Search results for: physicochemical properties of amino acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11592

Search results for: physicochemical properties of amino acid

2472 The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey

Authors: Mahmud Gungor, Ali Aydin, Erdal Akyol, Suat Tasdelen

Abstract:

The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate one-dimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.

Keywords: seismic data, Gokpinar Damp, urban planning, Denizli

Procedia PDF Downloads 275
2471 Processing of Input Material as a Way to Improve the Efficiency of the Glass Production Process

Authors: Joanna Rybicka-Łada, Magda Kosmal, Anna Kuśnierz

Abstract:

One of the main problems of the glass industry is the still high consumption of energy needed to produce glass mass, as well as the increase in prices, fuels, and raw materials. Therefore, comprehensive actions are taken to improve the entire production process. The key element of these activities, starting from filling the set to receiving the finished product, is the melting process, whose task is, among others, dissolving the components of the set, removing bubbles from the resulting melt, and obtaining a chemically homogeneous glass melt. This solution avoids dust formation during filling and is available on the market. This process consumes over 90% of the total energy needed in the production process. The processes occurring in the set during its conversion have a significant impact on the further stages and speed of the melting process and, thus, on its overall effectiveness. The speed of the reactions occurring and their course depend on the chemical nature of the raw materials, the degree of their fragmentation, thermal treatment as well as the form of the introduced set. An opportunity to minimize segregation and accelerate the conversion of glass sets may be the development of new technologies for preparing and dosing sets. The previously preferred traditional method of melting the set, based on mixing all glass raw materials together in loose form, can be replaced with a set in a thickened form. The aim of the project was to develop a glass set in a selectively or completely densified form and to examine the influence of set processing on the melting process and the properties of the glass.

Keywords: glass, melting process, glass set, raw materials

Procedia PDF Downloads 45
2470 Effect of the Binary and Ternary Exchanges on Crystallinity and Textural Properties of X Zeolites

Authors: H. Hammoudi, S. Bendenia, K. Marouf-Khelifa, R. Marouf, J. Schott, A. Khelifa

Abstract:

The ionic exchange of the NaX zeolite by Cu2+ and/or Zn2+ cations is progressively driven while following the development of some of its characteristic: crystallinity by XR diffraction, profile of isotherms, RI criterion, isosteric adsorption heat and microporous volume using both the Dubinin–Radushkevich (DR) equation and the t-plot through the Lippens–de Boer method which also makes it possible to determine the external surface area. Results show that the cationic exchange process, in the case of Cu2+ introduced at higher degree, is accompanied by crystalline degradation for Cu(x)X, in contrast to Zn2+-exchanged zeolite X. This degradation occurs without significant presence of mesopores, because the RI criterion values were found to be much lower than 2.2. A comparison between the binary and ternary exchanges shows that the curves of CuZn(x)X are clearly below those of Zn(x)X and Cu(x)X, whatever the examined parameter. On the other hand, the curves relating to CuZn(x)X tend towards those of Cu(x)X. This would again confirm the sensitivity of the crystalline structure of CuZn(x)X with respect to the introduction of Cu2+ cations. An original result is the distortion of the zeolitic framework of X zeolites at middle exchange degree, when Cu2+ competes with another divalent cation, such as Zn2+, for the occupancy of sites distributed within zeolitic cavities. In other words, the ternary exchange accentuates the crystalline degradation of X zeolites. An unexpected result also is the no correlation between crystal damage and the external surface area.

Keywords: adsorption, crystallinity, ion exchange, zeolite

Procedia PDF Downloads 243
2469 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R. H. Ladstaetter

Abstract:

Present and future lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft and future vehicles will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound (SMC), tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a new hybrid composite technology for aerospace industries, which was developed with the help of a universal innovation and development system. This system supports the management of idea generation, the methodical development of innovative technologies and the achievement of the industrial readiness of these technologies.

Keywords: development system, hybrid composite, innovation system, prepreg, sheet moulding compound

Procedia PDF Downloads 320
2468 Response of Onion to FTM and Inorganic Fertilizers Application on Growth, Yield and Nutrient Uptake in Lateritic Soil of Konkan

Authors: Rupali Thorat, S. B. Dodake, V. N. Palsande, S. D. Patil

Abstract:

A field experiment was conducted to study the “Response of onion to FYM and inorganic fertilizers application on growth, yield and nutrient uptake in lateritic soil of Konkan” at the farm of Pangari block of Irrigation of Scheme, Central Experimentation Station, Wakawali during Rabi 2009-10. There were 12 treatment combinations, comprising of 3 levels of NPK fertilizers (C1 ,C2-125 kg N, 62.5 kg P205 and 62.5 kg K20 ha-1 and C3-150 kg N, 75 kg P205 and 75 kg K20 ha-1) and 4 levels of FYM (F1-10 t FYM ha-1, F2 - 15 t FYM ha-1, F3-20 t FYM ha-1, F4-25 t FYM ha-1) replicated thrice using Factorial Randomized Block Design. The observations on plant height, number of leaves, girth of plant, polar and equatorial diameter of bulb as well as dry matter yield, onion bulb yield recorded during the course of field study were subjected to statistical analysis. Similarly nutrient content and uptake, quality parameters of bulb and soil properties were also determined and their data were also analyzed statistically. It is revealed from the study that the growth attributes, dry matter yield, onion bulb yield, nutrient content, nutrient uptake, quality parameters were improved significantly due to application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1(C3F3). Application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1 (C3F3) registered highest onion bulb yield (t ha-1). The quality of onion as well as availability of N, P, K, Fe, Mn, Zn and Cu in the soil was improved due to application of NPK @ 150:75:75 kg ha-1 and FYM @ 20 t ha-1.

Keywords: onion, FYM, yield, nutrient uptake and fertilizer

Procedia PDF Downloads 466
2467 Antibacterial Activity of the Essential Oil of Origanum glandulosum on Bacterial Strains of Hospital Origin Most Implicated in Nosocomial Infections

Authors: A. Lardjam, R. Mazid, S. Y. Boudghene, A. Izarouken, Y. Dali, N. Djebli, H. Toumi

Abstract:

Origanum glandulosum is an aromatic plant, common in Algeria and widely used by local people for its medicinal properties. The essential oil from this plant, which grows in the west of Algeria, was studied to evaluate and determine its antibacterial activity. The extraction of the essential oil was performed by water steam distillation; the yield obtained from the aerial parts (1.78 %) is interesting, its chromatographic profile revealed by TLC showed the presence of phenolic compounds thymol and carvacrol. The evaluation of the activity of the essential oil of Origanum glandulosum on bacterial strains of hospital origin, ATCC, MRB, and HRB, most implicated in nosocomial infections (Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 43300, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus resistant to meticillin, Enterococcus faecium, VA R and R TEC, Acinetobacter baumanii, IMP R and R CAZ, Klebsiella pneumonia carbapenemase-producing) by the method of aromatogramme and micro atmosphere, shows that the antibacterial potency of this oil is very high, expressed by significant inhibition diameters on all strains except Pseudomonas aeruginosa, and low MICs and is characterized by a bactericidal action.

Keywords: antibacterial activity, essential oil, HRB, MBR, nosocomial infections, origanum glandulosum

Procedia PDF Downloads 307
2466 Direct Visualization of Shear Induced Structures in Wormlike Micellar Solutions by Microfluidics and Advanced Microscopy

Authors: Carla Caiazza, Valentina Preziosi, Giovanna Tomaiuolo, Denis O'Sullivan, Vincenzo Guida, Stefano Guido

Abstract:

In the last decades, wormlike micellar solutions have been extensively used to tune the rheological behavior of home care and personal care products. This and other successful applications underlie the growing attention that both basic and applied research are devoting to these systems, and to their unique rheological and flow properties. One of the key research topics is the occurrence of flow instabilities at high shear rates (such as shear banding), with the possibility of appearance of flow induced structures. In this scenario, microfluidics is a powerful tool to get a deeper insight into the flow behavior of a wormlike micellar solution, as the high confinement of a microfluidic device facilitates the onset of the flow instabilities; furthermore, thanks to its small dimensions, it can be coupled with optical microscopy, allowing a direct visualization of flow structuring phenomena. Here, the flow of a widely used wormlike micellar solution through a glass capillary has been studied, by coupling the microfluidic device with μPIV techniques. The direct visualization of flow-induced structures and the flow visualization analysis highlight a relationship between solution structuring and the onset of discontinuities in the velocity profile.

Keywords: flow instabilities, flow-induced structures, μPIV, wormlike micelles

Procedia PDF Downloads 333
2465 Pathways and Mechanisms of Lymphocytes Emigration from Newborn Thymus

Authors: Olena Grygorieva

Abstract:

Nowadays mechanisms of thymocytes emigration from the thymus to the periphery are investigated actively. We have proposed a hypothesis of thymocytes’ migration from the thymus through lymphatic vessels during periodical short-term local edema. By morphological, hystochemical methods we have examined quantity of lymphocytes, epitelioreticulocytes, mast cells, blood and lymphatic vessels in morpho-functional areas of rats’ thymuses during the first week after birth in 4 hours interval. In newborn and beginning from 8 hour after birth every 12 hours specific density of the thymus, absolute quantity of microcirculatory vessels, especially of lymphatic ones, lymphcyte-epithelial index, quantity of mast cells and their degranulative forms increase. Structure of extracellular matrix, intrathymical microenvironment and lymphocytes’ adhesive properties change. Absolute quantity of small lymphocytes in thymic cortex changes wavy. All these changes are straightly expressed from 0 till 2, from 12 till 16, from 108 till 120 hours of postnatal life. During this periods paravasal lymphatic vessels are stuffed with lymphocytes, i.e. discrete migration of lymphocytes from the thymus occurs. After rapid edema reduction, quantity of lymphatic vessels decrease, they become empty. Therefore, in the thymus of newborn periodical short-term local edema is observed, on its top discrete migration of lymphocytes from the thymus occurs.

Keywords: lymphocytes, lymphatic vessels, mast cells, thymus

Procedia PDF Downloads 209
2464 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method

Authors: A. Selmi

Abstract:

Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.

Keywords: differential transformation method, functionally graded material, mode shape, natural frequency

Procedia PDF Downloads 289
2463 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins

Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа

Abstract:

Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.

Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins

Procedia PDF Downloads 181
2462 Instrumentation of Urban Pavements Built with Construction and Demolition Waste

Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez

Abstract:

This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.

Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap

Procedia PDF Downloads 126
2461 The Relationship Between The Two-spatial World And The Decrease In The Area Of Commercial Properties

Authors: Syedhossein Vakili

Abstract:

According to the opinion of some experts, the world's two-spatialization means the establishment of a new virtual space and placing this new space next to the physical space. This dualization of space has left various effects, one of which is reducing the need for buildings and making the area of business premises economical through the use of virtual space instead of a part of physical space. In such a way that before the virtual space was known, a commercial or educational institution had to block a large part of its capital to acquire physical spaces and buildings in order to provide physical space and places needed for daily activities, but today, Thanks to the addition of the virtual space to the physical space, it has been possible to carry out its activities more widely in a limited environment with a minimum of physical space and drastically reduce costs. In order to understand the impact of virtual space on the reduction of physical space, the researcher used the official reports of the countries regarding the average area mentioned in the permits for the construction of commercial and educational units in the period from 2014 to 2023 and compared the average capital required for the absolute physical period with The period of two-spatialization of the world in the mentioned ten-year period, while using the analytical and comparative method, has proven that virtual space has greatly reduced the amount of investment of business owners to provide the required place for their activities by reducing the need for physical space. And economically, it has made commercial activities more profitable.

Keywords: two spatialization, building area, cyberspace, physical space, virtual place

Procedia PDF Downloads 33
2460 Mechanism of Action of Troxerutin in Reducing Oxidative Stress

Authors: Nasrin Hosseinzad

Abstract:

Troxerutin, a trihydroxyethylated derived of rutin, is a flavonoid existing in tea, coffee, cereal grains, various fruits and vegetables have been conveyed to display radioprotective, antithrombotic, nephron-protective and hepato-protective possessions. Troxerutin, has been well-proved to utilize hepatoprotective assets. Troxerutin could upturn the resistance of hippocampal neurons alongside apoptosis by lessening the action of AChE and oxidative stress. Consequently, troxerutin may have advantageous properties in the administration of Alzheimer's disease and cancer. Troxerutin has been testified to have several welfares and medicinal stuffs. It could shelter the mouse kidney against d-gal-induced damage by refining renal utility, decreasing histopathologic changes, dropping ROS construction, reintroducing the activities of antioxidant enzymes and reducing DNA oxidative destruction. The DNA cleavage study clarifies that troxerutin showed DNA protection against hydroxyl radical persuaded DNA mutilation. Troxerutin uses anti-cancer effect in HuH-7 hepatocarcinoma cells conceivably through synchronized regulation of the molecular signalling pathways, Nrf2 and NF-κB. DNA binding at slight channel by troxerutin may have donated to feature breaks leading to improved radiation brought cell death. Furthermore, the mechanism principal the observed variance in the antioxidant activities of troxerutin and its esters was qualified to equally their free radical scavenging capabilities and dissemination on the cell membrane outward.

Keywords: troxerutin, DNA, oxidative stress, antioxidant, free radical

Procedia PDF Downloads 145
2459 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis

Authors: Hana Gebremariam Liliso

Abstract:

This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.

Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion

Procedia PDF Downloads 42
2458 Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil

Authors: Ahmed O. Apampa, Yinusa A. Jimoh

Abstract:

The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.

Keywords: cation exchange capacity, corn cob ash, lateritic soil, soil stabilization

Procedia PDF Downloads 231
2457 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 121
2456 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)

Authors: Juzhong Tan, William Kerr

Abstract:

Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.

Keywords: artificial neutron network, cocoa bean, electronic nose, roasting

Procedia PDF Downloads 215
2455 Effect of Nitriding and Shot Peening on Corrosion Behavior and Surface Properties of Austenite Stainless Steel 316L

Authors: Khiaira S. Hassan, Abbas S. Alwan, Muna K. Abbass

Abstract:

This research aims to study the effect of the liquid nitriding and shot peening on the hardness, surface roughness, residual stress, microstructure and corrosion behavior of austenite stainless steel 316 L. Chemical surface heat treatment by liquid nitriding process was carried out at 500 °C for 1 h and followed by shot peening with using ball steel diameter of 1.25 mm in different exposure time of 10 and 20 min. Electrochemical corrosion test was applied in sea water (3.5% NaCl solution) by using potentostat instrument. The results showed that the nitride layer consists of a compound layer (white layer) and diffusion zone immediately below the alloy layer. It has been found that the mechanical treatment (shot peening) has led to the formation of compressive residual stresses in layer surface that increased the hardness of stainless steel surface. All surface treatment (nitriding and shot peening) processes have led to the formation of carbide of CrN in hard surface layer. It was shown that both processes caused an increase in surface hardness and roughness which increases with shot peening time. Also, the corrosion results showed that the liquid nitriding and shot peening processes increase the corrosion rate to values more than that of not treated stainless steel.

Keywords: stainless steel 316L, shot peening, nitriding, corrosion, hardness

Procedia PDF Downloads 453
2454 The Differences on the Surface Roughness of Glass Ionomer Cement as the Results of Brushing with Whitening and Conventional Toothpaste

Authors: Aulina R. Rahmi, Farid Yuristiawan, Annisa Ibifadillah, Ummu H. Amri, Hidayati Gunawan

Abstract:

Glass ionomer cement is one of the filling material that often used on the field of dentistry because it is relatively less expensive and mostly available. Restoration materials could undergo changes in their clinical properties such as changes in roughness of the restoration`s surface. An increase of surface roughness accelerates bacterial colonization and plaque maturation. In the oral cavity, GIC was exposed to various substances, such as toothpaste, an oral care product used during toothbrushing. One of the popular toothpaste is whitening toothpaste. Abrasive and chemical agents such as hydrogen peroxide in whitening toothpaste could increase the surface roughness of restorative materials. Objective: To determine the differences on the surface roughness of glass ionomer cement that was brushed with whitening and conventional toothpaste. Method: This study was done using experimental laboratory method with pre and post test design. There were 36 samples which were divided into 2 groups. The first group was brushed with whitening toothpaste and the second group was brushed with conventional toothpaste, each for 2 minutes. Surface roughness value of the specimens was measured by using Roughness Tester test. Result: The data was analyzed by using independent t-test and the result of this study showed there was a significant difference between the surface of glass ionomer cement which was brushed with whitening and conventional toothpaste (p=0,000). Conclusion: Glass ionomer cement that was brushed with whitening toothpaste produced more roughness than conventional toothpaste.

Keywords: glass ionomer cement, surface roughness, toothpaste, roughness tester

Procedia PDF Downloads 278
2453 Antidiabetic Activity of Cedrus deodara Aqueous Extract and Its Relationship with Its Antioxidant Properties

Authors: Sourabh Jain, Vikas Jain, Dharmendra Kumnar

Abstract:

The present study investigated the antidiabetic potential of Cedrus deodara heart wood aqueous extract and its relationship in alloxan-induced diabetic rats. Aqueous extract of Cedrus deodara was found to reduce blood sugar level in alloxan induced diabetic rats. Reduction in blood sugar could be seen from 5th day after continuous administration of the extract and on 21st day sugar levels were found to be reduced by 40.20%. Oxidative stress produced by alloxan was found to be significantly lowered by the administration of Cedrus deodara aqueous extract (500 mg/kg). This was evident from a significant decrease in lipid per oxidation level in liver induced by alloxan. The level of Glutathione, Catalase, Superoxide dismutase and Glutathione-S-Transferase in liver, kidney and pancreas tissue were found to be increased significantly after drug administration. The results obtained in the present study suggest that the Cedrus deodara aqueous extract effectively and significantly reduced the oxidative stress induced by alloxan and produced a reduction in blood sugar level.

Keywords: Cedrus deodara, heartwood, antioxidant, anti-diabetic, anti-inflammatory

Procedia PDF Downloads 392
2452 Synthesis of Pyrimidine-Based Polymers Consist of 2-{3-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]Phenyl}-Thiazolo[5,4-B]Pyridine as Electron-Deficient Unit for Photovoltaics

Authors: Hyehyeon Lee, Juwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Recently, the development of photovoltaics is rapidly accelerating as one of green energy sources. So we designed pyrimidine-based polymers with 2-{3-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (mPTP), as active layer substances for polymer solar cells. Polymers with push-pull types, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI, are comprised of electron pushing unit using benzo[1,2-b;3,4-b’]dithiophene (BDT) or 4,8-bis(5-thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDTT) or 6-(2-thienyl)-4H-thieno[3,2-b]indole(TTI) and electron pulling unit using mPTP. The device including mPTPTTI-12 indicated a VOC of 0.67 V, a JSC of 2.16 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency (PCE) of 0.43%. The device including mPTPBDT-EH indicated a VOC of 0.56 V, a JSC of 2.64 mA/cm², and an FF of 0.30, giving a PCE of 0.44%. The device including mPTPBDTT-EH indicated a VOC of 0.44 V, a JSC of 2.45 mA/cm², and an FF of 0.29, giving a PCE of 0.31%. The device including mPTPTTI indicated a VOC of 0.72 V, a JSC of 4.95 mA/cm², and an FF of 0.32, giving a PCE of 1.15%. Therefore, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI were fabricated by Stille polymerization. Their optical properties were measured and the results show that pyrimidine-based polymers have a great promise to act as donor of active layer.

Keywords: polymer solar cells, photovoltaics, thiazolopyridine, conjugated polymer

Procedia PDF Downloads 260
2451 Biocompatible Porous Titanium Scaffolds Produced Using a Novel Space Holder Technique

Authors: Yunhui Chen, Damon Kent, Matthew Dargusch

Abstract:

Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 39 GPa, 16 GPa and 9 GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30 GPa). The yield strengths for 30% and 40% porosity samples of 315 MPa and 175 MPa are superior to that of human bone (130-180 MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications.

Keywords: scaffolds, MG-63 cell culture, titanium, space holder

Procedia PDF Downloads 223
2450 Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

Authors: Zhaozhi Liu, Feng Xu, Junhua Xu, Xiaolong Tang, Ying Liu, Dunwen Zuo

Abstract:

Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.

Keywords: cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill

Procedia PDF Downloads 402
2449 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response

Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul

Abstract:

The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.

Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response

Procedia PDF Downloads 654
2448 Equality and Non-Discrimination in Israel: The Use of Land

Authors: Mais Qandeel

Abstract:

Within the Jewish and democratic Israeli state, as dually characterized, the treatment of citizens differs according to their religious groups and nationalities. The laws and policies against Arab citizens concerning ownership and use of land are the main focus of this article. As the Jewish character has led to Jewish based legal provisions which give the privilege to Jews, first, this article examines the legal bases which distinguish between citizens in Israel based on their religion. It examines the major Israeli laws which are used to confiscate, manage, and lease properties. Second, the article demonstrates the de facto practices against Arab citizens in using lands. Most of the Palestinian land was confiscated and turned over to Jewish owners or to state land, Palestinian citizens are distinguished in using the state administered lands. They are also restricted in using full ownership rights and denied using plots of lands and housing units. Such policies have created, within the same state, a class of secondary citizens who are categorized as non-Jews. Last, within the Basic Law: Human Dignity and Freedom which has served as the constitutional bill of rights for Israelis and also the International law, particularly the International Convention on the Elimination of All Forms of Racial Discrimination, it will be concluded whether these restricted policies against Arab citizens in using land constitute a religion-based-discrimination among Israeli citizens and create a situation of separation and inequality between two groups of people in Israel.

Keywords: Israel, citizens, discrimination, equality

Procedia PDF Downloads 332
2447 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 255
2446 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing

Authors: Abdullah Bal, Sevdenur Bal

Abstract:

This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.

Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware

Procedia PDF Downloads 492
2445 Diversity, Phyto Beneficial Activities and Agrobiotechnolody of Plant Growth Promoting Bacillus and Paenibacillus

Authors: Cheba Ben Amar

Abstract:

Bacillus and Paenibacillus are Gram-positive aerobic endospore-forming bacteria (AEFB) and most abundant in the rhizosphere, they mediated plant growth promotion and disease protection by several complex and interrelated processes involving direct and indirect mechanisms that include nitrogen fixation, phosphate solubilization, siderophores production, phytohormones production and plant diseases control. In addition to their multiple PGPR properties, high secretory capacity, spore forming ability and spore resistance to unfavorable conditions enabling their extended commercial applications for long shelf-life. Due to these unique advantages, Bacillus species were the most an ideal candidate for developing efficient PGPR products such as biopesticides, fungicides and fertilizers. This review list all studied and reported plant growth promoting Bacillus species and strains, discuss their capacities to enhance plant growth and protection with special focusing on the most frequent species Bacillus subtilis, B. pumilus ,B. megaterium, B. amyloliquefaciens , B. licheniformis and B. sphaericus, furthermore we recapitulate the beneficial activities and mechanisms of several species and strains of the genus Paenibacillus involved in plant growth stimulation and plant disease control.

Keywords: bacillus, paenibacillus, PGPR, beneficial activities, mechanisms, growth promotion, disease control, agrobiotechnology

Procedia PDF Downloads 386
2444 Health Outcomes and Economic Growth Nexus: Testing for Long-run Relationships and Causal Links in Nigeria

Authors: Haruna Modibbo Usman, Mustapha Muktar, Nasiru Inuwa

Abstract:

This paper examined the long run relationship between health outcomes and economic growth in Nigeria from 1961 to 2012. Using annual time series data, Augmented Dickey-Fuller (ADF) test is conducted to check the stochastic properties of the variables. Also, the long run relationship among the variables is confirmed based on Johansen Multivariate Cointegration approach whereas the long run and short run dynamics are observed using Vector Error Correction Mechanism (VECM). In addition, VEC Granger causality test is employed to examine the direction of causality among the variables. On the whole, the results obtained revealed the existence of a long run relationship between health outcomes and economic growth in Nigeria and that both life expectancy and crude death rate as measures of health are found to have a long run negative and statistically significant impact on the economic growth over the study period. This is further buttressed by the results of Granger causality test which indicated the existence of unidirectional causality running from life expectancy and crude death rate to economic growth. The study therefore, calls for governments at various levels to create preconditions for health improvements in Nigeria in order to boost the level of health outcomes.

Keywords: cointegration, economic growth, Granger causality, health outcomes, VECM

Procedia PDF Downloads 474
2443 Characterization of Waste Thermocol Modified Bitumen by Spectroscopy, Microscopic Technique, and Dynamic Shear Rheometer

Authors: Supriya Mahida, Sangita, Yogesh U. Shah, Shanta Kumar

Abstract:

The global production of thermocol increasing day by day, due to vast applications of the use of thermocole in many sectors. Thermocol being non-biodegradable and more toxic than plastic leads towards a number of problems like its management into value-added products, environmental damage and landfill problems due to weight to volume ratio. Utilization of waste thermocol for modification of bitumen binders resulted in waste thermocol modified bitumen (WTMB) used in road construction and maintenance technology. Modification of bituminous mixes through incorporating thermocol into bituminous mixes through a dry process is one of the new options besides recycling process which consumes lots of waste thermocol. This process leads towards waste management and remedies against thermocol waste disposal. The present challenge is to dispose the thermocol waste under different forms in road infrastructure, either through the dry process or wet process to be developed in future. This paper focuses on the use of thermocol wastes which is mixed with VG 10 bitumen in proportions of 0.5%, 1%, 1.5%, and 2% by weight of bitumen. The physical properties of neat bitumen are evaluated and compared with modified VG 10 bitumen having thermocol. Empirical characterization like penetration, softening, and viscosity of bitumen has been carried out. Thermocol and waste thermocol modified bitumen (WTMB) were further analyzed by Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Dynamic Shear Rheometer (DSR).

Keywords: DSR, FESEM, FT-IR, thermocol wastes

Procedia PDF Downloads 152