Search results for: reservoir heterogeneity
118 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique
Authors: Tatiana S. Ogneva
Abstract:
Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure
Procedia PDF Downloads 123117 Differentially Expressed Protein Biomarkers in Early and Advanced Stage Young Triple-Negative Breast Cancer Patients
Authors: Shamim Mushtaq, Moazzam Shahid
Abstract:
Breast cancer (BC) claims the lives of half a million women every year and is the most common cause of death in the developing world. In 2019, it was estimated that BC alone accounts for 15% of all cancer deaths in younger women (aged < 45 years old) with advanced-stage lung metastasis. According to the World Health Organization & International Union against Cancer, in Asia, a high number of cancer-related deaths will be observed in 2020, whereas the burden will be reduced in Western countries due to awareness about the disease, better health facilities and advanced treatments. In the last 15 years, it has been reported that the incidence of BC has increased by 1.1% among Asian compared to the US population from 2003 to 2012. To date, several BC biological subtypes have been reported so far, which are associated with different treatment responses. The heterogeneity and diversity of BC reflected these different subtypes, including Luminal A (23.7% prevalence) and B (38.8% prevalence) that have pathological estrogen receptor (ER+)-positive tumors, the human epidermal growth factor receptor 2 (HER2) (11.2% prevalence) and triple-negative breast cancer (TNBC) (25% prevalence). According to Shaukat Khanum Memorial Cancer Hospital and Research Centre – Pakistan, ten years of data showed that among 636 BC patients, 30.5% had TNBC who were <40 years of age, which is an extremely alarming situation. Therefore, there is a dire need to explore and develop therapeutic targets for the treatment of early TNBC. Since the last decade, unfortunately, there has been little success in understanding the complexity of TNBC and in discovering new biological therapeutic targets. However, conventional chemotherapy is the only choice of treatment for TNBC patients. Many investigators revealed advances in multi-omics (multiple "omes", e.g., genome, proteome, transcriptome, epigenome, and microbiome) which were later identified as actionable targets and increased prevalence in TNBC patients. However, various drugs have been identified so far which are related to a particular diagnostic and prognostic biomarker. For example, Epidermal growth factor receptor ( EGFR or ErbB-1), HER-2/neu (ErbB-2), HER-3 (ErbB-3), and HER-4 (ErbB-4). Protein Transglin-2 (TAGLN 2 ) and Profilins-1 (Pfn-1 ) are the ubiquitously expressed large family of proteins present in all eukaryotes, enabling actin cytoskeletal reorganization. It is known that the oncogenic transformation of cells is accompanied by alteration in the actin cytoskeleton. There are causal connections between altered expression of actin cytoskeletal regulators and cancer progression. Our case-control study identified TAGLN-2 and Pfn-1 proteins in TNBC blood by mass spectrometry. Both TAGLN-2 and Pfn-1 proteins are differentially expressed in early and advanced stages of TNBS patients, which could be potential predictors or therapeutic targets for TNBC.Keywords: TNBC, blood biomarkers, mass spectrometry, qPCR, ELISA
Procedia PDF Downloads 47116 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels
Authors: Niharika Kaushal, Minni Singh
Abstract:
Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals
Procedia PDF Downloads 95115 Nature Manifestations: An Archetypal Analysis of Selected Nightwish Songs
Authors: Suzanne Strauss, Leandi Steenkamp
Abstract:
The Finnish symphonic metal band Nightwish is the brainchild of songwriter and lyricist TuomasHolopainen and the band recorded their first demonstration recording in 1996. The band has since produced nine full-length studio albums, the most recent being the 2020 album Human. :||: Nature., and has reached massive international success. The band is well known for songs about fantasy and escapism and employs many sonic, visual and branding tools and techniques to communicate these constructs to the audience. Among these, is the band’s creation of the so-called “Nightwish world and mythology” with a set of recurring characters and narratives which, in turn, creates a psychological anchor and safe space for Nightwish fans around the globe. Nature and the reverence of nature are central themes in Nightwish’s self-created mythology.Swiss psychologist Carl Jung’s theory of the collective unconscious identified a mysterious reservoir of psychological constructs common to all people, being derived from ancestral memory and experience, common to all humankind, and distinct from the individual’s personal unconscious. Furthermore, he defined archetypes as timeless collective patterns and images that springs forth from the collective unconscious. Archetypes can be actualized when they enter consciousness as images in interaction with the outside world. Archetypal patterns or images can manifest in different ways across world cultures, but follow common patterns, also known as archetypal themes and symbols. The Jungian approach to the psyche places great emphasis on nature, positing a direct link betweenthe concept of wholeness and responsible care for nature and the environment.In our proposed paper, we examine, by means of thematic content analysis, how Nightwish makes use of archetypal themes and symbols referring to nature and the environment in selected songs from their ninth full-length album Human. II Nature. Furthermore, we argue that the longing for and reverence of nature in selected Nightwish songs may serve as a type of “social intervention” and social critique on modern capitalist society. The type of social critique that the band offers is generally connoted intertextually and is not equally explicit in their songs. The band uses a unique combination of escapism, fantasy, and nature narratives to inspire a sense of wonder, enchantment, and magic in the listener. In this way, escapism, fantasy, and nature serve as postmodern frames of reference that aim to “re-enchant” the disenchanted and de-spiritualized. In this way, re-enchantment could also refer to spiritual and/or psychological healing and rebirth.Keywords: archetypes, metal music, nature, Nightwish, social interventions
Procedia PDF Downloads 116114 Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity
Authors: Yuri Laevsky, Tatyana Nosova
Abstract:
The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem.Keywords: filtration gas combustion, low-velocity regime, mixed finite element method, numerical simulation
Procedia PDF Downloads 304113 Hospital Malnutrition and its Impact on 30-day Mortality in Hospitalized General Medicine Patients in a Tertiary Hospital in South India
Authors: Vineet Agrawal, Deepanjali S., Medha R., Subitha L.
Abstract:
Background. Hospital malnutrition is a highly prevalent issue and is known to increase the morbidity, mortality, length of hospital stay, and cost of care. In India, studies on hospital malnutrition have been restricted to ICU, post-surgical, and cancer patients. We designed this study to assess the impact of hospital malnutrition on 30-day post-discharge and in-hospital mortality in patients admitted in the general medicine department, irrespective of diagnosis. Methodology. All patients aged above 18 years admitted in the medicine wards, excluding medico-legal cases, were enrolled in the study. Nutritional assessment was done within 72 h of admission, using Subjective Global Assessment (SGA), which classifies patients into three categories: Severely malnourished, Mildly/moderately malnourished, and Normal/well-nourished. Anthropometric measurements like Body Mass Index (BMI), Triceps skin-fold thickness (TSF), and Mid-upper arm circumference (MUAC) were also performed. Patients were followed-up during hospital stay and 30 days after discharge through telephonic interview, and their final diagnosis, comorbidities, and cause of death were noted. Multivariate logistic regression and cox regression model were used to determine if the nutritional status at admission independently impacted mortality at one month. Results. The prevalence of malnourishment by SGA in our study was 67.3% among 395 hospitalized patients, of which 155 patients (39.2%) were moderately malnourished, and 111 (28.1%) were severely malnourished. Of 395 patients, 61 patients (15.4%) expired, of which 30 died in the hospital, and 31 died within 1 month of discharge from hospital. On univariate analysis, malnourished patients had significantly higher morality (24.3% in 111 Cat C patients) than well-nourished patients (10.1% in 129 Cat A patients), with OR 9.17, p-value 0.007. On multivariate logistic regression, age and higher Charlson Comorbidity Index (CCI) were independently associated with mortality. Higher CCI indicates higher burden of comorbidities on admission, and the CCI in the expired patient group (mean=4.38) was significantly higher than that of the alive cohort (mean=2.85). Though malnutrition significantly contributed to higher mortality on univariate analysis, it was not an independent predictor of outcome on multivariate logistic regression. Length of hospitalisation was also longer in the malnourished group (mean= 9.4 d) compared to the well-nourished group (mean= 8.03 d) with a trend towards significance (p=0.061). None of the anthropometric measurements like BMI, MUAC, or TSF showed any association with mortality or length of hospitalisation. Inference. The results of our study highlight the issue of hospital malnutrition in medicine wards and reiterate that malnutrition contributes significantly to patient outcomes. We found that SGA performs better than anthropometric measurements in assessing under-nutrition. We are of the opinion that the heterogeneity of the study population by diagnosis was probably the primary reason why malnutrition by SGA was not found to be an independent risk factor for mortality. Strategies to identify high-risk patients at admission and treat malnutrition in the hospital and post-discharge are needed.Keywords: hospitalization outcome, length of hospital stay, mortality, malnutrition, subjective global assessment (SGA)
Procedia PDF Downloads 153112 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy
Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther
Abstract:
Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.Keywords: concrete, damage assessment, harmful substances, LIBS
Procedia PDF Downloads 177111 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste
Authors: Rajeev Ravindran, Amit K. Jaiswal
Abstract:
Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation
Procedia PDF Downloads 360110 Effect of Temperature on the Permeability and Time-Dependent Change in Thermal Volume of Bentonite Clay During the Heating-Cooling Cycle
Authors: Nilufar Chowdhury, Fereydoun Najafian Jazi, Omid Ghasemi-Fare
Abstract:
The thermal effect on soil properties induces significant variations in hydraulic conductivity, which is attributable to temperature-dependent transitions in soil properties. With the elevation of temperature, there can be a notable increase in intrinsic permeability due to the degeneration of bound water molecules into a free state facilitated by thermal energy input. Conversely, thermal consolidation may cause a reduction in intrinsic permeability as soil particles undergo densification. This thermal response of soil permeability exhibits pronounced heterogeneity across different soil types. Furthermore, this temperature-induced disruption of the bound water within clay matrices can enhance the mineral-to-mineral contact, initiating irreversible deformation within the clay structure. This indicates that when soil undergoes heating-cooling cycles, plastic strain can develop, which needs to be investigated for every soil type to understand the thermo-hydro mechanical behavior of clay properly. This research aims to study the effect of the heating-cooling cycle on the intrinsic permeability and time-dependent evaluation of thermal volume change of sodium Bentonite clay. A temperature-controlled triaxial permeameter cell is used in this study. The selected temperature is 20° C, 40° C, 40° C and 80° C. The hydraulic conductivity of Bentonite clay under 100 kPa confining stresses was measured. Hydraulic conductivity analysis was performed on a saturated sample for a void ratio e = 0.9, corresponding to a dry density of 1.2 Mg/m3. Different hydraulic gradients were applied between the top and bottom of the sample to obtain a measurable flow through the sample. The hydraulic gradient used for the experiment was 4000. The diameter and thickness of the sample are 101. 6 mm, and 25.4 mm, respectively. Both for heating and cooling, the hydraulic conductivity at each temperature is measured after the flow reaches the steady state condition to make sure the volume change due to thermal loading is stabilized. Thus, soil specimens were kept at a constant temperature during both the heating and cooling phases for at least 10-18 days to facilitate the equilibration of hydraulic transients. To assess the influence of temperature-induced volume changes of Bentonite clay, the evaluation of void ratio change during this time period has been monitored. It is observed that the intrinsic permeability increases by 30-40% during the heating cycle. The permeability during the cooling cycle is 10-12% lower compared to the permeability observed during the heating cycle at a particular temperature. This reduction in permeability implies a change in soil fabric due to the thermal effect. An initial increase followed by a rapid decrease in void ratio was observed, representing the occurrence of possible osmotic swelling phenomena followed by thermal consolidation. It has been observed that after a complete heating-cooling cycle, there is a significant change in the void ratio compared to the initial void ratio of the sample. The results obtained suggest that Bentonite clay’s microstructure can change subject to a complete heating-cooling process, which regulates macro behavior such as the permeability of Bentonite clay.Keywords: bentonite, permeability, temperature, thermal volume change
Procedia PDF Downloads 60109 Transient Performance Evaluation and Control Measures for Oum Azza Pumping Station Case Study
Authors: Itissam Abuiziah
Abstract:
This work presents a case study of water-hammer analysis and control for the Oum Azza pumping station project in the coastal area of Rabat to Casablanca from the dam Sidi Mohamed Ben Abdellah (SMBA). This is a typical pumping system with a long penstock and is currently at design and executions stages. Since there is no ideal location for construction of protection devices, the protection devices were provisionally designed to protect the whole conveying pipeline. The simulation results for the transient conditions caused by a sudden pumping stopping without including any protection devices, show that there is a negative beyond 1300m to the station 5725m near the arrival of the reservoir, therefore; there is a need for the protection devices to protect the conveying pipeline. To achieve the goal behind the transient flow analysis which is to protect the conveying pipeline system, four scenarios had been investigated in this case study with two types of protecting devices (pressure relief valve and desurging tank with automatic air control). The four scenarios are conceders as with pressure relief valve, with pressure relief valve and a desurging tank with automatic air control, with pressure relief valve and tow desurging tanks with automatic air control and with pressure relief valve and three desurging tanks with automatic air control. The simulation result for the first scenario shows that overpressure corresponding to an instant pumping stopping is reduced from 263m to 240m, and the minimum hydraulic grad line for the length approximately from station 1300m to station 5725m is still below the pipeline profile which means that the pipe must be equipped with another a protective devices for smoothing depressions. The simulation results for the second scenario show that the minimum and maximum pressures envelopes are decreases especially in the depression phase but not effectively protects the conduct in this case study. The minimum pressure increased from -77.7m for the previous scenario to -65.9m for the current scenario. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station2575.84m. The simulation results for the third scenario show that the minimum and maximum pressures envelopes are decreases but not effectively protects the conduct in this case study since the depression is still exist and varies from -0.6m to– 12m. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station 5670.32 m. Examination of the envelope curves of the minimum pressuresresults for the fourth scenario, we noticed that the piezometric pressure along the pipe remains positive over the entire length of the pipe. We can, therefore, conclude that such scenario can provide effective protection for the pipeline.Keywords: analysis methods, protection devices, transient flow, water hammer
Procedia PDF Downloads 192108 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 135107 Gender Quotas in Italy: Effects on Corporate Performance
Authors: G. Bruno, A. Ciavarella, N. Linciano
Abstract:
The proportion of women in boardroom has traditionally been low around the world. Over the last decades, several jurisdictions opted for active intervention, which triggered a tangible progress in female representation. In Europe, many countries have implemented boardroom diversity policies in the form of legal quotas (Norway, Italy, France, Germany) or governance code amendments (United Kingdom, Finland). Policy actions rest, among other things, on the assumption that gender balanced boards result in improved corporate governance and performance. The investigation of the relationship between female boardroom representation and firm value is therefore key on policy grounds. The evidence gathered so far, however, has not produced conclusive results also because empirical studies on the impact of voluntary female board representation had to tackle with endogeneity, due to either differences in unobservable characteristics across firms that may affect their gender policies and governance choices, or potential reverse causality. In this paper, we study the relationship between the presence of female directors and corporate performance in Italy, where the Law 120/2011 envisaging mandatory quotas has introduced an exogenous shock in board composition which may enable to overcome reverse causality. Our sample comprises Italian firms listed on the Italian Stock Exchange and the members of their board of directors over the period 2008-2016. The study relies on two different databases, both drawn from CONSOB, referring respectively to directors and companies’ characteristics. On methodological grounds, information on directors is treated at the individual level, by matching each company with its directors every year. This allows identifying all time-invariant, possibly correlated, elements of latent heterogeneity that vary across firms and board members, such as the firm immaterial assets and the directors’ skills and commitment. Moreover, we estimate dynamic panel data specifications, so accommodating non-instantaneous adjustments of firm performance and gender diversity to institutional and economic changes. In all cases, robust inference is carried out taking into account the bidimensional clustering of observations over companies and over directors. The study shows the existence of a U-shaped impact of the percentage of women in the boardroom on profitability, as measured by Return On Equity (ROE) and Return On Assets. Female representation yields a positive impact when it exceeds a certain threshold, ranging between about 18% and 21% of the board members, depending on the specification. Given the average board size, i.e., around ten members over the time period considered, this would imply that a significant effect of gender diversity on corporate performance starts to emerge when at least two women hold a seat. This evidence supports the idea underpinning the critical mass theory, i.e., the hypothesis that women may influence.Keywords: gender diversity, quotas, firms performance, corporate governance
Procedia PDF Downloads 175106 Development and Modelling of Cellulose Nano-Crystal from Agricultural Wastes for Adsorptive Removal of Pharmaceuticals in Wastewater
Authors: Abubakar Muhammad Hammari, Usman Dadum Hamza, Maryam Ibrahim, Kabir Garba, Idris Muhammad Misau, .
Abstract:
Pharmaceuticals are increasingly present in water systems, posing threats to ecosystems and human health. The effective treatment of pharmaceutical wastewater presents a significant challenge due to the complex and diverse organic and inorganic contaminants it contains. Conventional treatment methods often struggle to completely remove these pollutants due to their stability and water solubility, leading to environmental concerns and potential health risks. This research proposes the use of cellulose nanocrystals (CNCs) derived from agricultural waste as efficient and sustainable adsorbents for pharmaceutical wastewater treatment. CNCs offer high surface area, biodegradability, and low cost compared to existing options. This study evaluates the production, characterization, adsorption properties, and reusability of cellulose nanocrystals (CNCs) derived from waste paper (CNC-WP), rice husk (CNC-RH), and groundnut shell (CNC-GS). The percentage yield of CNCs was highest from wastepaper at 50.67%, followed by groundnut shell at 33.40% and rice husk at 26.46%. X-ray diffraction (XRD) confirmed the cellulose crystalline structure across all samples while scanning electron microscopy (SEM) revealed a needle-like morphology with size distribution variations. Energy-dispersive X-ray spectroscopy (EDX) identified carbon and oxygen as the primary elements, with minor residual inorganic materials varying by source. BET analysis indicated high surface areas for all CNCs, with CNC-RH exhibiting the highest value (464.592 m²/g), suggesting a more porous structure. The pore sizes of all samples fell within the meso-pore range (2.108 nm to 2.153 nm). Adsorption studies focused on metronidazole (MNZ) removal using CNC-WP. Isotherm models, including Langmuir and Sips, described the equilibrium between MNZ concentration and adsorption onto CNC-WP, showing the best fit with R² values exceeding 0.95. The adsorption process was favourable, with monolayer coverage and potential binding energy heterogeneity. Kinetic modelling identified the pseudo-second-order model as the best fit (R² = 1, SSE = 5.00 x 10-₇), indicating chemisorption as the predominant mechanism. Thermodynamic analysis revealed negative ΔG values at all temperatures, indicating spontaneous adsorption, with more favourable adsorption at higher temperatures. The adsorption process was exothermic, as indicated by negative ΔH values. Reusability studies demonstrated that CNC-WP retained high MNZ removal efficiency, with a modest decrease from 99.59% to 89.11% over ten regeneration cycles. This study highlights the efficiency of wastepaper as a raw material for CNC production and its potential for effective and reusable MNZ adsorption.Keywords: cellulose nanocrystals (CNCs), adsorption efficiency, metronidazole removal, reusability
Procedia PDF Downloads 10105 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review
Authors: Hanan Algarni
Abstract:
Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.Keywords: virtual reality, treadmill, stroke, gait rehabilitation
Procedia PDF Downloads 277104 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration
Authors: Pedro G. Morouço
Abstract:
One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering
Procedia PDF Downloads 170103 Analysis of the Relationship between Micro-Regional Human Development and Brazil's Greenhouse Gases Emission
Authors: Geanderson Eduardo Ambrósio, Dênis Antônio Da Cunha, Marcel Viana Pires
Abstract:
Historically, human development has been based on economic gains associated with intensive energy activities, which often are exhaustive in the emission of Greenhouse Gases (GHGs). It requires the establishment of targets for mitigation of GHGs in order to disassociate the human development from emissions and prevent further climate change. Brazil presents itself as one of the most GHGs emitters and it is of critical importance to discuss such reductions in intra-national framework with the objective of distributional equity to explore its full mitigation potential without compromising the development of less developed societies. This research displays some incipient considerations about which Brazil’s micro-regions should reduce, when the reductions should be initiated and what its magnitude should be. We started with the methodological assumption that human development and GHGs emissions arise in the future as their behavior was observed in the past. Furthermore, we assume that once a micro-region became developed, it is able to maintain gains in human development without the need of keep growing GHGs emissions rates. The human development index and the carbon dioxide equivalent emissions (CO2e) were extrapolated to the year 2050, which allowed us to calculate when the micro-regions will become developed and the mass of GHG’s emitted. The results indicate that Brazil must throw 300 GT CO2e in the atmosphere between 2011 and 2050, of which only 50 GT will be issued by micro-regions before it’s develop and 250 GT will be released after development. We also determined national mitigation targets and structured reduction schemes where only the developed micro-regions would be required to reduce. The micro-region of São Paulo, the most developed of the country, should be also the one that reduces emissions at most, emitting, in 2050, 90% less than the value observed in 2010. On the other hand, less developed micro-regions will be responsible for less impactful reductions, i.e. Vale do Ipanema will issue in 2050 only 10% below the value observed in 2010. Such methodological assumption would lead the country to issue, in 2050, 56.5% lower than that observed in 2010, so that the cumulative emissions between 2011 and 2050 would reduce by 130 GT CO2e over the initial projection. The fact of associating the magnitude of the reductions to the level of human development of the micro-regions encourages the adoption of policies that favor both variables as the governmental planner will have to deal with both the increasing demand for higher standards of living and with the increasing magnitude of reducing emissions. However, if economic agents do not act proactively in local and national level, the country is closer to the scenario in which emits more than the one in which mitigates emissions. The research highlighted the importance of considering the heterogeneity in determining individual mitigation targets and also ratified the theoretical and methodological feasibility to allocate larger share of contribution for those who historically emitted more. It is understood that the proposals and discussions presented should be considered in mitigation policy formulation in Brazil regardless of the adopted reduction target.Keywords: greenhouse gases, human development, mitigation, intensive energy activities
Procedia PDF Downloads 322102 The Dilemma of Translanguaging Pedagogy in a Multilingual University in South Africa
Authors: Zakhile Somlata
Abstract:
In the context of international linguistic and cultural diversity, all languages can be used for all purposes. Africa in general and South Africa, in particular, is not an exception to multilingual and multicultural society. The multilingual and multicultural nature of South African society has a direct bearing to the heterogeneity of South African Universities in general. Universities as the centers of research, innovation, and transformation of the entire society should be at the forefront in leading multilingualism. The universities in South Africa had been using English and to a certain extent Afrikaans as the only academic languages during colonialism and apartheid regime. The democratic breakthrough of 1994 brought linguistic relief in South Africa. The Constitution of the Republic of South Africa recognizes 11 official languages that should enjoy parity of esteem for the realization of multilingualism. The elevation of the nine previously marginalized indigenous African languages as academic languages in higher education is central to multilingualism. It is high time that Afrocentric model instead of Eurocentric model should be the one which underpins education system in South Africa at all levels. Almost all South African universities have their language policies that seek to promote access and success of students through multilingualism, but the main dilemma is the implementation of language policies. This study is significant to respond to two objectives: (i) To evaluate how selected institutions use language policies for accessibility and success of students. (ii) To study how selected universities integrate African languages for both academic and administrative purposes. This paper reflects the language policy practices in one selected University of Technology (UoT) in South Africa. The UoT has its own language policy which depicts linguistic diversity of the institution and its commitment to promote multilingualism. Translanguaging pedagogy which accommodates minority languages' usage in the teaching and learning process plays a pivotal role in promoting multilingualism. This research paper employs mixed methods (quantitative and qualitative research) approach. Qualitative data has been collected from the key informants (insiders and experts), while quantitative data has been collected from a cohort of third-year students. A mixed methods approach with its convergent parallel design allows the data to be collected separately, analysed separately but with the comparison of the results. Language development initiatives have been discussed within the framework of language policy and policy implementation strategies. Theoretically, this paper is rooted in language as a problem, language as a right and language as a resource. The findings demonstrate that despite being a multilingual institution, there is a perpetuation of marginalization of African languages to be used as academic languages. Findings further display the hegemony of English. The promotion of status quo compromises the promotion of multilingualism, Africanization of Higher Education and intellectualization of indigenous African languages in South Africa under a democratic dispensation.Keywords: afro-centric model, hegemony of English, language as a resource, translanguaging pedagogy
Procedia PDF Downloads 195101 Exploring the Relationship Between Helicobacter Pylori Infection and the Incidence of Bronchogenic Carcinoma
Authors: Jose R. Garcia, Lexi Frankel, Amalia Ardeljan, Sergio Medina, Ali Yasback, Omar Rashid
Abstract:
Background: Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that affects nearly half of the population worldwide and humans serve as the principal reservoir. Infection rates usually follow an inverse relationship with hygiene practices and are higher in developing countries than developed countries. Incidence varies significantly by geographic area, race, ethnicity, age, and socioeconomic status. H. pylori is primarily associated with conditions of the gastrointestinal tract such as atrophic gastritis and duodenal peptic ulcers. Infection is also associated with an increased risk of carcinogenesis as there is evidence to show that H. pylori infection may lead to gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. It is suggested that H. pylori infection may be considered as a systemic condition, leading to various novel associations with several different neoplasms such as colorectal cancer, pancreatic cancer, and lung cancer, although further research is needed. Emerging evidence suggests that H. pylori infection may offer protective effects against Mycobacterium tuberculosis as a result of non-specific induction of interferon- γ (IFN- γ). Similar methods of enhanced immunity may affect the development of bronchogenic carcinoma due to the antiproliferative, pro-apoptotic and cytostatic functions of IFN- γ. The purpose of this study was to evaluate the correlation between Helicobacter pylori infection and the incidence of bronchogenic carcinoma. Methods: The data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate the patients infected versus patients not infected with H. pylori using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for the purpose of academic research. Standard statistical methods were used. Results:-Between January 2010 and December 2019, the query was analyzed and resulted in 163,224 in both the infected and control group, respectively. The two groups were matched by age range and CCI score. The incidence of bronchogenic carcinoma was 1.853% with 3,024 patients in the H. pylori group compared to 4.785% with 7,810 patients in the control group. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.367 (0.353 - 0.383) with a confidence interval of 95%. The two groups were matched by treatment and incidence of cancer, which resulted in a total of 101,739 patients analyzed after this match. The incidence of bronchogenic carcinoma was 1.929% with 1,962 patients in the H. pylori and treatment group compared to 4.618% with 4,698 patients in the control group with treatment. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.403 (0.383 - 0.425) with a confidence interval of 95%.Keywords: bronchogenic carcinoma, helicobacter pylori, lung cancer, pathogen-associated molecular patterns
Procedia PDF Downloads 187100 The Role of Building Information Modeling as a Design Teaching Method in Architecture, Engineering and Construction Schools in Brazil
Authors: Aline V. Arroteia, Gustavo G. Do Amaral, Simone Z. Kikuti, Norberto C. S. Moura, Silvio B. Melhado
Abstract:
Despite the significant advances made by the construction industry in recent years, the crystalized absence of integration between the design and construction phases is still an evident and costly problem in building construction. Globally, the construction industry has sought to adopt collaborative practices through new technologies to mitigate impacts of this fragmented process and to optimize its production. In this new technological business environment, professionals are required to develop new methodologies based on the notion of collaboration and integration of information throughout the building lifecycle. This scenario also represents the industry’s reality in developing nations, and the increasing need for overall efficiency has demanded new educational alternatives at the undergraduate and post-graduate levels. In countries like Brazil, it is the common understanding that Architecture, Engineering and Building Construction educational programs are being required to review the traditional design pedagogical processes to promote a comprehensive notion about integration and simultaneity between the phases of the project. In this context, the coherent inclusion of computation design to all segments of the educational programs of construction related professionals represents a significant research topic that, in fact, can affect the industry practice. Thus, the main objective of the present study was to comparatively measure the effectiveness of the Building Information Modeling courses offered by the University of Sao Paulo, the most important academic institution in Brazil, at the Schools of Architecture and Civil Engineering and the courses offered in well recognized BIM research institutions, such as the School of Design in the College of Architecture of the Georgia Institute of Technology, USA, to evaluate the dissemination of BIM knowledge amongst students in post graduate level. The qualitative research methodology was developed based on the analysis of the program and activities proposed by two BIM courses offered in each of the above-mentioned institutions, which were used as case studies. The data collection instruments were a student questionnaire, semi-structured interviews, participatory evaluation and pedagogical practices. The found results have detected a broad heterogeneity of the students regarding their professional experience, hours dedicated to training, and especially in relation to their general knowledge of BIM technology and its applications. The research observed that BIM is mostly understood as an operational tool and not as methodological project development approach, relevant to the whole building life cycle. The present research offers in its conclusion an assessment about the importance of the incorporation of BIM, with efficiency and in its totality, as a teaching method in undergraduate and graduate courses in the Brazilian architecture, engineering and building construction schools.Keywords: building information modeling (BIM), BIM education, BIM process, design teaching
Procedia PDF Downloads 15899 Bacterial Diversity in Vaginal Microbiota in Patients with Different Levels of Cervical Lesions Related to Human Papillomavirus Infection
Authors: Michelle S. Pereira, Analice C. Azevedo, Julliane D. Medeiros, Ana Claudia S. Martins, Didier S. Castellano-Filho, Claudio G. Diniz, Vania L. Silva
Abstract:
Vaginal microbiota is a complex ecosystem, composed by aerobic and anaerobic bacteria, living in a dynamic equilibrium. Lactobacillus spp. are predominant in vaginal ecosystem, and factors such as immunity and hormonal variations may lead to disruptions, resulting in proliferation of opportunistic pathogens. Bacterial vaginosis (BV) is a polymicrobial syndrome, caused by an increasing of anaerobic bacteria replacing Lactobacillus spp. Microorganisms such as Gardnerella vaginalis, Mycoplasma hominis, Mobiluncus spp., and Atopobium vaginae can be found in BV, which may also be associated to other infections such as by Human Papillomavirus (HPV). HPV is highly prevalent in sexually active women, and is considered a risk factor for development of cervical cancer. As long as few data is available on vaginal microbiota of women with HPV-associated cervical lesions, our objectives were to evaluate the diversity in vaginal ecosystem in these women. To all patients, clinical and socio-demographic data were collected after gynecological examination. This study was approved by the Ethics Committee from Federal University of Juiz de Fora, Minas Gerais, Brazil. Vaginal secretion and cervical scraping were collected. Gram-stained smears were evaluated to establish Nugent score for BV determination. Viral and bacterial DNA obtained was used as template for HPV genotyping (PCR) and bacterial fingerprint (REP-PCR). In total 31 patients were included (mean age 35 and 93.6% sexually active). The Nugent score showed that 38.7% were BV. From the medical records, Pap smear tests showed that 32.3% had low grade squamous epithelial lesion (LSIL), 29% had high grade squamous epithelial lesion (HSIL), 25.8% had atypical squamous cells of undetermined significance (ASC-US) and 12.9% with atypical squamous cells that would not exclude high-grade lesion (ASC-H). All participants were HPV+. HPV-16 was the most frequent (87.1%), followed by HPV-18 (61.3%). HPV-31, HPV-52 and HPV-58 were also detected. Coinfection HPV-16/HPV-18 was observed in 75%. In the 18-30 age group, HPV-16 was detected in 40%, and HPV-16/HPV-18 coinfection in 35%. HPV-16 was associated to 30% of ASC-H and 20% of HSIL patients. BV was observed in 50% of HPV-16+ participants and in 45% of HPV-16/HPV-18+. Fingerprints of bacterial communities showed clusters with low similarity suggesting high heterogeneity in vaginal microbiota within the sampled group. Overall, the data is worrisome once cervical-cancer highly risk-associated HPV-types were identified. The high microbial diversity observed may be related to the different levels of cellular lesions, and different physiological conditions of the participants (age, social behavior, education). Further prospective studies are needed to better address correlations and BV and microbial imbalance in vaginal ecosystems which would be related to the different cellular lesions in women with HPV infections. Supported by FAPEMIG, CNPq, CAPES, PPGCBIO/UFJF.Keywords: human papillomavirus, bacterial vaginosis, bacterial diversity, cervical cancer
Procedia PDF Downloads 19798 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry
Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke
Abstract:
There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction
Procedia PDF Downloads 17397 Analysis of the Effects of Institutions on the Sub-National Distribution of Aid Using Geo-Referenced AidData
Authors: Savas Yildiz
Abstract:
The article assesses the performance of international aid donors to determine the sub-national distribution of their aid projects dependent on recipient countries’ governance. The present paper extends the scope from a cross-country perspective to a more detailed analysis by looking at the effects of institutional qualities on the sub-national distribution of foreign aid. The analysis examines geo-referenced aid project in 37 countries and 404 regions at the first administrative division level in Sub-Saharan Africa from the World Bank (WB) and the African Development Bank (ADB) that were approved between the years 2000 and 2011. To measure the influence of institutional qualities on the distribution of aid the following measures are used: control of corruption, government effectiveness, regulatory quality and rule of law from the World Governance Indicators (WGI) and the corruption perception index from Transparency International. Furthermore, to assess the importance of ethnic heterogeneity on the sub-national distribution of aid projects, the study also includes interaction terms measuring ethnic fragmentation. The regression results indicate a general skew of aid projects towards regions which hold capital cities, however, being incumbent presidents’ birth region does not increase the allocation of aid projects significantly. Nevertheless, with increasing quality of institutions aid projects are less skewed towards capital regions and the previously estimated coefficients loose significance in most cases. Higher ethnic fragmentation also seems to impede the possibility to allocate aid projects mainly in capital city regions and presidents’ birth places. Additionally, to assess the performance of the WB based on its own proclaimed goal to aim the poor in a country, the study also includes sub-national wealth data from the Demographic and Health Surveys (DSH), and finds that, even with better institutional qualities, regions with a larger share from the richest quintile receive significantly more aid than regions with a larger share of poor people. With increasing ethnic diversity, the allocation of aid projects towards regions where the richest citizens reside diminishes, but still remains high and significant. However, regions with a larger share of poor people still do not receive significantly more aid. This might imply that the sub-national distribution of aid projects increases in general with higher ethnic fragmentation, independent of the diverse regional needs. The results provide evidence that institutional qualities matter to undermine the influence of incumbent presidents on the allocation of aid projects towards their birth regions and capital regions. Moreover, even for countries with better institutional qualities the WB and the ADB do not seem to be able to aim the poor in a country with their aid projects. Even, if one considers need-based variables, such as infant mortality and child mortality rates, aid projects do not seem to be allocated in districts with a larger share of people in need. Therefore, the study provides further evidence using more detailed information on the sub-national distribution of aid projects that aid is not being allocated effectively towards regions with a larger share of poor people to alleviate poverty in recipient countries directly. Institutions do not have any significant influence on the sub-national distribution of aid towards the poor.Keywords: aid allocation, georeferenced data, institutions, spatial analysis
Procedia PDF Downloads 12196 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains
Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran
Abstract:
Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures
Procedia PDF Downloads 22195 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach
Authors: Geraldine G. Granados Vazquez
Abstract:
Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability
Procedia PDF Downloads 23294 Spatiotemporal Changes in Drought Sensitivity Captured by Multiple Tree-Ring Parameters of Central European Conifers
Authors: Krešimir Begović, Miloš Rydval, Jan Tumajer, Kristyna Svobodová, Thomas Langbehn, Yumei Jiang, Vojtech Čada, Vaclav Treml, Ryszard Kaczka, Miroslav Svoboda
Abstract:
Environmental changes have increased the frequency and intensity of climatic extremes, particularly hotter droughts, leading to altered tree growth patterns and multi-year lags in tree recovery. The effects of shifting climatic conditions on tree growth are inhomogeneous across species’ natural distribution ranges, with large spatial heterogeneity and inter-population variability, but generally have significant consequences for contemporary forest dynamics and future ecosystem functioning. Despite numerous studies on the impacts of regional drought effects, large uncertainties remain regarding the mechanistic basis of drought legacy effects on wood formation and the ability of individual species to cope with increasingly drier growing conditions and rising year-to-year climatic variability. To unravel the complexity of climate-growth interactions and assess species-specific responses to severe droughts, we combined forward modeling of tree growth (VS-lite model) with correlation analyses against climate (temperature, precipitation, and the SPEI-3 moisture index) and growth responses to extreme drought events from multiple tree-ring parameters (tree-width and blue intensity parameters). We used an extensive dataset with over 1000 tree-ring samples from 23 nature forest reserves across an altitudinal range in Czechia and Slovakia. Our results revealed substantial spatiotemporal variability in growth responses to summer season temperature and moisture availability across species and tree-ring parameters. However, a general trend of increasing spring moisture-growth sensitivity in recent decades was observed in the Scots pine mountain forests and lowland forests of both species. The VS-lite model effectively captured nonstationary climate-growth relationships and accurately estimated high-frequency growth variability, indicating a significant incidence of regional drought events and growth reductions. Notably, growth reductions during extreme drought years and discrete legacy effects identified in individual wood components were most pronounced in the lowland forests. Together with the observed growth declines in recent decades, these findings suggest an increasing vulnerability of Norway spruce and Scots pine in dry lowlands under intensifying climatic constraints.Keywords: dendroclimatology, Vaganova–Shashkin lite, conifers, central Europe, drought, blue intensity
Procedia PDF Downloads 6193 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis
Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos
Abstract:
Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis
Procedia PDF Downloads 14392 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis
Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov
Abstract:
Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil
Procedia PDF Downloads 11991 An Integrative Review on Effects of Educational Interventions for Children with Eczema
Authors: Nam Sze Cheng, P. C. Janita Chau
Abstract:
Background: Eczema is a chronic inflammatory disease with high global prevalence rates in many childhood populations. It is also the most common paediatric skin problem. Although eczema education and proper skin care were effective in controlling eczema symptoms, the lack of both sufficient time for patient consultation and structured eczema education programme hindered the transferability of knowledge to patients and their parents. As a result, these young patients and their families suffer from a significant physical disability and psychological distress, which can substantially impair their quality of life. Objectives: This integrative review is to examine the effects of educational interventions for children with eczema and identify the core elements associated with an effective intervention. Methods: This integrative review targeted all articles published in 10 databases between May 2016 and February 2017 that reported the outcomes of disease interventions of any format for children and adolescents with the clinical diagnosis of eczema who were under 18 years of age. Five randomized controlled trials (RCT) and one systematic review of 10 RCTs were identified for review. All these publications had high methodological quality, except one study of web-based eczema education that was limited by selection bias and poor subject blinding. Findings: This review found that most studies adopted nurse-led or multi-disciplinary parental eczema education programme at the outpatient clinic setting. The format of these programmes included individual lectures, demonstration and group sharing, and the educational materials covered basic eczema knowledge and management as well as methods to interrupt itch-scratch cycle. The main outcome measures of these studies included severity of eczema symptoms, treatment adherence and quality of life of both patients and their families. Nine included studies reported statistically significant improvement in the primary outcome of symptom severity of these eczematous children. On the other hand, all these reviews failed to identify an effective dosage of intervention under these educational programmes that was attributed to the heterogeneity of the interventions. One study that was designed based on the social cognitive theory to guide the interventional content yielded statistically significant results. The systematic review recommended the importance of measuring parental self-efficacy. Implication: This integrative review concludes that structured educational programme can help nurses understand the theories behind different health interventions. They can then deliver eczema education to their patients in a consistent manner. These interventions also result in behavioral changes through patient education. Due to the lack of validated educational programmes in Chinese, it is imperative to conduct an RCT of eczema educational programme to investigate its effects on eczema severity, quality of life and treatment adherence in Hong Kong children as well as to promote the importance of parental self-efficacy.Keywords: children, eczema, education, intervention
Procedia PDF Downloads 12190 An Integrated Framework for Wind-Wave Study in Lakes
Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung
Abstract:
The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.Keywords: wave modelling, wind-wave, extreme value analysis, marina
Procedia PDF Downloads 8789 Feasibility and Acceptability of Mindfulness-Based Cognitive Therapy in People with Depression and Cardiovascular Disorders: A Feasibility Randomised Controlled Trial
Authors: Modi Alsubaie, Chris Dickens, Barnaby Dunn, Andy Gibson, Obioha Ukoumunned, Alison Evans, Rachael Vicary, Manish Gandhi, Willem Kuyken
Abstract:
Background: Depression co-occurs in 20% of people with cardiovascular disorders, can persist for years and predicts worse physical health outcomes. While psychosocial treatments have been shown to effectively treat acute depression in those with comorbid cardiovascular disorders, to date there has been no evaluation of approaches aiming to prevent relapse and treat residual depression symptoms in this group. Therefore, the current study aimed to examine the feasibility and acceptability of a randomised controlled trial design evaluating an adapted version of mindfulness-based cognitive therapy (MBCT) designed specifically for people with co-morbid depression and cardiovascular disorders. Methods: A 3-arm feasibility randomised controlled trial was conducted, comparing MBCT adapted for people with cardiovascular disorders plus treatment as usual (TAU), mindfulness-based stress reduction (MBSR) plus TAU, and TAU alone. Participants completed a set of self-report measures of depression severity, anxiety, quality of life, illness perceptions, mindfulness, self-compassion and affect and had their blood pressure taken immediately before, immediately after, and three months following the intervention. Those in the adapted-MBCT arm additionally underwent a qualitative interview to gather their views about the adapted intervention. Results: 3400 potentially eligible participants were approached when attending an outpatient appointment at a cardiology clinic or via a GP letter following a case note search. 242 (7.1%) were interested in taking part, 59 (1.7%) were screened as being suitable, and 33 (<1%) were eventually randomised to the three groups. The sample was heterogeneous in terms of whether they reported current depression or had a history of depression and the time since the onset of cardiovascular disease (one to 25 years). Of 11 participants randomised to adapted MBCT seven completed the full course, levels of home mindfulness practice were high, and positive qualitative feedback about the intervention was given. Twenty-nine out of 33 participants randomised completed all the assessment measures at all three-time points. With regards to the primary outcome (depression), five out of the seven people who completed the adapted MBCT and three out of five under MBSR showed significant clinical change, while in TAU no one showed any clinical change at the three-month follow-up. Conclusions: The adapted MBCT intervention was feasible and acceptable to participants. However, aspects of the trial design were not feasible. In particular, low recruitment rates were achieved, and there was a high withdrawal rate between screening and randomisation. Moreover, the heterogeneity in the sample was high meaning the adapted intervention was unlikely to be well tailored to all participants needs. This suggests that if the decision is made to move to a definitive trial, study recruitment procedures will need to be revised to more successfully recruit a target sample that optimally matches the adapted intervention.Keywords: mindfulness-based cognitive therapy (MBCT), depression, cardiovascular disorders, feasibility, acceptability
Procedia PDF Downloads 221