Search results for: knowledge and innovation engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11476

Search results for: knowledge and innovation engineering

2356 The Reasons for Food Losses and Waste and the Trends of Their Management in Basic Vegetal Production in Poland

Authors: Krystian Szczepanski, Sylwia Łaba

Abstract:

Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. When the plants are ready to be harvested is the initial point; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The moment at which the raw material enters the stage of processing, i.e., its receipt at the gate of the processing plant, is considered as a final point of basic production. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. For the needs of the studies and their analysis, it was determined when raw material is considered as food – the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAP method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. The starting point is when the plants are ready to be harvested; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The successive stage is the transport of the collected crops to the collecting point or its storage and transport. The moment, at which the raw material enters the stage of processing, i.e. its receipt at the gate of the processing plant, is considered as a final point of basic production. Processing is understood as the change of the raw material into food products. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. It was determined (for the needs of the present studies) when raw material is considered as a food; it is the moment when the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAPI (Paper & Pen Personal Interview) method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture, and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. ACKNOWLEDGEMENT The article was prepared within the project: "Development of a waste food monitoring system and an effective program to rationalize losses and reduce food waste", acronym PROM implemented under the STRATEGIC SCIENTIFIC AND LEARNING PROGRAM - GOSPOSTRATEG financed by the National Center for Research and Development in accordance with the provisions of Gospostrateg1 / 385753/1/2018

Keywords: food losses, food waste, PAP method, vegetal production

Procedia PDF Downloads 122
2355 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 88
2354 Quality Based Approach for Efficient Biologics Manufacturing

Authors: Takashi Kaminagayoshi, Shigeyuki Haruyama

Abstract:

To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process.

Keywords: antibody drugs, biologics, manufacturing efficiency, PDCA cycle, quality engineering

Procedia PDF Downloads 348
2353 Development of a Vacuum System for Orthopedic Drilling Processes and Determination of Optimal Processing Parameters for Temperature Control

Authors: Kadir Gök

Abstract:

In this study, a vacuum system was developed for orthopedic drilling processes, and the most efficient processing parameters were determined using statistical analysis of temperature rise. A reverse engineering technique was used to obtain a 3D model of the chip vacuum system, and the obtained point cloud data was transferred to Solidworks software in STL format. An experimental design method was performed by selecting different parameters and their levels, such as RPM, feed rate, and drill bit diameter, to determine the most efficient processing parameters in temperature rise using ANOVA. Additionally, the bone chip-vacuum device was developed and performed successfully to collect the whole chips and fragments in the bone drilling experimental tests, and the chip-collecting device was found to be useful in removing overheating from the drilling zone. The effects of processing parameters on the temperature levels during the chip-vacuuming were determined, and it was found that bone chips and fractures can be used as autograft and allograft for tissue engineering. Overall, this study provides significant insights into the development of a vacuum system for orthopedic drilling processes and the use of bone chips and fractures in tissue engineering applications.

Keywords: vacuum system, orthopedic drilling, temperature rise, bone chips

Procedia PDF Downloads 102
2352 Teaching English to Rural Students: A Case Study of a Select Batch at SSN College of Engineering, Chennai

Authors: Martha Karunakar

Abstract:

There exists a wide divide between the urban and the rural students in a vast country like India. This dichotomy is seen in the resources available to them, like the learning facilities, the infra-structure, the learning ambience and meeting of their basic needs of food, clothing and shelter. This paper discusses the effect of English language teaching as a Bridge course on a select batch of rural students at an Engineering college in Chennai, one of the four Metros of India. The study aims to understand how the teacher input and the teacher- peer-student interaction facilitates the acquisition of the basic structures of the English language to a group that is minimally exposed to the language. The objective in conducting the Bridge Course is to integrate these rural students into the mainstream and empower them in terms of English speaking ability; to enable them to comprehend their respective engineering classes where the medium of instruction is English and also to be able to interact with their urban peers. This program is conducted prior to the start of a regular academic session to equip them face the rigors of engineering education. The study is placed within the framework of Interaction theory in second language acquisition. The study evaluates the impact of linking theory and practice by implementing meaningful interaction not only within classrooms but also in the common areas. By providing intensive comprehensible input, it is anticipated that participant’s level of English language improves. The teaching methods and classroom activities included individual and group participation, encompassing all the four skills of listening, speaking, reading and writing (LSRW). The diagnostic tests that were administered before the commencement of the course and the exit test after the completion were used to record the impact of the training.

Keywords: comprehensible input, interaction, rural students, teaching English

Procedia PDF Downloads 387
2351 Optimizing SCADA/RTU Control System Alarms for Gas Wells

Authors: Mohammed Ali Faqeeh

Abstract:

SCADA System Alarms Optimization Process has been introduced recently and applied accordingly in different implemented stages. First, MODBUS communication protocols between RTU/SCADA were improved at the level of I/O points scanning intervals. Then, some of the technical issues related to manufacturing limitations were resolved. Afterward, another approach was followed to take a decision on the configured alarms database. So, a couple of meetings and workshops were held among all system stakeholders, which resulted in an agreement of disabling unnecessary (Diagnostic) alarms. Moreover, a leap forward step was taken to segregate the SCADA Operator Graphics in a way to show only process-related alarms while some other graphics will ensure the availability of field alarms related to maintenance and engineering purposes. This overall system management and optimization have resulted in a huge effective impact on all operations, maintenance, and engineering. It has reduced unneeded open tickets for maintenance crews which led to reduce the driven mileages accordingly. Also, this practice has shown a good impression on the operation reactions and response to the emergency situations as the SCADA operators can be staying much vigilant on the real alarms rather than gets distracted by noisy ones. SCADA System Alarms Optimization process has been executed utilizing all applicable in-house resources among engineering, maintenance, and operations crews. The methodology of the entire enhanced scopes is performed through various stages.

Keywords: SCADA, RTU Communication, alarm management system, SCADA alarms, Modbus, DNP protocol

Procedia PDF Downloads 168
2350 Sustainability Modelling and Sustainability Evaluation of a Mechanical System in a Concurrent Engineering Environment: A Digraph and Matrix Approach

Authors: Anand Ankush, Wani Mohammed Farooq

Abstract:

A procedure based on digraph and matrix method is developed for modelling and evaluation of sustainability of Mechanical System in a concurrent engineering environment.The sustainability parameters of a Mechanical System are identified and are called sustainability attributes. Consideration of attributes and their interrelations is rudiment in modeling and evaluation of sustainability index. Sustainability attributes of a Mechanical System are modelled in termsof sustainability digraph. The graph is represented by a one-to-one matrix for sustainability expression which is based on sustainability attributes. A variable sustainability relationship permanent matrix is defined to develop sustainability expression(VPF-t) which is also useful in comparing two systems in a concurrent environment. The sustainability index of Mechanical System is obtained from permanent of matrix by substituting the numerical values of attributes and their interrelations. A higher value of index implies better sustainability of system.The ideal value of index is obtained from matrix expression which is useful in assessing relative sustainability of a Mechanical System in a concurrent engineering environment. The procedure is not only useful for evaluation of sustainability of a Mechanical System at conceptual design stage but can also be used for design and development of systems at system design stage. A step-by-step procedure for evaluation of sustainability index is also suggested and is illustrated by means of an example.

Keywords: digraph, matrix method, mechanical system, sustainability

Procedia PDF Downloads 367
2349 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 217
2348 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 327
2347 A Measuring Industrial Resiliency by Using Data Envelopment Analysis Approach

Authors: Ida Bagus Made Putra Jandhana, Teuku Yuri M. Zagloel, Rahmat Nurchayo

Abstract:

Having several crises that affect industrial sector performance in the past decades, decision makers should utilize measurement application that enables them to measure industrial resiliency more precisely. It provides not only a framework for the development of resilience measurement application, but also several theories for the concept building blocks, such as performance measurement management, and resilience engineering in real world environment. This research is a continuation of previously published paper on performance measurement in the industrial sector. Finally, this paper contributes an alternative performance measurement method in industrial sector based on resilience concept. Moreover, this research demonstrates how applicable the concept of resilience engineering is and its method of measurement.

Keywords: industrial, measurement, resilience, sector

Procedia PDF Downloads 282
2346 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 71
2345 Learning Compression Techniques on Smart Phone

Authors: Farouk Lawan Gambo, Hamada Mohammad

Abstract:

Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.

Keywords: data compression, learning preference, mobile learning, multimedia

Procedia PDF Downloads 454
2344 The Impact of Rising Architectural Façade in Improving Terms of the Physical Urban Ambience Inside the Free Space for Urban Fabric - the Street- Case Study the City of Biskra

Authors: Rami Qaoud, Alkama Djamal

Abstract:

When we ask about the impact of rising architectural façade in improving the terms physical urban ambiance inside the free space for urban fabric. Considered as bringing back life and culture values and civilization to these cities. And This will be the theme of this search. Where we have conducted the study about the relationship that connects the empty and full of in the urban fabric in terms of the density construction and the architectural elevation of its façade to street view. In this framework, we adopted in the methodology of this research the technical field experience. And according to three types of Street engineering(H≥2W, H=W, H≤0.5W). Where we conducted a field to raise the values of the physical ambiance according to three main axes of ambiance. The first axe 1 - Thermal ambiance. Where the temperature values were collected, relative humidity, wind speed, temperature of surfaces (the outer wall-ground). The second axe 2- Visual ambiance. Where we took the values of natural lighting levels during the daytime. The third axe 3- Acoustic ambiance . Where we take sound values during the entire day. That experience, which lasted for three consecutive days, and through six stations of measuring, where it has been one measuring station for each type of the street engineering and in two different way street. Through the obtained results and with the comparison of those values. We noticed the difference between this values and the three type of street engineering. Where the difference the calorific values of air equal 4 ° C , in terms of the visual ambiance the difference in the direct lighting natural periods amounted six hours between the three types of street engineering. As well in terms of sound ambience, registered a difference in values of up 15 (db) between the three types. This difference in values indicates The impact of rising architectural façade in improving the physical urban ambiance within the free field - street- for urban fabric.

Keywords: street, physical urban ambience, rising architectural façade, urban fabric

Procedia PDF Downloads 294
2343 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project

Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen

Abstract:

This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.

Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project

Procedia PDF Downloads 174
2342 Saudi Human Awareness Needs: A Survey in How Human Causes Errors and Mistakes Leads to Leak Confidential Data with Proposed Solutions in Saudi Arabia

Authors: Amal Hussain Alkhaiwani, Ghadah Abdullah Almalki

Abstract:

Recently human errors have increasingly become a very high factor in security breaches that may affect confidential data, and most of the cyber data breaches are caused by human errors. With one individual mistake, the attacker will gain access to the entire network and bypass the implemented access controls without any immediate detection. Unaware employees will be vulnerable to any social engineering cyber-attacks. Providing security awareness to People is part of the company protection process; the cyber risks cannot be reduced by just implementing technology; the human awareness of security will significantly reduce the risks, which encourage changes in staff cyber-awareness. In this paper, we will focus on Human Awareness, human needs to continue the required security education level; we will review human errors and introduce a proposed solution to avoid the breach from occurring again. Recently Saudi Arabia faced many attacks with different methods of social engineering. As Saudi Arabia has become a target to many countries and individuals, we needed to initiate a defense mechanism that begins with awareness to keep our privacy and protect the confidential data against possible intended attacks.

Keywords: cybersecurity, human aspects, human errors, human mistakes, security awareness, Saudi Arabia, security program, security education, social engineering

Procedia PDF Downloads 166
2341 Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”

Authors: Evgeny Obraztsov, Ilya Kremnev, Vitaly Sokolov, Maksim Gavrilov, Evgeny Tretyakov, Vladimir Kukhtevich, Vladimir Bezlepkin

Abstract:

Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system).

Keywords: best-estimate code, complex simulation suite, engineering simulator, power plant, thermal hydraulic, VEB, virtual power unit

Procedia PDF Downloads 384
2340 Virtual Engineers on Wheels: Transitioning from Mobile to Online Outreach

Authors: Kauser Jahan, Jason Halvorsen, Kara Banks, Kara Natoli, Elizabeth McWeeney, Brittany LeMasney, Nicole Caramanna, Justin Hillman, Christopher Hauske, Meghan Sparks

Abstract:

The Virtual Engineers on Wheels (ViEW) is a revised version of our established mobile K-12 outreach program Engineers on Wheels in order to address the pandemic. The Virtual Engineers on Wheels' (VIEW) goal has stayed the same as in prior years: to provide K-12 students and educators with the necessary resources to peak interest in the expanding fields of engineering. With these trying times, the Virtual Engineers on Wheels outreach has adapted its medium of instruction to be more seamless with the online approach to teaching and outreach. In the midst of COVID-19, providing a safe transfer of information has become a constraint for research. The focus has become how to uphold a level of quality instruction without diminishing the safety of those involved by promoting proper health practices and giving hope to students as well as their families. Furthermore, ViEW has created resources on effective strategies that minimize risk factors of COVID-19 and inform families that there is still a promising future ahead. To obtain these goals while still maintaining true to the hands-on learning that is so crucial to young minds, the approach is online video lectures followed by experiments within different engineering disciplines. ViEW has created a comprehensive website that students can leverage to explore the different fields of study. One of the experiments entails teaching about drone usage and how it might play a factor in the future of unmanned deliveries. Some of the other experiments focus on the differences in mask materials and their effectiveness, as well as their environmental outlook. Having students perform from home enables them a safe environment to learn at their own pace while still providing quality instruction that would normally be achieved in the classroom. Contact information is readily available on the website to provide interested parties with a means to ask their inquiries. As it currently stands, the interest in engineering/STEM-related fields is underrepresented from women and certain minority groups. So alongside the desire to grow interest, helping balance the scales is one of the main priorities of VIEW. In previous years, VIEW surveyed students before and after instruction to see if their perception of engineering has changed. In general, it is the understanding that being exposed to engineering/STEM at a young age increases the chances that it will be pursued later in life.

Keywords: STEM, engineering outreach, teaching pedagogy, pandemic

Procedia PDF Downloads 133
2339 Levels of Reflection in Engineers EFL Learners: The Path to Content and Language Integrated Learning Implementation in Chilean Higher Education

Authors: Sebastián Olivares Lizana, Marianna Oyanedel González

Abstract:

This study takes part of a major project based on implementing a CLIL program (Content and Language Integrated Learning) at Universidad Técnica Federico Santa María, a leading Chilean tertiary Institution. It aims at examining the relationship between the development of Reflective Processes (RP) and Cognitive Academic Language Proficiency (CALP) in weekly learning logs written by faculty members, participants of an initial professional development online course on English for Academic Purposes (EAP). Such course was designed with a genre-based approach, and consists of multiple tasks directed to academic writing proficiency. The results of this analysis will be described and classified in a scale of key indicators that represent both the Reflective Processes and the advances in CALP, and that also consider linguistic proficiency and task progression. Such indicators will evidence affordances and constrains of using a genre-based approach in an EFL Engineering CLIL program implementation at tertiary level in Chile, and will serve as the starting point to the design of a professional development course directed to teaching methodologies in a CLIL EFL environment in Engineering education at Universidad Técnica Federico Santa María.

Keywords: EFL, EAL, genre, CLIL, engineering

Procedia PDF Downloads 400
2338 Y-Y’ Calculus in Physical Sciences and Engineering with Particular Reference to Fundamentals of Soil Consolidation

Authors: Sudhir Kumar Tewatia, Kanishck Tewatia, Anttriksh Tewatia

Abstract:

Advancements in soil consolidation are discussed, and further improvements are proposed with particular reference to Tewatia’s Y-Y’ Approach, which is called the Settlement versus Rate of Settlement Approach in consolidation. A branch of calculus named Y-Y' (or y versus dy/dx) is suggested (as compared to the common X-Y', x versus dy/dx, dy/dx versus x or Newton-Leibniz branch) that solves some complicated/unsolved theoretical and practical problems in physical sciences (Physics, Chemistry, Mathematics, Biology, and allied sciences) and engineering in an amazingly simple and short manner, particularly when independent variable X is unknown and X-Y' Approach can’t be used. Complicated theoretical and practical problems in 1D, 2D, 3D Primary and Secondary consolidations with non-uniform gradual loading and irregularly shaped clays are solved with elementary school level Y-Y' Approach, and it is interesting to note that in X-Y' Approach, equations become more difficult while we move from one to three dimensions, but in Y-Y' Approach even 2D/3D equations are very simple to derive, solve, and use; rather easier sometimes. This branch of calculus will have a far-reaching impact on understanding and solving the problems in different fields of physical sciences and engineering that were hitherto unsolved or difficult to be solved by normal calculus/numerical/computer methods. Some particular cases from soil consolidation that basically creeps and diffusion equations in isolation and in combination with each other are taken for comparison with heat transfer. The Y-Y’ Approach can similarly be applied in wave equations and other fields wherever normal calculus works or fails. Soil mechanics uses mathematical analogies from other fields of physical sciences and engineering to solve theoretical and practical problems; for example, consolidation theory is a replica of the heat equation from thermodynamics with the addition of the effective stress principle. An attempt is made to give them mathematical analogies.

Keywords: calculus, clay, consolidation, creep, diffusion, heat, settlement

Procedia PDF Downloads 101
2337 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique

Authors: Manar Al-Ateeq

Abstract:

The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.

Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)

Procedia PDF Downloads 181
2336 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 89
2335 Teaching English to Engineers: Between English Language Teaching and Psychology

Authors: Irina-Ana Drobot

Abstract:

Teaching English to Engineers is part of English for Specific Purposes, a domain which is under the attention of English students especially under the current conditions of finding jobs and establishing partnerships outside Romania. The paper will analyse the existing textbooks together with the teaching strategies they adopt. Teaching English to Engineering students can intersect with domains such as psychology and cultural studies in order to teach them efficiently. Textbooks for students of ESP, ranging from those at the Faculty of Economics to those at the Faculty of Engineers, have shifted away from using specialized vocabulary, drills for grammar and reading comprehension questions and toward communicative methods and the practical use of language. At present, in Romania, grammar is neglected in favour of communicative methods. The current interest in translation studies may indicate a return to this type of method, since only translation specialists can distinguish among specialized terms and determine which are most suitable in a translation. Engineers are currently encouraged to learn English in order to do their own translations in their own field. This paper will analyse the issue of the extent to which it is useful to teach Engineering students to do translations in their field using cognitive psychology applied to language teaching, including issues such as motivation and social psychology. Teaching general English to engineering students can result in lack of interest, but they can be motivated by practical aspects which will help them in their field. This is why this paper needs to take into account an interdisciplinary approach to teaching English to Engineers.

Keywords: cognition, ESP, motivation, psychology

Procedia PDF Downloads 267
2334 Preparation of Bead-On-String Alginate/Soy Protein Isolated Nanofibers via Water-Based Electrospinning and Its Application for Drug Loading

Authors: Patcharakamon Nooeaid, Piyachat Chuysrinuan

Abstract:

Electrospun natural polymers-based nanofibers are one of the most interesting materials used in tissue engineering and drug delivery applications. Bead-on-string nanofibers have gained considerable interest for sustained drug release. Vancomycin was used as the model drug and sodium alginate (SA)/soy protein isolated (SPI) as the polymer blend to fabricate the bead-on-string nanofibers by aqueous-based electrospinning. The bead-on-string SA/SPI nanofibers were successfully fabricated by the addition of poly(ethylene oxide) (PEO) as a co-blending polymer. SA-PEO with mass ratio of 70/30 showed the best spinnability with continuous nanofibers without the occurrence of beads. Bead structure formed with the addition of SPI and bead number increased with increasing SPI content. The electrospinning of 80/20 SA-PEO/SPI was obtained as a great promising bead-on-string nanofibers for drug loading, while the solution of 50/50 was not able to obtain continuous fibers. In vitro release tests showed that a more sustainable release profile up to 14 days with less initial burst release on day 1 could be obtained from the bead-on-string fibers than from smooth fibers with uniform diameter. In addition, vancomycin-loaded beaded fibers inhibited the growth of Staphylococcus aureus (S. aureus) bacteria. Therefore, the SA-PEO/SPI nanofibers showed the potential to be used as biomaterials for tissue engineering and drug delivery.

Keywords: bead-on-string fibers, electrospinning, drug delivery, tissue engineering

Procedia PDF Downloads 338
2333 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds

Authors: Hassan Mohammadi Khujin

Abstract:

Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.

Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis

Procedia PDF Downloads 81
2332 Kiira EV Project Transition from Student to Professional Team through Project-Based Skills Development

Authors: Doreen Orishaba, Paul Isaac Musasizi, Richard Madanda, Sandy Stevens Tickodri-Togboa

Abstract:

The world of academia tends to be a very insular place. Consequently, scholars who successfully completed their undergraduate and graduate studies are unpleasantly surprised at how challenging the transition to corporate life can get. This is a global trend even as the students who juggle work with attending some of the most demanding and best graduate programs may not easily adjust to and confirm to the professionalism required for corporate management of the industry. This paper explores the trends in the transition of Kiira EV Project from a predominantly student team to a professional team of a national pride program through mentorship and apprenticeship. The core disciplines within the Kiira EV Project include Electrical and Electronics Engineering, Mechanical Engineering, and Industrial Design.

Keywords: mentorship, apprenticeship, professional, development

Procedia PDF Downloads 423
2331 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations

Authors: O. Acan, Y. Keskin

Abstract:

In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.

Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method

Procedia PDF Downloads 439
2330 Environmental Engineering Case Study of Waste Water Treatement

Authors: Harold Jideofor

Abstract:

Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations.

Keywords: wastewater treatment, environmental engineering, waste water

Procedia PDF Downloads 592
2329 Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate

Authors: Tsegay Kahsay Gebrekidan, Gebremariam Gebrezgabher Gebremedhin, Abraha Kahsay Weldemariam, Meaza Kidane Teferi

Abstract:

Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.

Keywords: biodegradable, healthy environment, integrated solid waste management, municipal

Procedia PDF Downloads 25
2328 Safety-Security Co-Engineering of Control Systems

Authors: Elena A. Troubitsyna

Abstract:

Designers of modern safety-critical control systems are increasingly relying on networking to provide the systems with advanced functionality and satisfy customer’s needs. However, networking nature of modern control systems also brings new technological challenges associated with ensuring system safety in the presence of openness and hence, potential security threats. In this paper, we propose a methodology that relies on systems-theoretic analysis to enable an integrated analysis of safety and security requirements of controlling software. We demonstrate how to create a safety case – a structured argument about system safety – with explicit representation of both safety and security goals. Our approach provides the designers with a systematic approach to analysing safety and security interdependencies while designing safety-critical control systems.

Keywords: controlling software, integrated analysis, security, safety-security co-engineering

Procedia PDF Downloads 504
2327 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour

Abstract:

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.

Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies

Procedia PDF Downloads 578