Search results for: lipid metabolism
217 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress
Authors: S. K. Thind, Aparjot Kaur
Abstract:
Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism
Procedia PDF Downloads 325216 Activity of Resveratrol on the Influence of Aflatoxin B1 on the Testes of Sprague Dawley Rats
Authors: Ali D. Omur, Betul Apaydin Yildirim, Yavuz S. Saglam, Selim Comakli, Mustafa Ozkaraca
Abstract:
Twenty-eight male Sprague Dawley rats (aged 3 months) were used in the study. The animals were given feed and water as ad libitum. Sprague Dawley rats were randomly divided into 4 groups as 7 rats in each group. Aflatoxin B1 (7.5 μg/200 g), resveratrol (60 mg/kg) was administered to rats in groups other than the control group. At the end of the 16th day, blood, semen and tissue specimens were taken by decapitation under ether anesthesia. The effects of aflatoxin B1 and resveratrol on spermatological, pathological and biochemical parameters were determined in rats. When we evaluate the spermatological parameters, it is understood that resveratrol has a statistically significant difference in terms of sperm motility and viability (membrane integrity) compared to the control group and aflatoxin B1 administration groups, indicating a protective effect on spermatological parameters (groups: control, resveratrol, aflatoxin B1 and Afb1 + res; respectively, values of motility: 71,42 ± 0,52b, 72,85 ± 1, 48c , 60,71 ± 1,30a, 57,14 ± 2, 40a; values of viability: 63,85 ± 1,33b, 70,42 ± 2,61c, 55,00 ± 1,54a, 56,57 ± 0,89a. In terms of pathological parameters -histopathological examination- in the control and resveratrol groups, seminiferous tubules were observed to be in normal structure. In the group treated with aflatoxin, the regular structure of the spermatogenic cells deteriorated, and the seminiferous tubules became necrotic and degenerative. In the group treated with Afb1 + res, the decreasing of necrotic and degenerative changes were determined compared with in the group treated with aflatoxin. As immunohistochemical examination, cleaved caspase 3 expression was found to be very low in the control and resveratrol groups. Cleaved caspase 3 expression was severely exacerbated in seminiferous tubules in aflatoxin group but cleaved caspase 3 expression level decreased in Afb1 + res. In the biochemical direction, resveratrol has been shown to inhibit the adverse effects of aflatoxin on antioxidant levels (GSH-mmol/L, CAT-kU/L, GPx-U/mL, SOD-EU/mL) and to show a protective effect. For this purpose, the use of resveratrol with antioxidant activity was investigated in preventing or ameliorating damage to aflatoxin B1. It has been concluded that resveratrol effectively prevents the aflatoxin-induced testicular damage and lipid peroxidation. It has also been shown that resveratrol has protective effects on sperm motility and viability.Keywords: Aflatoxin B1, rat, resveratrol, sperm
Procedia PDF Downloads 360215 Hypolipidemic and Antioxidant Effects of Mycelial Polysaccharides from Calocybe indica in Hyperlipidemic Rats Induced by High-Fat Diet
Authors: Govindan Sudha, Mathumitha Subramaniam, Alamelu Govindasamy, Sasikala Gunasekaran
Abstract:
The aim of this study was to investigate the protective effect of Hypsizygus ulmarius polysaccharides (HUP) on reducing oxidative stress, cognitive impairment and neurotoxicity in D-galactose induced aging mice. Mice were subcutaneously injected with D-galactose (150 mg/kg per day) for 6 weeks and were administered HUP simultaneously. Aged mice receiving vitamin E (100 mg/kg) served as positive control. Chronic administration of D-galactose significantly impaired cognitive performance oxidative defence and mitochondrial enzymes activities as compared to control group. The results showed that HUP (200 and 400 mg/kg) treatment significantly improved the learning and memory ability in Morris water maze test. Biochemical examination revealed that HUP significantly increased the decreased activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), mitochondrial enzymes-NADH dehydrogenase, malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH), Na+K+, Ca2+, Mg2+ATPase activities, elevated the lowered total anti-oxidation capability (TAOC), glutathione (GSH), vitamin C and decreased the raised acetylcholinesterase (AChE) activities, malondialdehyde (MDA), hydroperoxide (HPO), protein carbonyls (PCO), advanced oxidation protein products (AOPP) levels in brain of aging mice induced by D-gal in a dose-dependent manner. In conclusion, present study highlights the potential role of HUP against D-galactose induced cognitive impairment, biochemical and mitochondrial dysfunction in mice. In vitro studies on the effect of HUP on scavenging DPPH, ABTS, DMPD, OH radicals, reducing power, B-carotene bleaching and lipid peroxidation inhibition confirmed the free radical scavenging and antioxidant activity of HUP. The results suggest that HUP possesses anti-aging efficacy and may have potential in treatment of neurodegenerative diseases.Keywords: aging, antioxidants, mushroom, neurotoxicity
Procedia PDF Downloads 530214 Esophageal Premalignant and Malignant Epithelial Lesions: Pathological Characteristics and Value of Cyclooxygenase-2 Expression.
Authors: Hanan Mohamed Abd Elmoneim, Rawan Saleh AlJawi, Razan Saleh AlJawi, Aseel Abdullah AlMasoudi , Zyad Adnan Turkistani, Anas Abdulkarim Alkhoutani , Ohood Musaed AlJuhani , Hanan Attiyah AlZahrani
Abstract:
Background Esophageal cancer is the eighth most common cancer worldwide. More than 90% of esophageal cancers are either squamous cell carcinoma or adenocarcinoma. Squamous dysplasia is a precancerous lesion for squamous cell carcinoma and Barrett's esophagus is the precancerous lesion for adenocarcinoma. Gastro-esophageal reflux disease (GERD) is the initiation factor for Barrett's esophagus. Cyclooxygenase-2 (COX-2) is a key enzyme in arachidonic metabolism. It appears to play an important role in gastrointestinal carcinogenesis. COX-2 activity may be a potential target for the prevention of cancer progression by selective COX-2 inhibitors, which decrease proliferation and increase apoptosis. Objectives To assess COX-2 expression in premalignant and malignant esophageal epitheliums changes and detect its roles in progression of these lesions. Materials and Methods We analyzed the expression of COX-2 immunohistochemically in 40 esophageal biopsies utilizing the streptavidin-biotin-peroxidase complex method on archival formalin fixed-paraffin embedded blocks. Histopathologically, 17 (42.5%) of cases were non-malignant cases which included GERD, Barrett's esophagus and squamous dysplasia. The malignant cases were 23 (57.5%) squamous cell carcinoma, adenocarcinoma and undifferentiated carcinoma. Results In non-malignant cases 7 (41.2%) out of 17 cases had high COX-2 expression. In squamous cell carcinoma 10 (83.3%) out of 12 cases had high COX-2 expression. The expression of COX-2 was high in all 9 (100%) cases of adenocarcinoma. COX-2 expression is significantly increased (P=0.005 and P=0.0001) in squamous cell carcinoma and adenocarcinoma respectively. There was a significant difference in COX-2 immunoreactivity between malignant and non-malignant lesions (P=0.0003). Conclusion COX-2 is responsible for the progression of esophageal diseases from benign to malignant. We recommend that COX-2 immunohistochemistry should be done routinely for premalignant and malignant esophageal lesions as selective COX-2 inhibitors will be helpful in the treatment. Further studies on molecular and genetic basis of COX-2 expression are needed to unmask its role and relation to progression of esophageal lesions.Keywords: Cox-2, Esophageal adinocarcinoma, Esophageal squamous cell carcinoma, Immunohistochemistry.
Procedia PDF Downloads 350213 Antidiabetic and Antioxidant Potential of Aqueous Extract of Jasminum humile Leaves in Nicotinamide/Streptozotocin induced Type-2 Diabetes Mellitus (T2DM) Rat
Authors: Parminder Nain, Jaspreet kaur, Vipin Saini, Sunil Sharma
Abstract:
Jasminum humile commonly known as yellow Jasmine or Pili chameli, is a medicinal plant used in Ayurveda for treating various diseases, one of which is diabetes mellitus. The current study aimed to establish the antidiabetic and antioxidant properties of aqueous extract of Jasminum humile leaves (AEJHL) in nicotinamide/streptozotocin induced type 2 diabetic rats. Phytochemical screening, HPLC analysis, and acute toxicity study of AEJHL were carried out. Male albino wistar rats (n=42) were divided into seven equal groups. Rats with moderate diabetes having hyperglycemia (blood glucose 250-400 mg/dl) were taken for the experiment. Various concentrations of aqueous extract of Jasminum humile leaves (50, 100, 200 and 300 mg/kg, p.o.), and glibenclamide (1mg/kg, p.o.) were orally administered to diabetic rats for 45 days. The effect of AEJHL on blood glucose, plasma insulin and biochemical parameters such as hemoglobin, total protein, serum creatinine, serum urea, alkaline phosphate, Glutamic-oxalacetic transaminase (SGOT) and glutamic-pyruvic transaminase (SGPT), as well as total cholesterol, triglycerides, and high-density lipoprotein (HDL) were also studied. The antioxidant effect of AEJHL was determined by analyzing hepatic and renal antioxidant markers, like superoxide dismutase (SOD), catalase (CAT), reduced Glutathione (GSH), Glutathione peroxidase (GPx), and lipid peroxidation (LPO) in diabetic rats. After 45-days oral administration of aqueous extract of Jasminum humile leaves significantly (p<0.05) reduced blood sugar and increase plasma insulin level and also reverse all above biochemical parameters and antioxidant enzyme level at dose dependent manner. These findings provide in vivo evidence that the aqueous extract of Jasminum humile leaves possess significant antidiabetic and antioxidant potential in nicotinamide/streptozotocin-induced type-2 diabetes mellitus in rats.Keywords: antidiabetic, antioxidant, jasminum humile, nicotinamide/streptozotocin, type-2 diabetic
Procedia PDF Downloads 199212 Impact of Environmental Pollution on Oxidative Stress Indices in African Cat Fish (Clarias gariepinus) from Araromi River in Ondo State, Nigeria
Authors: Arojojoye Oluwatosin Adetola, Nwaechefu Olajumoke Olufunlayo, Ademola Adetokunbo Oyagbemi, Jeremiah Moyinoluwalogo Afolabi, Asaolu Racheal Oluwabukola
Abstract:
The effects of man’s activities on the environment include depletion of natural resources alongside pollution of water bodies. Petroleum exploration in the Niger Delta region of Nigeria has compromised the aquatic environment with grave consequences on the entire ecosystem. In this study, we assessed the environmental safety of Araromi River, located in an oil-producing area in Ondo State, in the Niger Delta region of Nigeria by determining the levels of heavy metals (copper, cadmium, chromium, nickel, lead) and some biomarkers of oxidative stress (malondialdehyde, glutathione-S-transferase, glutathione peroxidase, catalase, superoxide dismutase, myeloperoxidase and reduced glutathione) in Clarias gariepinus (350-400g) from the river using standard methods. Clarias gariepinus from a clean fish farm in the same geographical location as the reference site (Ilesannmi fishery) was used as a control. Water samples from both sites were also analysed for some physicochemical parameters, heavy metals, and bacterial contamination. Our findings show a significant increase in malondialdehyde level (index of lipid peroxidation) as well as alterations in antioxidant status in the organs of Clarias gariepinus from Araromi River compared with control. A significant increase in bacterial contaminants, heavy metal pollutants, and particulate matter deposits were also observed in the water sample from Araromi River compared with control. In conclusion, high levels of indicators of environmental pollution observed in the water sample from Araromi River coupled with induction of oxidative stress in Clarias gariepinus from the river show that Araromi River is polluted; therefore, consumption of fishes and other aquatic organisms from the river may be unsafe for the people in that community.Keywords: Araromi River, Clarias gariepinus, environmental pollution, heavy metals, oxidative stress
Procedia PDF Downloads 162211 Comparison of Zinc Amino Acid Complex and Zinc Sulfate in Diet for Asian Seabass (Lates calcarifer)
Authors: Kanokwan Sansuwan, Orapint Jintasataporn, Srinoy Chumkam
Abstract:
Asian seabass is one of the economically important fish of Thailand and other countries in the Southeast Asia. Zinc is an essential trace metal to fish and vital to various biological processes and function. It is required for normal growth and indispensable in the diet. Therefore, the artificial diets offered to intensively cultivated fish must possess the zinc content required by the animal metabolism for health maintenance and high weight gain rates. However, essential elements must also be in an available form to be utilized by the organism. Thus, this study was designed to evaluate the application of different zinc forms, including organic Zinc (zinc amino acid complex) and inorganic Zinc (zinc sulfate), as feed additives in diets for Asian seabass. Three groups with five replicates of fish (mean weight 22.54 ± 0.80 g) were given a basal diet either unsupplemented (control) or supplemented with 50 mg Zn kg−¹ sulfate (ZnSO₄) or Zinc Amino Acid Complex (ZnAA) respectively. Feeding regimen was initially set at 3% of body weight per day, and then the feed amount was adjusted weekly according to the actual feeding performance. The experiment was conducted for 10 weeks. Fish supplemented with ZnAA had the highest values in all studied growth indicators (weight gain, average daily growth and specific growth rate), followed by fish fed the diets with the ZnSO₄, and lowest in fish fed the diets with the control. Lysozyme and superoxide dismutase (SOD) activity of fish supplemented with ZnAA were significantly higher compared with all other groups (P < 0.05). Fish supplemented with ZnSO₄ exhibited significant increase in digestive enzyme activities (protease, pepsin and trypsin) compared with ZnAA and the control (P < 0.05). However, no significant differences were observed for RNA and protein in muscle (P > 0.05). The results of the present work suggest that ZnAA are a better source of trace elements for Asian seabass, based on growth performance and immunity indices examined in this study.Keywords: Asian seabass, growth performance, zinc amino acid complex (ZnAA), zinc sulfate (ZnSO₄)
Procedia PDF Downloads 182210 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections
Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta
Abstract:
Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology
Procedia PDF Downloads 135209 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model
Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman
Abstract:
Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters
Procedia PDF Downloads 67208 Effect of Dose-Dependent Gamma Irradiation on the Fatty Acid Profile of Mud Crab, Scylla Serrata: A GC-FID Study
Authors: Keethadath Arshad, Kappalli Sudha
Abstract:
Mud crab, Scylla Serrata, a commercially important shellfish with high global demand appears to be the rich source of dietary fatty acids. Its increased production through aquaculture and highly perishable nature would necessitate improved techniques for their proper preservation. Optimized irradiation has been identified as an effective method to facilitate safety and extended shelf life for a broad range of the perishable food items including finfishes and shellfishes. The present study analyzed the effects of dose-dependent gamma irradiation on the fatty acid profile of the muscle derived from the candidate species (S. serrata) at both qualitative and quantitative levels. Wild grown, average sized, intermolt male S. Serrata were gamma irradiated (^60C, 3.8kGy/ hour) at the dosage of 0.5kGy, 1.0kGy and 2.0kGy using gamma chamber. Total lipid extracted by Folch method, after methylation, were analyzed for the presence fatty acids adopting Gas Chromatograph equipped with flame ionization detector by comparing with the authentic FAME reference standards. The tissue from non-irradiated S. serrata showed the presence of 12 SFA, 6 MUFA, 8PUFA and 2 TF; PUFA includes medicinally important ω-3 FA such as C18:3, C20:5 and C22:6 and ω-6 FA such as γ- C18:3 and C20:2. Dose-dependent gamma irradiation reduced the number of detectable fatty acids (10, 8 and 8 SFA, 6, 6 and 5MUFA, 7, 7, and 6 PUFA and 1, 1, and 0 TF in 0.5kGy, 1.0kGy and 2kGy irradiated samples respectively). Major fatty acids detected in both irradiated and non-irradiated samples were as follows: SFA- C16:0, C18:0, C22:0 and C14:0; MUFA - C18:1 and C16:1and PUFA- C18:2, C20:5, C20:2 and C22:6. Irradiation doses ranging from 1-2kGy substantially reduced the ω-6 C18:3 and ω-3 C18:3. However, the omega fatty acids such as C20:5, C22:6 and C20:2 could survive even after 2kGy irradiation. Significantly, trans fat like C18:2T and C18:1T were completely disappeared upon 2kGy irradiation. From the overall observations made from the present study, it is suggested that irradiation dose up to 1kGy is optimum to maintain the fatty acid profile and eradicate the trans fat of the muscle derived from S. serrata.Keywords: fatty acid profile, food preservation, gamma irradiation, scylla serrata
Procedia PDF Downloads 276207 Hepatocyte-Intrinsic NF-κB Signaling Is Essential to Control a Systemic Viral Infection
Authors: Sukumar Namineni, Tracy O'Connor, Ulrich Kalinke, Percy Knolle, Mathias Heikenwaelder
Abstract:
The liver is one of the pivotal organs in vertebrate animals, serving a multitude of functions such as metabolism, detoxification and protein synthesis and including a predominant role in innate immunity. The innate immune mechanisms pertaining to liver in controlling viral infections have largely been attributed to the Kupffer cells, the locally resident macrophages. However, all the cells of liver are equipped with innate immune functions including, in particular, the hepatocytes. Hence, our aim in this study was to elucidate the innate immune contribution of hepatocytes in viral clearance using mice lacking Ikkβ specifically in the hepatocytes, termed IkkβΔᴴᵉᵖ mice. Blockade of Ikkβ activation in IkkβΔᴴᵉᵖ mice affects the downstream signaling of canonical NF-κB signaling by preventing the nuclear translocation of NF-κB, an important step required for the initiation of innate immune responses. Interestingly, infection of IkkβΔᴴᵉᵖ mice with lymphocytic choriomeningitis virus (LCMV) led to strongly increased hepatic viral titers – mainly confined in clusters of infected hepatocytes. This was due to reduced interferon stimulated gene (ISG) expression during the onset of infection and a reduced CD8+ T-cell-mediated response. Decreased ISG production correlated with increased liver LCMV protein and LCMV in isolated hepatocytes from IkkβΔᴴᵉᵖ mice. A similar phenotype was found in LCMV-infected mice lacking interferon signaling in hepatocytes (IFNARΔᴴᵉᵖ) suggesting a link between NFkB and interferon signaling in hepatocytes. We also observed a failure of interferon-mediated inhibition of HBV replication in HepaRG cells treated with NF-kB inhibitors corroborating our initial findings with LCMV infections. Collectively, these results clearly highlight a previously unknown and influential role of hepatocytes in the induction of innate immune responses leading to viral clearance during a systemic viral infection with LCMV-WE.Keywords: CD8+ T cell responses, innate immune mechanisms in the liver, interferon signaling, interferon stimulated genes, NF-kB signaling, viral clearance
Procedia PDF Downloads 191206 Therapeutic Efficacy of Clompanus Pubescens Leaves Fractions via Downregulation of Neuronal Cholinesterases/NA⁺-K⁺ ATPase/IL-1 β and Improving the Neurocognitive and Antioxidants Status of Streptozotocin-Induced Diabetic Rats
Authors: Amos Sunday Onikanni, Bashir Lawal, Babatunji Emmanuel Oyinloye, Gomaa Mostafa-Hedeab, Mohammed Alorabi, Simona Cavalu, Augustine O. Olusola, Chih-Hao Wang, Gaber El-Saber Batiha
Abstract:
The increasing global burden of diabetes mellitus has called for the search for a therapeutic alternative that offers better activities and safety than conventional chemotherapy. Herein, we evaluated the neuroprotective and antioxidant properties of different fractions (ethyl acetate, N-butanol and residual aqueous) of Clompanus pubescens leaves in streptozotocin (STZ)-induced diabetic rats. Our results revealed a significant elevation in the levels of blood glucose, pro-inflammatory cytokines, lipid peroxidation, neuronal activities of acetylcholinesterase, butyrylcholinesterase, nitric oxide, epinephrine, norepinephrine, and Na+/K+-ATPase in diabetic non treated rats. In addition, decreased levels of enzymatic and non-enzymatic antioxidants were observed. Treatment with different fractions of C. pubescens leaves resulted in a significant reversal of the biochemical alteration and improved the neurocognitive deficit in STZ-induced diabetic rats. However, the ethyl-acetate fraction demonstrated higher activities than the other fractions and was characterized for its phytoconstituents, revealing the presence of Gallic acid (713.00 ppm), catechin (0.91 ppm), ferulic acid (0.98 ppm), rutin (59.82 ppm), quercetin (3.22 ppm) and kaempferol (4.07 ppm). Our molecular docking analysis revealed that these compounds exhibited different binding affinities and potentials for targeting BChE/AChE/ IL-1 β/Na+-K+-ATPase. However, only Kampferol and ferulic exhibited good drug-like, ADMET, and permeability properties suitable for use as a neuronal drug target agent. Hence, the ethyl-acetate fraction of C. pubescent leaves could be considered a source of promising bioactive metabolite for the treatment and management of cognitive impairments related to type II diabetes mellitus.Keywords: diabetes mellitus, neuroprotective, antioxidant, pro-inflammatory cytokines
Procedia PDF Downloads 117205 Transcriptomic Analysis of Fragrant Rice Reveals the Involvement of Post-transcriptional Regulation in Response to Zn Foliar Application
Authors: Muhammad Imran, Sarfraz Shafiq, Xiangru Tang
Abstract:
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcripts variability and proteome diversity in plants. Fragrant rice (Oryza sativa L.) has a high economic and nutritional value, and the application of micronutrients regulate 2-acetyl-1-pyrroline (2-AP) production, which is responsible for aroma in fragrant rice. However, no systematic investigation of AS events in response to micronutrients (Zn) has been performed in fragrant rice. Furthermore, the post-transcriptional regulation of genes involved in 2-AP biosynthesis is also not known. In this study, a comprehensive analysis of AS events under two gradients of Zn treatment in two different fragrant rice cultivars (Meixiangzhan-2 and Xiangyaxiangzhan) was performed. A total of 386 and 598 significant AS events were found in Meixiangzhan-2 treated with low and high doses of Zn, respectively. In Xiangyaxiangzhan, a total of 449 and 598 significant AS events were found in low and high doses of Zn, respectively. Go analysis indicated that these genes were highly enriched in physiological processes, metabolism, and cellular process in both cultivars. However, genotype and dose-dependent AS events were also detected in both cultivars. By comparing differential AS (DAS) events with differentially expressed genes (DEGs), we found a weak overlap among DAS and DEGs in both fragrant rice cultivars, indicating that only a few genes are post-transcriptionally regulated in response to Zn treatment. We further report that Zn differentially regulates the expression of 2-AP biosynthesis-related genes in both cultivars, and Zn treatment altered the editing frequency of SNPs in the genes involved in 2-AP biosynthesis. Finally, we showed that epigenetic modifications associated with active gene transcription are generally enriched over 2-AP biosynthesis-related genes. Taken together, our results provide evidence of the post-transcriptional gene regulation in fragrant rice in response to Zn treatment and highlight that the 2-AP biosynthesis pathway may also be post-transcriptionally regulated through epigenetic modifications. These findings will serve as a cornerstone for further investigation to understand the molecular mechanisms of 2-AP biosynthesis in fragrant rice.Keywords: fragrant rice, 2-acetyl-1-pyrroline, gene expression, zinc, alternative splicing, SNPs
Procedia PDF Downloads 112204 Paramecuim as a Model for the Evaluation of Toxicity (Growth, Total Proteins, Respiratory and GSH Bio Marker Changes) Observed after Treatment with Essential Oils Isolated from Artemisia herba-alba Plant of Algeria
Authors: Bouchiha Hanene, Rouabhi Rachid, Bouchama Khaled, Djebar Berrebbah Houraya, Djebar Mohamed Reda
Abstract:
Recently, some natural products such as essentials oils (EOs) have been used in the fields as alternative to synthetic compounds, to minimize the negative impacts to the environment. This fact has led to questions about the possible impact of EOs on ecosystems. Currently in toxicology, the use of alternative models can help to understand the mechanisms of toxic action, at different levels of organization of ecosystems. Algae, protozoa and bacteria form the base of the food chain and protozoan cells are used as bioindicators often of pollution in environment. Unicellular organisms offer the possibility of direct study of independent cells with specific characteristics of individual cells and whole organisms at the same time. This unicellular facilitates the study of physiological processes, and effects of pollutants at the cellular level, which makes it widely used to assess the toxic effects of various xenobiotics. This study aimed to verify the effects of EOs of one famous plant used tremendously in our folk medicine, namely Artemisia herba alba in causing acute toxicity (24 hours) and chronic (15 days) toxicity for model cellular (Paramecium sp). To this end, cellular’s of paramecium were exposed to various concentrations (Three doses were chosen) of EOs extracted from plant (Artemisia herba alba). In the first experiment, the cellular s cultures were exposed for 48 hours to different concentrations to determine the median lethal concentration (DL50). We followed the evolution of physiological parameters (growth), biochemical (total proteins, respiratory metabolism), as well as the variations of a bio marker the GSH. Our results highlighted a light inhibition of the growth of the protozoa as well as a disturbance of the contents of total proteins and a reduction in the reduced rate of glutathione. The polarographic study revealed a stimulation of the consumption of O2 and this at the treated cells.Keywords: essential oils, protozoa, bio indicators, toxicity, Growth, bio marker, proteins, polarographic
Procedia PDF Downloads 346203 Potency of Strophanthus hispidus Stem Bark in the Management of Streptozotocin-Induced Diabetic Rats
Authors: M. Osibemhe, I. O. Onoagbe
Abstract:
Diabetes mellitus is a common disease that has no known cure. The available orthodox drugs used for its management have one or more disadvantages. This study investigated the potency of aqueous and ethanol extracts of Strophanthus hispidus (SH) stem bark in the management of diabetes mellitus. Glucose concentration and lipid profile parameters of normal and streptozotocin-induced diabetic rats were monitored for 12weeks. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin (55 mg/kg). Male rats (wistar strain) numbering 30 were randomly selected into six groups of five rats each. Groups 1 and 6 served as normal and diabetic control respectively and received distilled water for 12weeks. Groups 2 and 3 were normal rats treated orally with the aid of a gavage, 250 mg/kg of aqueous and ethanol extracts respectively for 12weeks. Groups 4 and 5 were diabetic rats and were treated with the respective dose of aqueous and ethanol extracts for the same period. A significant (P˂0.05) progressive decrease in blood glucose concentrations of both normal and diabetic rats treated with the extracts were observed from the 2nd to 12th weeks when compared with the respective controls. No significant (P˃0.05) effects were observed in the basal values of both normal and diabetic rats. Administration of both extracts of SH to diabetic rats significantly (P˂0.05) lowered the concentrations of Total cholesterol, TG, and LDL, whereas it increases the concentration of HDL when compared with diabetic control. The concentrations of total cholesterol and LDL in normal rats treated with SH were also reduced when compared with normal control whereas SH had no significant (P˃0.05) effect on HDL. However, TG level of normal control was significantly (P˂0.05) lower than normal rats treated with both extracts. A progressive increase in weight of normal and diabetic rats treated with the extracts was observed on the 2nd – 12th weeks of administration, whereas diabetic control showed a progressive decrease in weight. The findings from this study indicated that SH has hypoglycemic and anti-lipidemic properties as well as anti-diabetic potentials. It also showed that ethanol extract had greater glucose lowering effect. Hence, SH may be considered as a potent anti-diabetic plant and could be used as alternative drug for the management of diabetes mellitus.Keywords: concentration, ethanol extract, hypoglycemic, total cholesterol
Procedia PDF Downloads 216202 Anaerobic Digestion of Organic Wastes for Biogas Production
Authors: Ayhan Varol, Aysenur Ugurlu
Abstract:
Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%.Keywords: biogas production, organic wastes, biomethane, anaerobic digestion
Procedia PDF Downloads 278201 Formulation of Suppositories Using Allanblackia Floribunda Butter as a Base
Authors: Mary Konadu
Abstract:
The rectal route for drug administration is becoming attractive to drug formulators because it can avoid hepatic first-pass effects, decrease gastrointestinal side effects and avoid undesirable effects of meals on drug absorption. Suppositories have been recognized as an alternative to the oral route in situations such as when the patient is comatose, unable to swallow, or when the drug produces nausea or vomiting. Effective drug delivery with appropriate pharmaceutical excipient is key in the production of clinically useful preparations. The high cost of available excipients coupled with other disadvantages have led to the exploration of potential excipients from natural sources. Allanblackia floribunda butter, a naturally occurring lipid, is used for medicinal, culinary, and cosmetic purposes. Different extraction methods (solvent (hexane) extraction, traditional/hot water extraction, and cold/screw press extraction) were employed to extract the oil. The different extracts of A. floribunda oil were analyzed for their physicochemical properties and mineral content. The oil was used as a base to formulate Paracetamol and Diclofenac suppositories. Quality control test were carried out on the formulated suppositories. The %age oil yield for hexane extract, hot water extract, and cold press extract were 50.40 ±0.00, 37.36±0.00, and 20.48±0.00, respectively. The acid value, saponification value, iodine value and free fatty acid were 1.159 ± 0.065, 208.51 ± 8.450, 49.877 ± 0.690 and 0.583 ± 0.032 respectively for hexane extract; 3.480 ± 0.055, 204.672±2.863, 49.04 ± 0.76 and 1.747 ± 0.028 respectively for hot water/traditional extract; 4.43 ± 0.055, 192.05±1.56, 49.96 ± 0.29 and 2.23 ± 0.03 respectively for cold press extract. Calcium, sodium, magnesium, potassium, and iron were minerals found to be present in the A. floribunda butter extracts. The uniformity of weight, hardness, disintegration time, and uniformity of content were found to be within the acceptable range. The melting point ranges for all the suppositories were found to be satisfactory. The cumulative drug release (%) of the suppositories at 45 minutes was 90.19±0.00 (Hot water extract), 93.75±0.00 (Cold Pres Extract), and 98.16±0.00 (Hexane Extract) for Paracetamol suppositories. Diclofenac sodium suppositories had a cumulative %age release of 81.60±0.00 (Hot water Extract), 95.33±0.00 (Cold Press Extract), and 99.20±0.00 (Hexane Extract). The physicochemical parameters obtained from this study shows that Allanblackia floribunda seed oil is edible and can be used as a suppository base. The suppository formulation was successful, and the quality control tests conformed to Pharmacopoeia standard.Keywords: allanblackia foribunda, paracetamol, diclofenac, suppositories
Procedia PDF Downloads 122200 Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation
Authors: Grace McCambridge, Alanna Keady, Madhur Agrawal, Dequina Nicholas Alvarado, Barbara Nikolajczyk, Leena Panneerseelan-Bharath
Abstract:
Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline.Keywords: autophagy, mitochondrial turnover, ROS, glycolysis
Procedia PDF Downloads 164199 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters
Authors: Sergejs Kolesovs, Pavels Semjonovs
Abstract:
Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants
Procedia PDF Downloads 93198 The Impacts of the Sit-Stand Workplace Intervention on Cardiometabolic Risk
Authors: Rebecca M. Dagger, Katy Hadgraft, Matthew Teggart, Peter Angell
Abstract:
Background: There is a growing body of evidence that demonstrates the association between sedentary behaviour, cardiometabolic risk and all-cause mortality. Since full time working adults spend approximately 8 hours per day in the workplace, interventions to reduce sedentary behaviour at work may alleviate some of the negative health outcomes associated with sedentary behaviour. The aims of this pilot study were to assess the impacts of using a Sit-Stand workstation on markers of cardiometabolic health in a cohort of desk workers. Methods: Twenty eight participants were recruited and randomly assigned to a control (n=5 males, 9 females, mean age 37 years ± 9.4 years) or intervention group (n= 5 males, 9 females, mean age 42 years ± 12.7 years). All participants attended the labs on 2 occasion’s pre and post intervention, following baseline measurements the intervention participants had the Sit Stand Workstations (Ergotron, USA) installed for a 10 week intervention period. The Sit Stand workstations allow participants to stand or sit at their usual workstation and participants were encouraged to the use the desk in a standing position at regular intervals throughout the working day. Cardiometabolic risk markers assessed were body mass, body composition (using bio impedance analysis; Tanita, Tokyo), fasting blood Total Cholesterol (TC), lipid profiles (HDL-C, LDL-C, TC: HDL-C ratio), triglycerides and fasting glucose (Cholestech LDX), resting systolic and diastolic blood pressure and resting heart rate. ANCOVA controlling for baseline values was used to assess the group difference in changes in risk markers between pre and post intervention. Results: The 10 week intervention was associated with significant reductions in some cardiometabolic risk factors. There were significant group effects on change in body mass (F (1,25)=5.915, p<0.05), total body fat percentage (F(1,25)=12.615, p<0.01), total fat mass (F (1,25)=6.954, p<0.05), and systolic blood pressure (F (1,25)=5.012, p<0.05). There were no other significant group effects on changes in other cardiometabolic risk markers. Conclusion: This pilot study highlights the importance of reducing sedentary behaviour in the workplace for reduction in cardiometabolic risk markers. Further research is required to support these findings.Keywords: sedentary behaviour, caridometabolic risk, evidence, risk makers
Procedia PDF Downloads 454197 Effects of Turmeric on Uterine Tissue in Rats with Metabolic Syndrome Induced by High Fructose Diet
Authors: Mesih Kocamuftuoglu, Gonca Ozan, Enver Ozan, Nalan Kaya, Sema Temizer Ozan
Abstract:
Metabolic Syndrome, one of the common metabolic disorder, occurs with co-development of insulin resistance, obesity, dislipidemia and hypertension problems. Insulin resistance appears to play a pathogenic role in the metabolic syndrome. Also, there is a relationship between insulin resistance and infertility as known. Turmeric (Curcuma longa L.) a polyphenolic chemical is widely used for its coloring, flavoring, and medicinal properties, and exhibits a strong antioxidant activity. In this study, we assess the effects of turmeric on rat uterine tissue in metabolic syndrome model induced by high fructose diet. Thirty-two adult female Wistar rats weighing 220±20 g were randomly divided into four groups (n=8) as follows; control, fructose, turmeric, and fructose plus turmeric. Metabolic syndrome was induced by fructose solution 20% (w/v) in tap water, and turmeric (C.Longa) administered at the dose of 80 mg/kg body weight every other day by oral gavage. After the experimental period of 8 weeks, rats were decapitated, serum and uterine tissues were removed. Serum lipid profile, glucose, insülin levels were measured. Uterine tissues were fixed for histological analyzes. The uterine tissue sections were stained with hematoxylin-eosin (H & E) stain, then examined and photographed on a light microscope (Novel N-800Mx20). As a result, fructose consumption effected serum lipids, insulin levels, and insulin resistance significantly. Endometrium and myometrium layers were observed in normal structure in control group of uterine tissues. Perivascular edema, peri glandular fibrosis, and inflammatory cell increase were detected in fructose group. Sections of the fructose plus turmeric group showed a significant improvement in findings when compared to the fructose group. Turmeric group cell structures were observed similar with the control group. These results demonstrated that high-fructose consumption could change the structure of the uterine tissue. On the other hand, turmeric administration has beneficial effects on uterine tissue at that dose and duration when administered with fructose.Keywords: metabolic syndrome, rat, turmeric, uterus
Procedia PDF Downloads 177196 Assessment of Acute Oral Toxicity Studies and Anti Diabetic Activity of Herbal Mediated Nanomedicine
Authors: Shanker Kalakotla, Krishna Mohan Gottumukkala
Abstract:
Diabetes is a metabolic disorder characterized by hyperglycemia, carbohydrates, altered lipids and proteins metabolism. In recent research nanotechnology is a blazing field for the researchers; latterly there has been prodigious excitement in the nanomedicine and nano pharmacological area for the study of silver nanoparticles synthesis using natural products. Biological methods have been used to synthesize silver nanoparticles in presence of medicinally active antidiabetic plants, and this intention made us assess the biologically synthesized silver nanoparticles from the seed extract of Psoralea corylfolia using 1 mM silver nitrate solution. The synthesized herbal mediated silver nanoparticles (HMSNP’s) then subjected to various characterization techniques such as XRD, SEM, EDX, TEM, DLS, UV and FT-IR respectively. In current study, the silver nanoparticles tested for in-vitro anti-diabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Herbal mediated silver nanoparticles were successfully obtained from bioreduction of silver nitrate using Psoralea corylifolia plant extract. Silver nanoparticles have been appropriately characterized and confirmed using different types of equipment viz., UV-vis spectroscopy, XRD, FTIR, DLS, SEM and EDX analysis. From the behavioral observations of the study, the female albino mice did not show sedation, respiratory arrest, and convulsions. Test compounds did not cause any mortality at the dose level tested (i.e., 2000 mg/kg body weight) doses till the end of 14 days of observation and were considered safe. It may be concluded that LD50 of the HMSNPs was 2000mg/kg body weight. Since LD50 of the HMSNPs was 2000mg/kg body weight, so the preferred dose range for HMSNPs falls between the levels of 200 and 400 mg/kg. Further In-vivo pharmacological models and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting the currently synthesized silver nanoparticles as a therapeutic target in treating chronic ailments.Keywords: herbal mediated silver nanoparticles, HMSNPs, toxicity of silver nanoparticles, PTP1B in-vitro anti-diabetic assay female albino mice, 425 OECD guidelines
Procedia PDF Downloads 273195 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water
Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer
Abstract:
Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software
Procedia PDF Downloads 82194 Cellular RNA-Binding Domains with Distant Homology in Viral Proteomes
Authors: German Hernandez-Alonso, Antonio Lazcano, Arturo Becerra
Abstract:
Until today, viruses remain controversial and poorly understood; about their origin, this problem represents an enigma and one of the great challenges for the contemporary biology. Three main theories have tried to explain the origin of viruses: regressive evolution, escaped host gene, and pre-cellular origin. Under the perspective of the escaped host gene theory, it can be assumed a cellular origin of viral components, like protein RNA-binding domains. These universal distributed RNA-binding domains are related to the RNA metabolism processes, including transcription, processing, and modification of transcripts, translation, RNA degradation and its regulation. In the case of viruses, these domains are present in important viral proteins like helicases, nucleases, polymerases, capsid proteins or regulation factors. Therefore, they are implicated in the replicative cycle and parasitic processes of viruses. That is why it is possible to think that those domains present low levels of divergence due to selective pressures. For these reasons, the main goal for this project is to create a catalogue of the RNA-binding domains found in all the available viral proteomes, using bioinformatics tools in order to analyze its evolutionary process, and thus shed light on the general virus evolution. ProDom database was used to obtain larger than six thousand RNA-binding domain families that belong to the three cellular domains of life and some viral groups. From the sequences of these families, protein profiles were created using HMMER 3.1 tools in order to find distant homologous within greater than four thousand viral proteomes available in GenBank. Once accomplished the analysis, almost three thousand hits were obtained in the viral proteomes. The homologous sequences were found in proteomes of the principal Baltimore viral groups, showing interesting distribution patterns that can contribute to understand the evolution of viruses and their host-virus interactions. Presence of cellular RNA-binding domains within virus proteomes seem to be explained by closed interactions between viruses and their hosts. Recruitment of these domains is advantageous for the viral fitness, allowing viruses to be adapted to the host cellular environment.Keywords: bioinformatics tools, distant homology, RNA-binding domains, viral evolution
Procedia PDF Downloads 387193 Evaluation of the Inhibitory Activity of Natural Extracts From Spontaneous Plant on the Α-Amylase and Α–Glucosidase and Their Antioxidant Activities
Authors: Ihcen Khacheba, Amar Djeridane, Abdelkarim Kamli, Mohamed Yousfi
Abstract:
Plant materials constitute an important source of natural bioactive molecules. Thus plants have been used from antiquity as sources of medicament against various diseases. These properties are usually attributed to secondary metabolites that are the subject of a lot of research in this field. This is particularly the case of phenolic compounds plants that are widely renowned in therapeutics as anti-inflammatories, enzyme inhibitors, and antioxidants, particularly flavonoïds. With the aim of acquiring a better knowledge of the secondary metabolism of the vegetable kingdom in the region of Laghouat and of the discovering of new natural therapeutics, 10 extracts from 5 Saharan plant species were submitted to chemical screening.The analysis of the preceding biological targets led to the evaluation of the biological activity of the extracts of the species Genista Corsica. The first step, consists in extracting and quantifying phenolic compounds. The second step has been devoted to stugying the effects of phenolic compounds on the kinetics catalyzed by two enzymes belonging to the class of hydrolase (the α-amylase and α-glucosidase) responsible for the digestion of sugars and finally we evaluate the antiantioxidant potential. The analysis results of phenolic extracts show clearly a low content of phenolic compounds in investigated plants. Average total phenolics ranged from 0.0017 to 11.35 mg equivalent gallic acid/g of the crude extract. Whereas the total flavonoids content lie between 0.0015 and 10.,96 mg/g equivalent of rutin. The results of the kinetic study of enzymatic reactions show that the extracts have inhibitory effects on both enzymes, with IC50 values ranging from 95.03 µg/ml to 1033.53 µg/ml for the α-amylase and 279.99 µg/ml to 1215.43 µg/ml for α-glucosidase whose greatest inhibition was found for the acetone extract of June (IC50 = 95.03 µg/ml). The results the antioxidant activity determined by ABTS, DPPH, and phosphomolybdenum tests clearly showed a good antioxidant capacity comparatively to antioxidants taken as reference the biological potential of these plants and could find their use in medicine to replace synthetic products.Keywords: phenolic extracts, inhibition effect, α-amylase, α-glucosidase, antioxidant activity
Procedia PDF Downloads 387192 Down Regulation of Smad-2 Transcription and TGF-B1 Signaling in Nano Sized Titanium Dioxide-Induced Liver Injury in Mice by Potent Antioxidants
Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry
Abstract:
Although it is known that nano-TiO2 and other nanoparticles can induce liver toxicity, the mechanisms and the molecular pathogenesis are still unclear. The present study investigated some biochemical indices of nano-sized Titanium dioxide (TiO2 NPS) toxicity in mice liver and the ameliorative efficacy of individual and combined doses of idebenone, carnosine and vitamin E. Nano-anatase TiO2 (21 nm) was administered as a total oral dose of 2.2 gm/Kg daily for 2 weeks followed by the afore-mentioned antioxidants daily either individually or in combination for 1month. TiO2-NPS induced a significant elevation in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatic oxidative stress biomarkers [lipid peroxides (LP), and nitric oxide levels (NOX), while it significantly reduced glutathione reductase (GR), reduced glutathione (GSH) and glutathione peroxidase(GPX) levels. Moreover the quantitative RT-PCR analysis showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of the fibrotic factors TGF-B1, VEGFand Smad-2. Histopathological examination of hepatic tissue reinforced the previous biochemical results. Our results also implied that inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity Tumor necrosis factor-α (TNF-α) and Interleukin -6 (IL-6) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation -2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down regulation in the antiapoptotic factor (bcl2) level. In conclusion idebenone, carnosine and vitamin E ameliorated the deviated previously mentioned parameters with variable degrees with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.Keywords: Nano-anatase TiO2, TGF-B1, SMAD-2
Procedia PDF Downloads 424191 Fabric Softener Deposition on Cellulose Nanocrystals and Cotton Fibers
Authors: Evdokia K. Oikonomou, Nikolay Christov, Galder Cristobal, Graziana Messina, Giovani Marletta, Laurent Heux, Jean-Francois Berret
Abstract:
Fabric softeners are aqueous formulations that contain ~10 wt. % double tailed cationic surfactants. Here, a formulation in which 50% surfactant was replaced with low quantities of natural guar polymers was developed. Thanks to the reduced surfactant quantity this product has less environmental impact while the guars presence was found to maintain the product’s performance. The objective of this work is to elucidate the effect of the guar polymers on the softener deposition and the adsorption mechanism on the cotton surface. The surfactants in these formulations are assembled into large distributed (0.1 – 1 µm) vesicles that are stable in the presence of guars and upon dilution. The effect of guars on the vesicles adsorption on cotton was first estimated by using cellulose nanocrystals (CNC) as a stand-in for cotton. The dispersion of CNC in water permits to follow the interaction between the vesicles, guars, and CNC in the bulk. It was found that guars enhance the deposition on CNC and that the vesicles are deposited intactly on the fibers driven by electrostatics. The mechanism of the vesicles/guars adsorption on cellulose fibers was identified by quartz crystal microbalance with dissipation monitoring. It was found that the guars increase the surfactant deposited quantity, in agreement with the results in the bulk. Also, the structure of the adsorbed surfactant on the fibers' surfaces (vesicle or bilayer) was influenced by the guars presence. Deposition studies on cotton fabrics were also conducted. Attenuated total reflection and scanning electron microscopy were used to study the effect of the polymers on this deposition. Finally, fluorescent microscopy was used to follow the adsorption of surfactant vesicles, labeled with a fluorescent dye, on cotton fabrics in water. It was found that, in the presence or not of polymers, the surfactant vesicles are adsorbed on fiber maintaining their vesicular structure in water (supported vesicular bilayer structure). The guars influence this process. However, upon drying the vesicles are transformed into bilayers and eventually wrap the fibers (supported lipid bilayer structure). This mechanism is proposed for the adsorption of vesicular conditioner on cotton fiber and can be affected by the presence of polymers.Keywords: cellulose nanocrystals, cotton fibers, fabric softeners, guar polymers, surfactant vesicles
Procedia PDF Downloads 180190 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 77189 Structure-Guided Optimization of Sulphonamide as Gamma–Secretase Inhibitors for the Treatment of Alzheimer’s Disease
Authors: Vaishali Patil, Neeraj Masand
Abstract:
In older people, Alzheimer’s disease (AD) is turning out to be a lethal disease. According to the amyloid hypothesis, aggregation of the amyloid β–protein (Aβ), particularly its 42-residue variant (Aβ42), plays direct role in the pathogenesis of AD. Aβ is generated through sequential cleavage of amyloid precursor protein (APP) by β–secretase (BACE) and γ–secretase (GS). Thus in the treatment of AD, γ-secretase modulators (GSMs) are potential disease-modifying as they selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ–secretase activity. This possibly avoids known adverse effects observed with complete inhibition of the enzyme complex. Virtual screening, via drug-like ADMET filter, QSAR and molecular docking analyses, has been utilized to identify novel γ–secretase modulators with sulphonamide nucleus. Based on QSAR analyses and docking score, some novel analogs have been synthesized. The results obtained by in silico studies have been validated by performing in vivo analysis. In the first step, behavioral assessment has been carried out using Scopolamine induced amnesia methodology. Later the same series has been evaluated for neuroprotective potential against the oxidative stress induced by Scopolamine. Biochemical estimation was performed to evaluate the changes in biochemical markers of Alzheimer’s disease such as lipid peroxidation (LPO), Glutathione reductase (GSH), and Catalase. The Scopolamine induced amnesia model has shown increased Acetylcholinesterase (AChE) levels and the inhibitory effect of test compounds in the brain AChE levels have been evaluated. In all the studies Donapezil (Dose: 50µg/kg) has been used as reference drug. The reduced AChE activity is shown by compounds 3f, 3c, and 3e. In the later stage, the most potent compounds have been evaluated for Aβ42 inhibitory profile. It can be hypothesized that this series of alkyl-aryl sulphonamides exhibit anti-AD activity by inhibition of Acetylcholinesterase (AChE) enzyme as well as inhibition of plaque formation on prolong dosage along with neuroprotection from oxidative stress.Keywords: gamma-secretase inhibitors, Alzzheimer's disease, sulphonamides, QSAR
Procedia PDF Downloads 255188 Multi-omics Integrative Analysis with Genome-Scale Metabolic Model Simulation Reveals Reaction Essentiality data in Human Astrocytes Under the Lipotoxic Effect of Palmitic Acid
Authors: Janneth Gonzalez, Andres Pinzon Velasco, Maria Angarita, Nicolas Mendoza
Abstract:
Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatory pathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, there are few studies on the neuro-protective mechanisms of tibolone, especially at the systemic (omic) level. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also use control theory to identify those reactions that control the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a change in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation.We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation in metabolic pathways that increase neurotoxicity and represent potential treatment targets. Finally, this study framework facilitates the understanding of metabolic regulation strategies, andit can be used for in silico exploring the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics, control theory
Procedia PDF Downloads 121