Search results for: plant tissue
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4854

Search results for: plant tissue

3984 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration

Authors: P. Barreto, A. Guevara, V. Ibujes

Abstract:

In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.

Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions

Procedia PDF Downloads 113
3983 An Advanced Method of Plant Preservation and Colour Retention of Herbarium Specimens

Authors: Abduraheem K., Suboohi Nasrin

Abstract:

Herbaria are specimens of preserved plants, which are very delicate and cellulosic in nature. While these collections are very useful for the enrichment of knowledge and are considered as natural heritage of our entire world, it is very important to preserve and conserve them. The significance is not only to prevent the herbaria from the deterioration of biological agencies but also to preserve its colours and retain natural colour. Colour is not only characteristic of a plant, but it can also help to identify closely related species or to distinguish a plant from a collection of herbaria. Keeping this in mind, a selective solution has been prepared for the conservation and preservation of herbarium in the present study. In this, the quantity of all the selected chemicals, i.e., formaldehyde and copper sulphate was kept constant, and the solution was prepared by dissolving it in distilled water by increasing the amount of picric acid (1, 2, 3, 4, and 5 ml). Fresh specimens of roses and bougainvillea were washed with distilled water and kept in the above solution for 10 to 15 minutes at room temperature. After 10 minutes, the specimen was removed from the solution, dried with the help of paper, and then pressed under the plant press. Blotting sheets were used to absorb the moisture content and were changed every 2 to 3 days to protect against fungal growth. The results revealed that all solutions had insecticidal properties and protected the herbarium specimen against pests. While in the case of colour retention, solution-1 and 2 were not satisfactory colour preservation, and solutions-3 and 5 maintained the colour of rose and bougainvillea leaves for 15 to 20 days and for a month, respectively. After that, the colour begins to fade, and the process is faster in rose leaves than in bougainvillea. And it was also observed that the colour of young leaves started to fade before that of older leaves. When the leaves of rose and bougainvillea are treated with Solution-4, then the colour of rose leaves is maintained for six months.

Keywords: solutions, colour retention, preservation and conservation, leaves of roses and bougainvillea

Procedia PDF Downloads 76
3982 Histological Characteristics of the Organs of Adult Zebrafish as a Biomarker for the Study of New Drugs with Effect on the Snake Venom of Bothrops alternatus

Authors: Jose Carlos Tavares Carvalho, Hady Keita, Giovanna Rocha Santana, Igor Victor Ferreira Dos Santos, Jesus Rafael Rodriguez Amado, Ariadna Lafourcade Prada, Adriana Maciel Ferreira, Helison Oliveira

Abstract:

Summary: As animal model, zebrafish can be a good opportunity to establish a profile of tissue alteration caused by Bothrops alternatus venom and to screen new anti-venom drugs. Objective: To establish tissue biomarkers from zebrafish injected by snake venom and elucidate the use of glucocorticoids in ophidic accidents. Materials and Methods: The Danio rerio fish were randomly divided into four groups: control group, venom group, Dexamethasone1h before venom injected group and Dexamethasone 1 h after venom injected group. The concentration of Bothrops alternatus venom was 0.13 mg/ml and the fish received 20µl/Fish. The Body weight measurement and histological characteristics of gills, kidneys, liver, and intestine were determinate. Results: Physical analysis shows necrosis accompanied by inflammation in animals receiving the Bothrops alternatus venom. Significant difference was observed in the variation of weight between the control group, and the groups received the venom (t student test, p < 0.05). The average histological alterations index of gill, liver, kidney or intestine was statistically higher in animals received the venom (t Student test, p < 0.05). The alterations were lower in the groups that received Dexamethasone 1h before and after venom injected compared to the group that received only the venom. Dexamethasone 1h before venom injected group had minor histopathological alterations. Conclusion: The organs of zebrafish may be a tissue biomarker of alterations from Bothrops alternatus venom and dexamethasone reduced the damage caused by this venom in the organs studied, which may suggest the use of zebrafish as animal model for research related to screening new drug against snake venom.

Keywords: zebrafish, snake venom, biomarker, drugs

Procedia PDF Downloads 314
3981 Rapid Formation of Ortho-Boronoimines and Derivatives for Reversible and Dynamic Bioconjugation Under Physiological Conditions

Authors: Nicholas C. Rose, Christopher D. Spicer

Abstract:

The regeneration of damaged or diseased tissues would provide an invaluable therapeutic tool in biological research and medicine. Cells must be provided with a number of different biochemical signals in order to form mature tissue through complex signaling networks that are difficult to recreate in synthetic materials. The ability to attach and detach bioactive proteins from material in an iterative and dynamic manner would therefore present a powerful way to mimic natural biochemical signaling cascades for tissue growth. We propose to reversibly attach these bioactive proteins using ortho-boronoimine (oBI) linkages and related derivatives formed by the reaction of an ortho-boronobenzaldehyde with a nucleophilic amine derivative. To enable the use of oBIs for biomaterial modification, we have studied binding and cleavage processes with precise detail in the context of small molecule models. A panel of oBI complexes has been synthesized and screened using a novel Förster resonance energy transfer (FRET) assay, using a cyanine dye FRET pair (Cy3 and Cy5), to identify the most reactive boron-aldehyde/amine nucleophile pairs. Upon conjugation of the dyes, FRET occurs under Cy3 excitation and the resultant ratio of Cy3:Cy5 emission directly correlates to conversion. Reaction kinetics and equilibria can be accurately quantified for reactive pairs, with dissociation constants of oBI derivatives in water (KD) found to span 9-orders of magnitude (10⁻²-10⁻¹¹ M). These studies have provided us with a better understanding of oBI linkages that we hope to exploit to reversibly attach bioconjugates to materials. The long-term aim of the project is to develop a modular biomaterial platform that can be used to help combat chronic diseases such as osteoarthritis, heart disease, and chronic wounds by providing cells with potent biological stimuli for tissue engineering.

Keywords: dynamic, bioconjugation, bornoimine, rapid, physiological

Procedia PDF Downloads 81
3980 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: boiler water wall tube, finite element, stress analysis, strain gage rosette

Procedia PDF Downloads 374
3979 Antifeedant Activity of Plant Extracts on the Spongy Moth (Lymantria dispar) Larvae

Authors: Jovana M. Ćirković, Aleksandar M. Radojković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković

Abstract:

The protection of forests is a national interest and of strategic importance in every country. The spongy moth (Lymantria dispar) is a damaging invasive pest that can weaken and destroy trees by defoliating them. Chemical pesticides commonly used to protect forests against spongy moths not only have a negative impact on terrestrial and aquatic organisms/ecosystems but also often fail to provide significant protection. Therefore, many eco-friendly alternatives have been considered. Within this research, a new biopesticide was developed based on the method of nanoencapsulation of plant extracts in a biopolymer matrix, which provides a slow release of the active components during a substantial time period. The antifeedant activity of plant extracts of common (Fraxinus excelsior L.), manna (F. ornus L.) ash tree, and the tree of heaven Ailanthus altissima (Mill.) was tested on the spongy moth (Lymantria dispar L, 1758) larvae. To test the antifeedant activity of these compounds, the choice and non-choice tests in laboratory conditions for different plant extract concentrations (0.01, 0.1, 0.5, and 1 % v/v) were carried out. In both cases, the best results showed formulations based on the tree of heaven and common ash for the concentration of 1%, with deterioration indices of 163 and 132, respectively. The main benefit of these formulations is their versatility, effectiveness, prolonged effect, and because they are completely environmentally acceptable. Therefore, they can be considered for suppression of the spongy moth in forest ecosystems.

Keywords: Ailanthus altissima (Mill.), Fraxinus excelsior L., encapsulation, Lymantria dispar

Procedia PDF Downloads 57
3978 Preoperative versus Postoperative Radiation Therapy in Patients with Soft Tissue Sarcoma of the Extremity

Authors: AliAkbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi, Behnam Kadkhodaei

Abstract:

Background: Soft tissue sarcomas (STS) are generally treated with a combination of limb preservation surgery and radiation therapy. Today, preoperative radiation therapy is considered for accurate treatment volume and smaller field size. Therefore, this study was performed to compare preoperative with postoperative radiation therapy in patients with extremity STS. Methods: In this non-randomized clinical trial, patients with localized extremity STS referred to the orthopedic clinics in Iran from 2021 to 2023 were studied. Patients were randomly divided into two groups: preoperative and postoperative radiation therapy. The two groups of patients were compared in terms of acute (wound dehiscence and infection) and late (limb edema, subcutaneous fibrosis, and joint stiffness) complications and their severity, as well as local recurrence and other one-year outcomes. Results: A total of 80 patients with localized extremity STS were evaluated in two treatment groups. The groups were matched in terms of age, sex, history of diabetes mellitus, hypertension, smoking, involved side, involved extremity, lesion location, and tumor histopathology. The acute complications of treatment in the two groups of patients did not differ significantly (P > 0.05). Of the late complications, only joint stiffness between the two groups had significant statistical differences (P < 0.001). The severity of all three late complications in the postoperative radiation therapy group was significantly higher (P < 0.05). There was no significant difference between the two groups in terms of the rate of local recurrence of other one-year outcomes (P > 0.05). Conclusion: This study showed that in patients with localized extremity STS, the two therapeutic approaches of adjuvant and neoadjuvant radiation therapy did not differ significantly in terms of local recurrence and distant metastasis during the one-year follow-up period and due to fewer late complications in preoperative radiotherapy group, this treatment approach can be a better choice than postoperative radiation therapy.

Keywords: soft tissue sarcoma, extremity, preoperative radiation therapy, postoperative radiation therapy

Procedia PDF Downloads 28
3977 The Effects of Human Activities on Plant Diversity in Tropical Wetlands of Lake Tana (Ethiopia)

Authors: Abrehet Kahsay Mehari

Abstract:

Aquatic plants provide the physical structure of wetlands and increase their habitat complexity and heterogeneity, and as such, have a profound influence on other biotas. In this study, we investigated how human disturbance activities influenced the species richness and community composition of aquatic plants in the wetlands of Lake Tana, Ethiopia. Twelve wetlands were selected: four lacustrine, four river mouths, and four riverine papyrus swamps. Data on aquatic plants, environmental variables, and human activities were collected during the dry and wet seasons of 2018. A linear mixed effect model and a distance-based Redundancy Analysis (db-RDA) were used to relate aquatic plant species richness and community composition, respectively, to human activities and environmental variables. A total of 113 aquatic plant species, belonging to 38 families, were identified across all wetlands during the dry and wet seasons. Emergent species had the maximum area covered at 73.45 % and attained the highest relative abundance, followed by amphibious and other forms. The mean taxonomic richness of aquatic plants was significantly lower in wetlands with high overall human disturbance scores compared to wetlands with low overall human disturbance scores. Moreover, taxonomic richness showed a negative correlation with livestock grazing, tree plantation, and sand mining. The community composition also varied across wetlands with varying levels of human disturbance and was primarily driven by turnover (i.e., replacement of species) rather than nestedness resultant(i.e., loss of species). Distance-based redundancy analysis revealed that livestock grazing, tree plantation, sand mining, waste dumping, and crop cultivation were significant predictors of variation in aquatic plant communities’ composition in the wetlands. Linear mixed effect models and distance-based redundancy analysis also revealed that water depth, turbidity, conductivity, pH, sediment depth, and temperature were important drivers of variations in aquatic plant species richness and community composition. Papyrus swamps had the highest species richness and supported different plant communities. Conservation efforts should therefore focus on these habitats and measures should be taken to restore the highly disturbed and species poor wetlands near the river mouths.

Keywords: species richness, community composition, aquatic plants, wetlands, Lake Tana, human disturbance activities

Procedia PDF Downloads 99
3976 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria

Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu

Abstract:

Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.

Keywords: agriculture, bioaccumulation, heavy metal, plant tissues

Procedia PDF Downloads 361
3975 Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UVA Cross-Linking

Authors: C. Labate, M. P. De Santo, G. Lombardo, R. Barberi, M. Lombardo, N. M. Ziebarth

Abstract:

In the past decades, the importance of corneal biomechanics in the normal and pathological functions of the eye has gained its credibility. In fact, the mechanical properties of biological tissues are essential to their physiological function. We are convinced that an improved understanding of the nanomechanics of corneal tissue is important to understand the basic molecular interactions between collagen fibrils. Ultimately, this information will help in the development of new techniques to cure ocular diseases and in the development of biomimetic materials. Therefore, nanotechnology techniques are powerful tools and, in particular, Atomic Force Microscopy has demonstrated its ability to reliably characterize the biomechanics of biological tissues either at the micro- or nano-level. In the last years, we have investigated the mechanical anisotropy of the human corneal stroma at both the tissue and molecular levels. In particular, we have focused on corneal cross-linking, an established procedure aimed at slowing down or halting the progression of the disease known as keratoconus. We have obtained the first evidence that riboflavin/UV-A corneal cross-linking induces both an increase of the elastic response and a decrease of the viscous response of the most anterior stroma at the scale of stromal molecular interactions.

Keywords: atomic force spectroscopy, corneal stroma, cross-linking, viscoelasticity

Procedia PDF Downloads 297
3974 Development of Composition and Technology of Vincristine Nanoparticles Using High-Molecular Carbohydrates of Plant Origin

Authors: L. Ebralidze, A. Tsertsvadze, D. Berashvili, A. Bakuridze

Abstract:

Current cancer therapy strategies are based on surgery, radiotherapy and chemotherapy. The problems associated with chemotherapy are one of the biggest challenges for clinical medicine. These include: low specificity, broad spectrum of side effects, toxicity and development of cellular resistance. Therefore, anti-cance drugs need to be develop urgently. Particularly, in order to increase efficiency of anti-cancer drugs and reduce their side effects, scientists work on formulation of nano-drugs. The objective of this study was to develop composition and technology of vincristine nanoparticles using high-molecular carbohydrates of plant origin. Plant polysacharides, particularly, soy bean seed polysaccharides, flaxseed polysaccharides, citrus pectin, gum arabic, sodium alginate were used as objects. Based on biopharmaceutical research, vincristine containing nanoparticle formulations were prepared. High-energy emulsification and solvent evaporation methods were used for preparation of nanosystems. Polysorbat 80, polysorbat 60, sodium dodecyl sulfate, glycerol, polyvinyl alcohol were used in formulation as emulsifying agent and stabilizer of the system. The ratio of API and polysacharides, also the type of the stabilizing and emulsifying agents are very effective on the particle size of the final product. The influence of preparation technology, type and concentration of stabilizing agents on the properties of nanoparticles were evaluated. For the next stage of research, nanosystems were characterized. Physiochemical characterization of nanoparticles: their size, shape, distribution was performed using Atomic force microscope and Scanning electron microscope. The present study explored the possibility of production of NPs using plant polysaccharides. Optimal ratio of active pharmaceutical ingredient and plant polysacharids, the best stabilizer and emulsifying agent was determined. The average range of nanoparticles size and shape was visualized by SEM.

Keywords: nanoparticles, target delivery, natural high molecule carbohydrates, surfactants

Procedia PDF Downloads 253
3973 A New Phenolic Compound Isolated from Laurus nobilis from Lebanon and Comparison of Antioxidant Activity of Different Parts

Authors: Turk Ayman, Ahn Jong Hoon, Khalife K. Hala, Gali-Muhtasib Hala, Lee Mi Kyeong

Abstract:

Laurus nobilis is an aromatic plant widely distributed in the Mediterranean region. The leaves of this plant are frequently used as a spice and as a traditional medicine for several diseases. In our present study, the methanolic extract of L. nobilis leaves showed antioxidant activity. Chromatographic separations of the EtOAc fraction which had the highest antioxidant activity led to the isolation of 12 compounds. Among them, there was a new phenylpropanoid derivative, which was identified by 1D and 2D NMR experiments, as well as high resolution mass spectrometry. In addition, two major compounds, catechin and epicatechin, which showed strong antioxidant activity may be responsible for the antioxidant activity of L. nobilis leaves. Since different plant parts may contain different types of constituents which contribute to the biological activities, we investigated the antioxidant activity of different parts of L. nobilis such as leaves, stems and fruits. Stems of L. nobilis showed the most potent antioxidant activity, followed by leaves. Further quantitation of total phenol and flavonoids contents revealed a positive correlation between the content of these compounds and antioxidant activity. Taken together, phenolic compounds including flavonoids are responsible for antioxidant activity of L. nobilis. In addition, stem parts of L. nobilis are suggested as good sources for antioxidant activity. Conclusively, L. nobilis might be effective in several free radical mediated diseases.

Keywords: antioxidant activity, different parts, Laurus nobilis, phenolic compound

Procedia PDF Downloads 284
3972 Effective Energy Saving of a Large Building through Multiple Approaches

Authors: Choo Hong Ang

Abstract:

The most popular approach to save energy for large commercial buildings in Malaysia is to replace the existing chiller plant of high kW/ton to one of lower kW/ton. This approach, however, entails large capital outlay with a long payment period of up to 7 years. This paper shows that by using multiple approaches, other than replacing the existing chiller plant, an energy saving of up to 20 %, is possible. The main methodology adopted was to identify and then plugged all heat ingress paths into a building, including putting up glass structures to prevent mixing of internal air-conditioned air with the ambient environment, and replacing air curtains with glass doors. This methodology could save up to 10 % energy bill. Another methodology was to change fixed speed motors of air handling units (AHU) to variable speed drive (VSD) and changing escalators to motion-sensor type. Other methodologies included reducing heat load by blocking air supply to non-occupied parcels, rescheduling chiller plant operation, changing of fluorescent lights to LED lights, and conversion from tariff B to C1. A case example of Komtar, the tallest building in Penang, is given here. The total energy bill for Komtar was USD2,303,341 in 2016 but was reduced to USD 1,842,927.39 in 2018, a significant saving of USD460,413.86 or 20 %. In terms of kWh, there was a reduction from 18, 302,204.00 kWh in 2016 to 14,877,105.00 kWh in 2018, a reduction of 3,425,099.00 kWh or 18.71 %. These methodologies used were relatively low cost and the payback period was merely 24 months. With this achievement, the Komtar building was awarded champion of the Malaysian National Energy Award 2019 and second runner up of the Asean Energy Award. This experience shows that a strong commitment to energy saving is the key to effective energy saving.

Keywords: chiller plant, energy saving measures, heat ingress, large building

Procedia PDF Downloads 88
3971 Phytoremediation of Lead Polluted Soils with Native Weeds in Nigeria

Authors: Comfort Adeoye, Anthony Eneji

Abstract:

Lead pollution by mining, industrial dumping, and other anthropogenic uses are corroding the environment. Efforts being made to control it include physical, chemical and biological methods. The failure of the aforementioned methods are largely due to the fact that they are cumbersome, expensive, and not eco-friendly. Some plant species can be used for remediation of these pollutants. The objective of this work is to investigate the abilities of two native weed species to remediate two lead-polluted soils: a) Battery dumpsite and, (b) Naturally occurring lead mine. Soil samples were taken from the two sites: a) Kumapayi in Ibadan, a battery dumpsite, (b) Zamfara, a natural lead mine. Screen house experiment in Complete Randomized Design (CRD) replicated three times was carried out at I.I.T.A. Unpolluted soils were collected and polluted with various rates of lead concentrations of 0, 0.1, 0.2, and 0.5%. These were planted with weed species. Plant growth parameters were monitored for twelve weeks, after which the plants were harvested. Dry weight and plant uptake of the lead were taken. Analysis of data was carried out using, Genstat, Excel and descriptive statistics. Relative concentration of lead (Pb) in the above and below ground parts of Gomphrena celusoides revealed that a higher amount of Pb is taken up in the root compared with the shoots at different levels of Pb pollution. However, lead uptake at 0.5% > 0.2% > 0.1% > Control. In essence, phytoremediation of Gomphrena is highest at soil pollution of 0.5% and its retention is greater in the root than the shoot.In S. pyramidalis, soil retention ranges from 0.1% > 0.5% > 0.2% > control. Uptake is highest at 0.5% > 0.1% > 0.2 in stem. Uptake in leaves is highest at 0.2%, but none in the 0.5% pollution. Therefore, different plant species exhibited different accumulative mode probably due to their physiological and rooting systems. Gomphrena spp. rooting system is tap root,while that of S.pyramidalis is fibrous.

Keywords: grass, lead, phytoremediation, pollution

Procedia PDF Downloads 309
3970 In-Vitro Assessment of Saponin’s Level and Hemolytic Activity of Five Medicinal Plants from Eritrea

Authors: Leah Ghebreberhan, Liya Abraham, John Issac, Atul Kaushik

Abstract:

Medicinal plants are used for various indications in Eritrea according to traditional systems of medicine. Safety concerns, however, are dubious since some medicinal plants have toxic effects indeed. The medicinal plants under study (Commicarpus pedunculosis, Steganotaenia araliaceae, Boscia angustifolia, Solanum incanum, and Calpurnia aurea) are used in the treatment of various diseases. Thus, safety studies must be performed prior to usage since they are rich in phytoconstituents like saponins. Saponns are natural glycosides with several pharmacologic activities including hemolysis. The study was done to assess the level of saponin and toxic effects (hemolysis) of medicinal plants used in folk medicine. The plant extracts were subject to phytochemical analysis, foam test, and hemolytic assay. Regarding the Fh value, Solanam incanum consisted highest Fh value (20mm), whereas Boscia angustifolia showed the lowest Fh value (10mm). The level of hemolysis of all the plant extracts ranged between 9.0 to 20.2 %. All the plant extracts were suitable for treatment with respect to saponin level since they exhibited minimal hemolytic effect against erythrocytes.

Keywords: Boscia angustifolia, Calpurnia aurea, Commicarpus pedunculosis, hemolysis, saponin, Solanum incanum, Steganotaenia araliaceae

Procedia PDF Downloads 231
3969 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina

Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran

Abstract:

Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.

Keywords: biocontrol, bioefficacy, cellulase, chitinase

Procedia PDF Downloads 362
3968 Micropropagation of Rhododendron tomentosum (Ledum palustre): An Endangered Plant of Scientific Interest as the Example of Ex Situ Conservation

Authors: Anna Jesionek, Aleksandra Szreniawa-Sztajnert, Zbigniew Jaremicz, Adam Kokotkiewicz, Natalia Filipowicz, Renata Ochocka, Bozena Zabiegala, Maria Luczkiewicz

Abstract:

Rhododendron tomentosum (formerly Ledum palustre), an evergreen shrub grows in peaty soils in northern Europe, Asia and North America. In Poland, it is classified as an endangered species not only due to the drainage of wetlands, but also to the excessive collection of this repellent plant by human. The other valuable biological properties of R. tomentosum, used for years in folk medicine, include anti-inflammatory, analgesic and anti-microbial activity, conditioned by the essential oil content. Taking into account the importance of biodiversity and the potential therapeutic application, it was decided to establish, for the first time, the micropropagation protocol for R. tomentosum, for ex-situ conservation of this endangered species as well as to obtain the continuous source of in vivo and in-vitro plant material for further studies. This object was achieved by the selection of the explant and the media, which were modified within the scope of mineral composition, sugar content, pH and the growth regulators. As a result, the four-stage micropropagation protocol for R. tomentosum was specified, including shoot multiplication, elongation, rooting and ex-vitro adaptation. The genetic identification of the examined species and the compatibility of progeny plants with maternal ones was tested with molecular biology methods. Moreover, during the research process, the chemical composition of initial and regenerated plant and in vitro shoots was controlled in terms of volatile fraction by phytochemical analysis (GC and TLC methods). The correctness of the micropropagation procedure was confirmed by both types of studies.

Keywords: ex situ conservation, Ledum palustre, micropropagation, Rhododendron tomentosum

Procedia PDF Downloads 473
3967 In vitro Investigation of Genotoxic and Antigenotoxic Properties of Gunnera perpensa Roots Extracts

Authors: P. H. Mfengwana, S. S. Mashele, L. Verschaeve, R. Anthonissen, I. T. Manduna

Abstract:

Gunnera perpensa is traditionally used mostly by women for the treatment of different gynaecological related conditions due to its proven uterine contractility effects. The uses of this plant include menstrual pain relief, treatment of infertility and promotion of easy labour. However, even though this plant species has been reported to possess numerous medicinal properties, to author’s best knowledge, its safety has not been investigated. Thus, this study was aimed at investigating the genotoxicity and antigenotoxicity of Gunnera perpensa aqueous, methanol and dichloromethane extracts. The in vitro toxicity of the plant extracts was assessed with the neutral red uptake (NRU) test. Genotoxic and antigenotoxic properties of Gunnera perpensa were investigated using high-throughput assays: bacterial Vitotox test and the alkaline comet assay with and without S9 activation on human C3A cells. Ethyl Methanesulfonate (EMS) and 4-nitroquinoline-oxide (4-NQO) were used as positive controls, respectively. All extracts showed toxicity in a dose-dependent manner; however, that does not mean they were all genotoxic. Methanol extract did show genotoxicity with S9 (metabolism) only at the highest concentration of 500 µg/ml due to increased DNA damage observed, however, no genotoxicity was observed from other concentrations. Therefore, the results show that Gunnera perpensa extracts are genotoxic and not safe for human use.

Keywords: antigenotoxicity, comet test, genotoxicity, Gunnera perpensa, vitotox assay

Procedia PDF Downloads 121
3966 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 169
3965 Optical Coherence Tomography in Differentiation of Acute and Non-Healing Wounds

Authors: Ananya Barui, Provas Banerjee, Jyotirmoy Chatterjee

Abstract:

Application of optical technology in medicine and biology has a long track-record. In this endeavor, OCT is able to attract both engineers and biologists to work together in the field of photonics for establishing a striking non-invasive imaging technology. In contrast to other in vivo imaging modalities like Raman imaging, confocal imaging, two-photon microscopy etc. which can perform in vivo imaging upto 100-200 micron depth due to limitation in numerical aperture or scattering, however, OCT can achieve high-resolution imaging upto few millimeters of tissue structures depending on their refractive index in different anatomical location. This tomographic system depends on interference of two light waves in an interferometer to produce a depth profile of specimen. In wound healing, frequent collection of biopsies for follow-up of repair process could be avoided by such imaging technique. Real time skin OCT (the optical biopsy) has efficacy in deeper and faster illumination of cutaneou tissue to acquire high resolution cross sectional images of their internal micro-structure. Swept Source-OCT (SS-OCT), a novel imaging technique, can generate high-speed depth profile (~ 2 mm) of wound at a sweeping rate of laser with micron level resolution and optimum coherent length of 5-6 mm. Normally multi-layered skin tissue depicts different optical properties along with variation in thickness, refractive index and composition (i.e. keratine layer, water, fat etc.) according to their anatomical location. For instance, stratum corneum, the upper-most and relatively dehydrated layer of epidermis reflects more light and produces more lucid and a sharp demarcation line with rest of the hydrated epidermal region. During wound healing or regeneration, optical properties of cutaneous tissue continuously altered with maturation of wound bed. More mature and less hydrated tissue component reflects more light and becomes visible as a brighter area in comparison to immature region which content higher amount water or fat that depicts as a darker area in OCT image. Non-healing wound possess prolonged inflammation and inhibits nascent proliferative stage. Accumulation of necrotic tissues also prevents the repair of non-healing wounds. Due to high resolution and potentiality to reflect the compositional aspects of tissues in terms of their optical properties, this tomographic method may facilitate in differentiating non-healing and acute wounds in addition to clinical observations. Non-invasive OCT offers better insight regarding specific biological status of tissue in health and pathological conditions, OCT images could be associated with histo-pathological ‘gold standard’. This correlated SS-OCT and microscopic evaluation of the wound edges can provide information regarding progressive healing and maturation of the epithelial components. In the context of searching analogy between two different imaging modalities, their relative performances in imaging of healing bed were estimated for probing an alternative approach. Present study validated utility of SS-OCT in revealing micro-anatomic structure in the healing bed with newer information. Exploring precise correspondence of OCT images features with histo-chemical findings related to epithelial integrity of the regenerated tissue could have great implication. It could establish the ‘optical biopsy’ as a potent non-invasive diagnostic tool for cutaneous pathology.

Keywords: histo-pathology, non invasive imaging, OCT, wound healing

Procedia PDF Downloads 266
3964 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues

Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos

Abstract:

Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.

Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints

Procedia PDF Downloads 77
3963 GATA3-AS1 lncRNA as a Predictive Biomarker for Neoadjuvant Chemotherapy Response in Locally Advanced Luminal B Breast Cancer: An RNA ISH Study

Authors: Tania Vasquez Mata, Luis A. Herrera, Cristian Arriaga Canon

Abstract:

Background: Locally advanced breast cancer of the luminal B phenotype, poses challenges due to its variable response to neoadjuvant chemotherapy. A predictive biomarker is needed to identify patients who will not respond to treatment, allowing for alternative therapies. This study aims to validate the use of the lncRNA GATA3-AS1, as a predictive biomarker using RNA in situ hybridization. Research aim: The aim of this study is to determine if GATA3-AS1 can serve as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Methodology: The study utilizes RNA in situ hybridization with predesigned probes for GATA3-AS1 on Formalin-Fixed Paraffin-Embedded tissue sections. The samples underwent pretreatment and protease treatment to enable probe penetration. Chromogenic detection and signal evaluation were performed using specific criteria. Findings: Patients who did not respond to neoadjuvant chemotherapy showed a 3+ score for GATA3-AS1, while those who had a complete response had a 1+ score. Theoretical importance: This study demonstrates the potential clinical utility of GATA3-AS1 as a biomarker for resistance to neoadjuvant chemotherapy. Identifying non-responders early on can help avoid unnecessary treatment and explore alternative therapy options. Data collection and analysis procedures: Tissue samples from patients with locally advanced luminal B breast cancer were collected and processed using RNA in situ hybridization. Signal evaluation was conducted under a microscope, and scoring was based on specific criteria. Questions addressed: Can GATA3-AS1 serve as a predictive biomarker for neoadjuvant chemotherapy response in locally advanced luminal B breast cancer? Conclusion: The lncRNA GATA3-AS1 can be used as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Its identification through RNA in situ hybridization of tissue obtained from the initial biopsy can aid in treatment decision-making.

Keywords: biomarkers, breast neoplasms, genetics, neoadjuvant therapy, tumor

Procedia PDF Downloads 43
3962 Interaction of Water Stress and VA Mycorrhizal Inoculation on Green Bean under Different P Levels

Authors: Shahram Baghban Cirus, Parisa Alizadeh Oskuie

Abstract:

In a greenhouse experiment, green bean were inoculated with three levels of phosphorus (P1, P2, P3, respectively 0, 50, 100 kgP/h) and four levels of water stress(Fc1, Fc2, Fc3 ,Fc4, respectively 0.8Fc, 0.7Fc, 0.6Fc, 0.5Fc) and one species of VA mycorrhiza (Glomus versiform) or left uninocolated as control plants in the steril soil. AM colonization significantly stimulated plant growth, leaf area, shoot, and pod dry weight but water stress significantly decreased colonization, pod and shoot dry weight, and shoot P. The use P levels significantly increased leaf area, shoot, and pod dry weight, pods length, and colonization.

Keywords: green bean, plant growth, VA mycorrhiza, water-stress

Procedia PDF Downloads 338
3961 Microalgae as Promising Biostimulants of Plant Tolerance Against Heavy Metals

Authors: Soufiane Fal, Abderahim Aasfar, Ali Ouhssain, Hasnae Choukri, Abelaziz Smouni, Hicham El Arroussi

Abstract:

Heavy metals contamination is a major environmental concern around the world. It has a harmful impact on plant productivity and poses a serious risk to humans and animals health. In the present study, the effect of Microalgae Crude Extract (MCE) on tomato growth and nutrients uptake exposed to 2 mM Pb2+ and Cd2+ was investigated. In results, 2 mM Pb2+ and Cd2+ showed a significant reduction of tomatobiomass and perturbation in nutrients absorption. Moreover, MCE application in tomato plant exposed to Pb2+ and Cd2+ showed a significant enhancement of biomass compared to tomato plants under Pb2+ and Cd2+. On the other hand, MCE application favoured heavy metals accumulation in root and inhibited their translocation to shoot as phytostabilisation mechanism. Tomato plants showed biochemical responses to Pb2+ and Cd2+ stress with elevation of scavenging enzymes and molecules such as POD, CAT, SOD, Proline, and polyphenols, etc. In addition, the treatment by MCE showed a significant reduction level of the majority of these parameters. Furthermore, the metabolomic analysis revealed a significant change in important metabolites. Pb2+ and Cd2+ showed decrease in SFA and increase of UFA, VLFA, alkanes, alkenes, sterols, which known accumulated as tolerance and resistance mechanism to heavy metal (H.M) stress. However, MCE treatment showed the inverse of these response to return tomato plants to normal state and enhanced tolerance and resistance to heavy metal stress. In the present study, we emphasized that MCE can alleviate H.M stress, enhance tomato plant growth nutrients absorption and improve biochemical responses.

Keywords: microalgae crude extract, heavy metal stress, nutrient uptake, metabolomic analysis, solanum lycopersicum (Tomato), phytostabilisation

Procedia PDF Downloads 99
3960 Effect of Different Irrigation Intervals on Protein and Gel Production of Aloe Vera (Aloe Barbadensis M.) in Iran

Authors: Seyed Mohammad Hosein Al Omrani Nejad, Ali Rezvani Aghdam

Abstract:

This study was done in order to evaluation different irrigation intervals on amount of protein, and gel production in Aloe vera, a traditional medicinal plant. Plants was plnted in Greenhouse and irrigated according to Accumulative Pan Evaporation(APE). The treatments were included 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mm APE which has been showed W1,W2, W3, W4, W5, W6, W7, W8,W9 and W10 respectively.The amount of protein and gel production was measured seperately. Results showed that highest protein and fresh weight of gel obtained plants which irrigated W6 and W7 respectively. According to these results can recomend which if plant irrigatedwhen APE reached 120 and 140 mm by Class A Evaporation Pan method gel production and protein would besuitable in north of khozestan province in limited irrigation conditions.

Keywords: irrigation, protein, gel, aloe vera, Iran

Procedia PDF Downloads 370
3959 Managing the Effects of Wet Coal on Generation in Thermal Power Station: A Case Study

Authors: Ravindra Gohane, S. V. Deshmukh

Abstract:

The coal acts as a fuel on a very large scale. Coal forms the basis of any thermal power plant. Different types of coal are available for utilization. The moisture content, volatile nature and ash content determines the type of the coal. Out of these moisture plays a very important part as it is present naturally within the coal and is added while handling the coal and is termed as wet coal. The problems of wet coal are many and more particularly during rainy season such as generation loss, jamming of crusher, reduction in calorific value, transportation of coal etc. Efforts are made to resolve the problems arising out of wet coal worldwide. This paper highlights the issue of resolving the problem due to wet coal with the help of a case study involving installation of V-type wiper on the conveyer belt.

Keywords: coal handling plant, wet coal, v-type, generation

Procedia PDF Downloads 338
3958 Improving the Genetic Diversity of Soybean Seeds and Tolerance to Drought Irradiated with Gamma Rays

Authors: Aminah Muchdar

Abstract:

To increase the genetic diversity of soybean in order to adapt to agroecology in Indonesia conducted ways including introduction, cross, mutation and genetic transformation. The purpose of this research is to obtain early maturity soybean mutant lines, large seed tolerant to drought with high yield potential. This study consisted of two stages: the first is sensitivity of gamma rays carried out in the Laboratory BATAN. The genetic variety used is Anjasmoro. The method seeds irradiated with gamma rays at a rate of activity with the old ci 1046.16976 irradiation 0-71 minutes. Irradiation doses of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000gy. The results indicated all seeds irradiated with doses of 0 - 1000gy, just a dose of 200 and 300gy are able to show the percentage of germination, plant height, number of leaves, number of normal sprouts and green leaves of the best and can be continued for a second trial in order to assemble and to get mutants which is expected. The result of second stage of soybean M2 Population irradiated with diversity Gamma Irradiation performed that in the form of soybean planting, the seed planted is the first derivative of the M2 irradiated seeds. The result after the age of 30ADP has already showing growth and development of plants that vary when compared to its parent, both in terms of plant height, number of leaves, leaf shape and leaf forage level. In the generative phase, a plant that has been irradiated 200 and 300 gy seen some plants flower form packs, but not formed pods, there is also a form packs of flowers, but few pods produce soybean morphological characters such as plant height, number of branches, pods, days to flowering, harvesting, seed weight and seed number.

Keywords: gamma ray, genetic mutation, irradiation, soybean

Procedia PDF Downloads 374
3957 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures

Authors: Hanaa M. M. El-Khayat, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hanan S. Gaber, Hoda, M. A. Abu Taleb, Hassan E. Flefel

Abstract:

Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.

Keywords: Biomphalaria, Zn, Cu, Pb, AST, ALT, ALP, total protein albumin, globulin, CAT, histopathology

Procedia PDF Downloads 339
3956 Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes

Authors: F. Pedron, M. Grifoni, G. Petruzzelli, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

Lead contamination of agricultural land mainly vegetated with perennial ryegrass (Lolium perenne) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H2O, KNO3, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of Lolium perenne showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant.

Keywords: bioavailability, Freundlich-like equation, sequential extraction, soil lead contamination

Procedia PDF Downloads 289
3955 Utilization Of Medical Plants Tetrastigma glabratum (Blume) Planch from Mount Prau in the Blumah, Central Java

Authors: A. Lianah, B. Peter Sopade, C. Krisantini

Abstract:

Walikadep/Tetrastigma glabratum (Blume) Planch is a traditional herb that has been used by people of Blumah village; it is believed to have a stimulant effect and ailments for many illnesses. Our survey demonstrated that the people of Blumah village has exploited walikadep from Protected Forest of Mount Prau. More than 10% of 448 households at Blumah village have used walikadep as traditional herb or jamu. Part of the walikadep plants used is the liquid extract of the stem. The population of walikadep is getting scarce and it is rarely found now. The objectives of this study are to examine the stimulant effect of walikadep, to measure growth and exploitation rate of walikadep, and to find ways to effectively propagate the plants, as well as identifying the impact on the environment through field experiments and explorative survey. Stimulant effect was tested using open-field and hole-board test. Data were collected through field observation and experiment, and data were analysed using lab test and Anova. Rate of exploitation and plant growth was measured using Regression analysis; comparison of plant growth in-situ and ex-situ used descriptive analysis. The environmental impact was measured by population structure vegetation analysis method by Shannon Weinner. The study revealed that the walikadep exudates did not have a stimulant effect. Exploitation of walikadep and the long time required to reach harvestable size resulted in the scarcity of the plant in the natural habitat. Plant growth was faster in-situ than ex-situ; and fast growth was obtained from middle part cuttings treated with vermicompost. Biodiversity index after exploitation was higher than before exploitation, possibly due to the toxic and allellopathic effect (phenolics) of the plant. Based on these findings, further research is needed to examine the toxic effects of the leave and stem extract of walikadep and their allelopathic effects. We recommend that people of Blumah village to stop using walikadep as the stimulant. The local people, village government in the regional and central levels, and perhutani should do an integrated efforts to conserve walikadep through Pengamanan Terpadu Konservasi Walikadep Lestari (PTKWL) program, so this population of this plant in the natural habitat can be maintained.

Keywords: utilization, medical plants, traditional, Tetastigma glabratum

Procedia PDF Downloads 265