Search results for: statistical machine learning
11168 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 15511167 Students’ Perception of Their M-Learning Readiness
Authors: Sulaiman Almutairy, Trevor Davies, Yota Dimitriadi
Abstract:
This paper presents study investigating how to understand better the psychological readiness for mobile learning (m-learning) among Saudi students, while also evaluating m-learning in Saudi Arabia-a topic that has not yet received adequate attention from researchers. Data was acquired through a questionnaire administered to 131 Saudi students at UK universities, in July 2013. The study confirmed that students are confident using mobile devices in their daily lives and that they would welcome more opportunities for mobile learning. The findings indicated that Saudi higher education students are highly familiar with, and are psychologically ready for, m-learning.Keywords: m-learning, mobile technologies, psychological readiness, higher education
Procedia PDF Downloads 52011166 E-Learning in Life-Long Learning: Best Practices from the University of the Aegean
Authors: Chryssi Vitsilaki, Apostolos Kostas, Ilias Efthymiou
Abstract:
This paper presents selected best practices on online learning and teaching derived from a novel and innovating Lifelong Learning program through e-Learning, which has during the last five years been set up at the University of the Aegean in Greece. The university, capitalizing on an award-winning, decade-long experience in e-learning and blended learning in undergraduate and postgraduate studies, recently expanded into continuous education and vocational training programs in various cutting-edge fields. So, in this article we present: (a) the academic structure/infrastructure which has been developed for the administrative, organizational and educational support of the e-Learning process, including training the trainers, (b) the mode of design and implementation based on a sound pedagogical framework of open and distance education, and (c) the key results of the assessment of the e-learning process by the participants, as they are used to feedback on continuous organizational and teaching improvement and quality control.Keywords: distance education, e-learning, life-long programs, synchronous/asynchronous learning
Procedia PDF Downloads 33411165 Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine
Authors: Ali Asmari, Alex Symington, Htaik Than, Austin Caradonna, John Senft
Abstract:
This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance.Keywords: cable splicing machine, power network maintenance, electric distribution, electric transmission, medium voltage cable
Procedia PDF Downloads 6611164 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory
Authors: E. K. A. Ogunshile
Abstract:
This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.Keywords: conformance testing, finite state machine, software testing, x-machine
Procedia PDF Downloads 26811163 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 26511162 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria
Authors: Murtala Sale
Abstract:
The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.Keywords: instructional materials, effective teaching, learning quality, indispensable aspect
Procedia PDF Downloads 25211161 Smart Textiles Integration for Monitoring Real-time Air Pollution
Authors: Akshay Dirisala
Abstract:
Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models
Procedia PDF Downloads 11411160 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 19911159 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 5911158 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach
Authors: Alev Atak
Abstract:
In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.Keywords: financial sentiment, machine learning, information disclosure, risk
Procedia PDF Downloads 9411157 ‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment
Authors: Zhou Hong, Gu Xiao-Qing, Lıu Hong-Jiao, Leng Jing
Abstract:
Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.Keywords: seamless learning, flipped classroom, seamless-flipped environment, language learning model
Procedia PDF Downloads 18811156 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System
Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale
Abstract:
In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine
Procedia PDF Downloads 7211155 Development of Locally Fabricated Honey Extracting Machine
Authors: Akinfiresoye W. A., Olarewaju O. O., Okunola, Okunola I. O.
Abstract:
An indigenous honey-extracting machine was designed, fabricated and evaluated at the workshop of the department of Agricultural Technology, Federal Polytechnic, Ile-Oluji, Nigeria using locally available materials. It has the extraction unit, the presser, the honey collector and the frame. The harvested honeycomb is placed inside the cylindrical extraction unit with perforated holes. The press plate was then placed on the comb while the hydraulic press of 3 tons was placed on it, supported by the frame. The hydraulic press, which is manually operated, forces the oil out of the extraction chamber through the perforated holes into the honey collector positioned at the lowest part of the extraction chamber. The honey-extracting machine has an average throughput of 2.59 kg/min and an efficiency of about 91%. The cost of producing the honey extracting machine is NGN 31, 700: 00, thirty-one thousand and seven hundred nairas only or $70 at NGN 452.8 to a dollar. This cost is affordable to beekeepers and would-be honey entrepreneurs. The honey-extracting machine is easy to operate and maintain without any complex technical know-how.Keywords: honey, extractor, cost, efficiency
Procedia PDF Downloads 7711154 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 17411153 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 8811152 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 13111151 Integration of Virtual Learning of Induction Machines for Undergraduates
Authors: Rajesh Kumar, Puneet Aggarwal
Abstract:
In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.Keywords: block rotor test, DC test, no load test, virtual environment, voltage source inverter
Procedia PDF Downloads 35411150 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 8211149 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 36811148 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 15311147 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars
Authors: Mirza Mujtaba Baig
Abstract:
Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence
Procedia PDF Downloads 11911146 Social Learning and the Flipped Classroom
Authors: Albin Wallace
Abstract:
This paper examines the use of social learning platforms in conjunction with the emergent pedagogy of the ‘flipped classroom’. In particular the attributes of the social learning platform “Edmodo” is considered alongside the changes in the way in which online learning environments are being implemented, especially within British education. Some observations are made regarding the use and usefulness of these platforms along with a consideration of the increasingly decentralized nature of education in the United Kingdom.Keywords: education, Edmodo, Internet, learning platforms
Procedia PDF Downloads 54411145 Mobile Learning in Teacher Education: A Review in Context of Developing Countries
Authors: Mehwish Raza
Abstract:
Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.Keywords: design model, developing countries, key characteristics, mobile learning
Procedia PDF Downloads 44711144 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Eva Laryea, Clement Yeboah Authors
Abstract:
A pretest-posttest within subjects, experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising, as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers, and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, experimental design, achievement, statistics-related anxiety
Procedia PDF Downloads 5811143 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 15011142 Semantic Platform for Adaptive and Collaborative e-Learning
Authors: Massra M. Sabeima, Myriam lamolle, Mohamedade Farouk Nanne
Abstract:
Adapting the learning resources of an e-learning system to the characteristics of the learners is an important aspect to consider when designing an adaptive e-learning system. However, this adaptation is not a simple process; it requires the extraction, analysis, and modeling of user information. This implies a good representation of the user's profile, which is the backbone of the adaptation process. Moreover, during the e-learning process, collaboration with similar users (same geographic province or knowledge context) is important. Productive collaboration motivates users to continue or not abandon the course and increases the assimilation of learning objects. The contribution of this work is the following: we propose an adaptive e-learning semantic platform to recommend learning resources to learners, using ontology to model the user profile and the course content, furthermore an implementation of a multi-agent system able to progressively generate the learning graph (taking into account the user's progress, and the changes that occur) for each user during the learning process, and to synchronize the users who collaborate on a learning object.Keywords: adaptative learning, collaboration, multi-agent, ontology
Procedia PDF Downloads 17611141 Evaluation of the Efficiency of French Language Educational Software for Learners in Semnan Province, Iran
Authors: Alireza Hashemi
Abstract:
In recent decades, language teaching methodology has undergone significant changes due to the advent of computers and the growth of educational software. French language education has also benefited from these developments, and various software has been produced to facilitate the learning of this language. However, the question arises whether these software programs meet the educational needs of Iranian learners, particularly in Semnan Province. The aim of this study is to evaluate the efficiency and effectiveness of French language educational software for learners in Semnan Province, considering educational, cultural, and technical criteria. In this study, content analysis and performance evaluation methods were used to examine the educational software ‘Français Facile’. This software was evaluated based on criteria such as teaching methods, cultural compatibility, and technical features. To collect data, standardized questionnaires and semi-structured interviews with learners in Semnan Province were used. Additionally, the SPSS statistical software was employed for quantitative data analysis, and the thematic analysis method was used for qualitative data. The results indicated that the ‘Français Facile’ software has strengths such as providing diverse educational content and an interactive learning environment. However, some weaknesses include the lack of alignment of educational content with the learning culture of learners in Semnan Province and technical issues in software execution. Statistical data showed that 65% of learners were satisfied with the educational content, but 55% reported issues related to cultural alignment with their needs. This study indicates that to enhance the efficiency of French language educational software, there is a need to localize educational content and improve technical infrastructure. Producing locally adapted educational software can improve the quality of language learning and increase the motivation of learners in Semnan Province. This research emphasizes the importance of understanding the cultural and educational needs of learners in the development of educational software and recommends that developers of educational software pay special attention to these aspects.Keywords: educational software, French language, Iran, learners in Semnan province
Procedia PDF Downloads 4111140 A Theoretical Framework for Design Theories in Mobile Learning: A Higher Education Perspective
Authors: Paduri Veerabhadram, Antoinette Lombard
Abstract:
In this paper a framework for hypothesizing about mobile learning to complement theories of formal and informal learning is presented. As such, activity theory will form the main theoretical lens through which the elements involved in formal and informal learning for mobile learning will be explored, specifically related to context-aware mobile learning application. The author believes that the complexity of the relationships involved can best be analysed using activity theory. Activity theory, as a social, cultural and activity theory can be used as a mobile learning framework in an academic environment, but to develop an optimal artifact, through investigation of inherent system's contradictions. As such, it serves as a powerful modelling tool to explore and understand the design of a mobile learning environment in the study’s environment. The Academic Tool Kit Framework (ATKF) as also employed for designing of a constructivism learning environment, effective in assisting universities to facilitate lecturers to effectively implement learning through utilizing mobile devices. Results indicate a positive perspective of students in the use of mobile devices for formal and informal learning, based on the context-aware learning environment developed through the use of activity theory and ATKF.Keywords: collaborative learning, cooperative learning, context-aware learning environment, mobile learning, pedagogy
Procedia PDF Downloads 56811139 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 51