594
4398 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble

Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi

Abstract:

Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.

Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble

Procedia PDF Downloads 221
4397 Ultra-Sensitive and Real Time Detection of ZnO NW Using QCM

Authors: Juneseok You, Kuewhan Jang, Chanho Park, Jaeyeong Choi, Hyunjun Park, Sehyun Shin, Changsoo Han, Sungsoo Na

Abstract:

Nanomaterials occur toxic effects to human being or ecological systems. Some sensors have been developed to detect toxic materials and the standard for toxic materials has been established. Zinc oxide nanowire (ZnO NW) is known for toxic material. By ionizing in cell body, ionized Zn ions are overexposed to cell components, which cause critical damage or death. In this paper, we detected ZnO NW in water using QCM (Quartz Crystal Microbalance) and ssDNA (single strand DNA). We achieved 30 minutes of response time for real time detection and 100 pg/mL of limit of detection (LOD).

Keywords: zinc oxide nanowire, QCM, ssDNA, toxic material, biosensor

Procedia PDF Downloads 426
4396 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems

Authors: Craig Mahlasi

Abstract:

The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.

Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time

Procedia PDF Downloads 161
4395 Correlation between the Levels of Some Inflammatory Cytokines/Haematological Parameters and Khorana Scores of Newly Diagnosed Ambulatory Cancer Patients

Authors: Angela O. Ugwu, Sunday Ocheni

Abstract:

Background: Cancer-associated thrombosis (CAT) is a cause of morbidity and mortality among cancer patients. Several risk factors for developing venous thromboembolism (VTE) also coexist with cancer patients, such as chemotherapy and immobilization, thus contributing to the higher risk of VTE in cancer patients when compared to non-cancer patients. This study aimed to determine if there is any correlation between levels of some inflammatory cytokines/haematological parameters and Khorana scores of newly diagnosed chemotherapy naïve ambulatory cancer patients (CNACP). Methods: This was a cross-sectional analytical study carried out from June 2021 to May 2022. Eligible newly diagnosed cancer patients 18 years and above (case group) were enrolled consecutively from the adult Oncology Clinics of the University of Nigeria Teaching Hospital, Ituku/Ozalla (UNTH). The control group was blood donors at UNTH Ituku/Ozalla, Enugu blood bank, and healthy members of the Medical and Dental Consultants Association of Nigeria (MDCAN), UNTH Chapter. Blood samples collected from the participants were assayed for IL-6, TNF-Alpha, and haematological parameters such as haemoglobin, white blood cell count (WBC), and platelet count. Data were entered into an Excel worksheet and were then analyzed using Statistical Package for Social Sciences (SPSS) computer software version 21.0 for windows. A P value of < 0.05 was considered statistically significant. Results: A total of 200 participants (100 cases and 100 controls) were included in the study. The overall mean age of the participants was 47.42 ±15.1 (range 20-76). The sociodemographic characteristics of the two groups, including age, sex, educational level, body mass index (BMI), and occupation, were similar (P > 0.05). Following One Way ANOVA, there were significant differences between the mean levels of interleukin-6 (IL-6) (p = 0.036) and tumor necrotic factor-α (TNF-α) (p = 0.001) in the three Khorana score groups of the case group. Pearson’s correlation analysis showed a significant positive correlation between the Khorana scores and IL-6 (r=0.28, p = 0.031), TNF-α (r= 0.254, p= 0.011), and PLR (r= 0.240, p=0.016). The mean serum levels of IL-6 were significantly higher in CNACP than in the healthy controls [8.98 (8-12) pg/ml vs. 8.43 (2-10) pg/ml, P=0.0005]. There were also significant differences in the mean levels of the haemoglobin (Hb) level (P < 0.001)); white blood cell (WBC) count ((P < 0.001), and platelet (PL) count (P = 0.005) between the two groups of participants. Conclusion: There is a significant positive correlation between the serum levels of IL-6, TNF-α, and PLR and the Khorana scores of CNACP. The mean serum levels of IL-6, TNF-α, PLR, WBC, and PL count were significantly higher in CNACP than in the healthy controls. Ambulatory cancer patients with high-risk Khorana scores may benefit from anti-inflammatory drugs because of the positive correlation with inflammatory cytokines. Recommendations: Ambulatory cancer patients with 2 Khorana scores may benefit from thromboprophylaxis since they have higher Khorana scores. A multicenter study with a heterogeneous population and larger sample size is recommended in the future to further elucidate the relationship between IL-6, TNF-α, PLR, and the Khorana scores among cancer patients in the Nigerian population.

Keywords: thromboprophylaxis, cancer, Khorana scores, inflammatory cytokines, haematological parameters

Procedia PDF Downloads 81
4394 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability

Procedia PDF Downloads 373
4393 Exploring the Lived Experiences of Breast Cancer Survivors Post-Treatment

Authors: Nova Grail S. Luminang, Gwyneth B. Gortiza, Alvin E. Haboc, Marinol K. Hate, Rhean Mitchel N. Joven, Kara Kate D. Lammao, Rosemarie M. Lambayung, Elmo Carl D. Lardizabal, Zyra B. Linggayo, Rizza Mae G. Liwag, Ronalyn O. Songcuan

Abstract:

Breast cancer survivorship represents a complex and continuous journey extending beyond the completion of treatment, involving coping with physical, emotional, and psychological aspects of life post-treatment. This study aimed to explore the lived experiences of breast cancer survivors after successful treatment in Tabuk City, focusing on their post-treatment experiences, coping mechanisms, and necessary lifestyle changes. Researchers have selected Tabuk City as their research locale. Utilizing Martin Heidegger’s descriptive phenomenological design, this qualitative research included six participants, allowing for data saturation. Purposive sampling was employed to select participants. Researchers used Colaizzi’s Phenomenological Method in analyzing the data in order to achieve a reliable understanding of the participants’ experiences. The findings revealed three main themes: going through post-treatment hurdles, building resilience, and transformative wellness adjustments. Breast cancer survivors faced significant challenges, including physical adversities, emotional turmoil, limited social life, memory lapses, decreased sexual intimacy, and economic constraints. To cope, survivors adjusted their thoughts and attitudes, accepted their situation, relied on religious beliefs, and joined the support group Kalinga Cancer Care Ministry INC. Additionally, they strived to return to a normal life and embraced gratitude. Survivors made essential changes to their daily routines, modifying their diets, exploring herbal remedies, and incorporating physical activities such as walking and household chores. These adjustments helped improve their overall well-being and prevent cancer recurrence. The researchers concluded that the journey of breast cancer survivors is marked by significant challenges and inspiring resilience. The impact of breast cancer treatment extends beyond physical recovery, encompassing profound emotional and social dimensions. Despite these difficulties, survivors demonstrate remarkable strength and adaptability, making positive lifestyle changes that offer a hopeful and inspiring narrative of recovery and perseverance.

Keywords: breast cancer, lived experiences, breast cancer survivor, post-treatment hurdles, emotional turmoil

Procedia PDF Downloads 29
4392 Fusion Neutron Generator Dosimetry and Applications for Medical, Security, and Industry

Authors: Kaouther Bergaui, Nafaa Reguigui, Charles Gary

Abstract:

Characterization and the applications of deuterium-deuterium (DD) neutron generator developed by Adelphie technology and acquired by the National Centre of Nuclear Science and Technology (NCNST) were presented in this work. We study the performance of the neutron generator in terms of neutron yield, production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. We provide the design and optimization of the PGNAA chamber and thus give insight into the capabilities of the planned PGNAA facility. Additional non-destructive techniques were studied employing the DD neutron generator, such as PGNAA and neutron radiography: The PGNAA is used for determining the concentration of 10B in Si and SiO2 matrices by using a germanium detector HPGe and the results obtained are compared with PGNAA system using a Sodium Iodide detector (NaI (Tl)); Neutron radiography facility was tested and simulated, using a camera device CCD and simulated by the Monte Carlo code; and the explosive detection system (EDS) also simulated using the Monte Carlo code. The study allows us to show that the new models of DD neutron generators are feasible and that superior-quality neutron beams could be produced and used for various applications. The feasibility of Boron neutron capture therapy (BNCT) for cancer treatment using a neutron generator was assessed by optimizing Beam Shaping Assembly (BSA) on a phantom using Monte-Carlo (MCNP6) simulations.

Keywords: neutron generator deuterium-deuterium, Monte Carlo method, radiation, neutron flux, neutron activation analysis, born, neutron radiography, explosive detection, BNCT

Procedia PDF Downloads 191