Search results for: biomass combustion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1636

Search results for: biomass combustion

766 Production of Biogas

Authors: J. O. Alabi

Abstract:

Biogas is a clean burning, easily produced natural fuel that is an important source of energy for cooking and heating in rural areas and third world countries. Anaerobic bacteria inside biodigesters break down biomass to produce biogas. (Which is 70% methane)? Currently there is no simple way to compress and store biogas. So, in order to use biogas as a source of energy, a direct feed from biodigeser to the store tap or heater must be made. Any excess biogas is vented into the atmosphere, which is wasteful and car have a negative effect on the environment, we have been tasked with designing a system that will be able to compress biogas using an off-grid power supply, making the biogas portable and makes through the use of large-scale, shared biodigester. Our final design is a system that maximizes simplicity and safety while minimizing cost.

Keywords: biogas, biodigesters, natural fuel, bionanotechnology

Procedia PDF Downloads 349
765 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron

Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava

Abstract:

Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).

Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation

Procedia PDF Downloads 106
764 Charcoal Traditional Production in Portugal: Contribution to the Quantification of Air Pollutant Emissions

Authors: Cátia Gonçalves, Teresa Nunes, Inês Pina, Ana Vicente, C. Alves, Felix Charvet, Daniel Neves, A. Matos

Abstract:

The production of charcoal relies on rudimentary technologies using traditional brick kilns. Charcoal is produced under pyrolysis conditions: breaking down the chemical structure of biomass under high temperature in the absence of air. The amount of the pyrolysis products (charcoal, pyroligneous extract, and flue gas) depends on various parameters, including temperature, time, pressure, kiln design, and wood characteristics like the moisture content. This activity is recognized for its inefficiency and high pollution levels, but it is poorly characterized. This activity is widely distributed and is a vital economic activity in certain regions of Portugal, playing a relevant role in the management of woody residues. The location of the units establishes the biomass used for charcoal production. The Portalegre district, in the Alto Alentejo region (Portugal), is a good example, essentially with rural characteristics, with a predominant farming, agricultural, and forestry profile, and with a significant charcoal production activity. In this district, a recent inventory identifies almost 50 charcoal production units, equivalent to more than 450 kilns, of which 80% appear to be in operation. A field campaign was designed with the objective of determining the composition of the emissions released during a charcoal production cycle. A total of 30 samples of particulate matter and 20 gas samples in Tedlar bags were collected. Particulate and gas samplings were performed in parallel, 2 in the morning and 2 in the afternoon, alternating the inlet heads (PM₁₀ and PM₂.₅), in the particulate sampler. The gas and particulate samples were collected in the plume as close as the emission chimney point. The biomass (dry basis) used in the carbonization process was a mixture of cork oak (77 wt.%), holm oak (7 wt.%), stumps (11 wt.%), and charred wood (5 wt.%) from previous carbonization processes. A cylindrical batch kiln (80 m³) with 4.5 m diameter and 5 m of height was used in this study. The composition of the gases was determined by gas chromatography, while the particulate samples (PM₁₀, PM₂.₅) were subjected to different analytical techniques (thermo-optical transmission technique, ion chromatography, HPAE-PAD, and GC-MS after solvent extraction) after prior gravimetric determination, to study their organic and inorganic constituents. The charcoal production cycle presents widely varying operating conditions, which will be reflected in the composition of gases and particles produced and emitted throughout the process. The concentration of PM₁₀ and PM₂.₅ in the plume was calculated, ranging between 0.003 and 0.293 g m⁻³, and 0.004 and 0.292 g m⁻³, respectively. Total carbon, inorganic ions, and sugars account, in average, for PM10 and PM₂.₅, 65 % and 56 %, 2.8 % and 2.3 %, 1.27 %, and 1.21 %, respectively. The organic fraction studied until now includes more than 30 aliphatic compounds and 20 PAHs. The emission factors of particulate matter to produce charcoal in the traditional kiln were 33 g/kg (wooddb) and 27 g/kg (wooddb) for PM₁₀ and PM₂.₅, respectively. With the data obtained in this study, it is possible to fill the lack of information about the environmental impact of the traditional charcoal production in Portugal. Acknowledgment: Authors thanks to FCT – Portuguese Science Foundation, I.P. and to Ministry of Science, Technology and Higher Education of Portugal for financial support within the scope of the project CHARCLEAN (PCIF/GVB/0179/2017) and CESAM (UIDP/50017/2020 + UIDB/50017/2020).

Keywords: brick kilns, charcoal, emission factors, PAHs, total carbon

Procedia PDF Downloads 126
763 Mathematical Simulation of Performance Parameters of Pulse Detonation Engine

Authors: Subhash Chander, Tejinder Kumar Jindal

Abstract:

Due to its simplicity, Pulse detonation engine technology has recently emerged as a future aerospace propulsion technology. In this paper, we studied various parameters affecting the performance of Pulse detonation engine (PDE) like tube length for proper deflagration to detonation transition (DDT), tube diameter (combustion tube), tube length, Shelkin spiral, Cell size, Equivalence ratio of fuel used etc. We have discussed various techniques for reducing the length of pulse tube by using various DDT enhancing devices. The effect of length of the tube from 40 mm to 3000 mm and diameter from 10 mm to 100 mm has been analyzed. The fuel used is C2H2 and oxidizer is O2. The results are processed in MATLAB for drawing valid conclusions.

Keywords: pulse detonation engine (PDE), deflagration to detonation (DDT), Schelkin spiral, cell size (λ)

Procedia PDF Downloads 561
762 Rhizobia-Containing Rhizobacterial Consortia and Intercropping Improved Faba Bean and Wheat Performances Under Stress Combining Drought and Phosphorus Deficiency

Authors: Said Cheto, Khawla Oukaltouma, Imane Chamkhi, Ammar Ibn Yasser, Bouchra Benmrid, Ahmed Qaddoury, Lamfeddal Kouisni, Joerg Geistlinger, Youssef Zeroual, Adnane Bargaz, Cherki Ghoulam

Abstract:

Our study aimed to assess, the role of inoculation of faba bean/wheat intercrops with selected rhizobacteria consortia gathering one rhizobia and two phosphate solubilizing bacteria “PSB” to alleviate the effects of combined water deficit and P limitation on Faba bean/ wheat intercrops versus monocrops under greenhouse conditions. One Vicia faba L variety (Aguadulce “Ag”), and one Triticum durum L. variety (Karim “K”) were grown as sole crops or intercrop in pots containing sterilized substrate (sand: peat 4:1v/v) added either with rock phosphate (RP) as the alone P source (P limitation) or with KH₂PO₄ in nutrient solution (P sufficient control). Plant inoculation was done using rhizobacterial consortia composed; C1(Rhizobium laguerreae, Kocuria sp, and Pseudomonas sp) and C2 (R. laguerreae, Rahnella sp, and Kocuria sp). Two weeks after inoculation, the plants were submitted to water deficit consisting of 40% of substrate water holding Capacity (WHC) versus 80% WHC for well-watered plants. At the flowering stage, the trial was assessed, and the results showed that inoculation with both consortia (C1 and C2) improved faba bean biomass in terms of shoots, roots, and nodules compared to inoculation with rhizobia alone, particularly C2 improved these parametres by 19.03, 78.99, and 72.73%, respectively. Leaf relative water content decreased under combined stress, particularly in response to C1 with a significant improvement of this parameter in wheat intercrops. For faba bean under P limitation, inoculation with C2 increased stomatal conductance (gs) by 35.73% compared to plants inoculated with rhizobia alone. Furthermore, the same inoculum C2 improved membrane stability by 44,33% versus 16,16% for C1 compared to inoculation with rhizobia alone under P deficit. For sole cropped faba bean plants, inoculation with both consortia improved N accumulation compared to inoculation with rhizobia alone with an increase of 70.75% under P limitation. Moreover, under the combined stress, intercropping inoculation with C2 improved plant biomass and N content (112.98%) in wheat plants, compared to the sole crop. Our finding revealed that consortium C2 might offer an agronomic advantage under water and P deficit and could be used as inoculum for enhancing faba bean and wheat production under both monocropping and intercropping systems.

Keywords: drought, phosphorus, intercropping, PSB, rhizobia, vicia faba, Triticum durum

Procedia PDF Downloads 57
761 High Physical Properties of Biochar Issued from Cashew Nut Shell to Adsorb Mycotoxins (Aflatoxins and Ochratoxine A) and Its Effects on Toxigenic Molds

Authors: Abderahim Ahmadou, Alfredo Napoli, Noel Durand, Didier Montet

Abstract:

Biochar is a microporous and adsorbent solid carbon product obtained from the pyrolysis of various organic materials (biomass, agricultural waste). Biochar is distinguished from vegetable charcoal by its manufacture methods. Biochar is used as the amendment in soils to give them favorable characteristics under certain conditions, i.e., absorption of water and its release at low speed. Cashew nuts shell from Mali is usually discarded on land by local processors or burnt as a mean for waste management. The burning of this biomass poses serious socio-environmental problems including greenhouse gas emission and accumulation of tars and soot on houses closed to factories, leading to neighbor complaints. Some mycotoxins as aflatoxins are carcinogenic compounds resulting from the secondary metabolism of molds that develop on plants in the field and during their conservation. They are found at high level on some seeds and nuts in Africa. Ochratoxin A, member of mycotoxins, is produced by various species of Aspergillus and Penicillium. Human exposure to Ochratoxin A can occur through consumption of contaminated food products, particularly contaminated grain, as well as coffee, wine grapes. We showed that cashew shell biochars produced at 400, 600 and 800°C adsorbed aflatoxins (B1, B2, G1, G2) at 100% by filtration (rapid contact) as well as by stirring (long contact). The average percentage of adsorption of Ochratoxin A was 35% by filtration and 80% by stirring. The duration of the biochar-mycotoxin contact was a significant parameter. The effect of biochar was also tested on two strains of toxigenic molds: Aspergillus parasiticus (producers of Aflatoxins) and Aspergillus carbonarius (producers of Ochratoxins). The growth of the strain Aspergillus carbonarius was inhibited at up to 60% by the biochar at 600°C. An opposite effect to the inhibition was observed on Aspergillus parasiticus using the same biochar. In conclusion, we observed that biochar adsorbs mycotoxins: Aflatoxins and Ochratoxin A to different degrees; 100% adsorption of aflatoxins under all conditions (filtration and stirring) and adsorption of Ochratoxin A varied depending on the type of biochar and the experiment conditions (35% by filtration and 85% by stirring). The effects of biochar at 600 °C on the toxigenic molds: Aspergillus parasiticus and Aspergillus carbonarius, varied according to the experimental conditions and the strains. We observed an opposite effect on the growth with an inhibition of Aspergillus carbonarius up to 60% and a stimulated growth of Aspergillus parasiticus.

Keywords: biochar, cashew nut shell, mycotoxins, toxicogenic molds

Procedia PDF Downloads 162
760 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil

Authors: Vipan Kumar Sohpal, Rajesh K Sharma

Abstract:

Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.

Keywords: jatropha curcus, computational analysis, emissions, NOx biofuels

Procedia PDF Downloads 566
759 Feasibility Study of Potential and Economic of Rice Straw VSPP Power Plant in Thailand

Authors: Sansanee Sansiribhan, Anusorn Rattanathanaophat, Chirapan Nuengchaknin

Abstract:

The potential feasibility of a 9.5 MWe capacity rice straw power plant project in Thailand was studied by evaluating the rice straw resource. The result showed that Thailand had a high rice straw biomass potential at the provincial level, especially, the provinces in the central, northeastern and western Thailand, which could feasibly develop plants. The economic feasibility of project was also investigated. The financial feasibility is also evaluated based on two important factors in the project, i.e., NPV ≥ 0 and IRR ≥ 11%. It was found that the rice straw power plant project at 9.5 MWe was financially feasible with the cost of fuel in the range of 30.6-47.7 USD/t.

Keywords: power plant, project feasibility, rice straw, Thailand

Procedia PDF Downloads 321
758 Experimental Assessment of Artificial Flavors Production

Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi

Abstract:

The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.

Keywords: artificial flavors, esterification, chemical equilibria, isothermal

Procedia PDF Downloads 315
757 Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest

Authors: Damian Czubak

Abstract:

The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements.

Keywords: classification, combustible material, flammable vegetation, Norway spruce

Procedia PDF Downloads 77
756 Research Trends in High Voltage Power Transmission

Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du

Abstract:

High voltage transmission is the most pivotal process in the electrical power industry. It requires a robust infrastructure that can last for decades without causing impairment in human life. Due to the so-called global warming, power transmission system has started to experience some challenges which could presumably escalate more in future. These challenges are earthquake resistance, transmission power losses, and high electromagnetic field. In this paper, research efforts aim to address these challenges are discussed. We focus in particular on the research in regenerative electric energy such as: wind, hydropower, biomass and sea-waves based on the energy storage and transmission possibility. We conclude by drawing attention to specific areas that we believe need more research.

Keywords: power transmission, regenerative energy, power quality, energy storage

Procedia PDF Downloads 340
755 Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis

Authors: Kittiphop Promdee, Somruedee Satitkune, Chakkrich Boonmee, Tharapong Vitidsant

Abstract:

Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass.

Keywords: pyrolysis, tropical wood, bio-oil, charcoal, heating value, SEM

Procedia PDF Downloads 459
754 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation

Authors: Annesha Ghosh, S. B. Agrawal

Abstract:

Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.

Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield

Procedia PDF Downloads 101
753 Practical Model of Regenerative Braking Using DC Machine and Boost Converter

Authors: Shah Krupa Rajendra, Amit Kumar

Abstract:

Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.

Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking

Procedia PDF Downloads 260
752 Energy Consumption Models for Electric Vehicles: Survey and Proposal of a More Realistic Model

Authors: I. Sagaama, A. Kechiche, W. Trojet, F. Kamoun

Abstract:

Replacing combustion engine vehicles by electric vehicles (EVs) is a major step in recent years due to their potential benefits. Battery autonomy and charging processes are still a big issue for that kind of vehicles. Therefore, reducing the energy consumption of electric vehicles becomes a necessity. Many researches target introducing recent information and communication technologies in EVs in order to propose reducing energy consumption services. Evaluation of realistic scenarios is a big challenge nowadays. In this paper, we will elaborate a state of the art of different proposed energy consumption models in the literature, then we will present a comparative study of these models, finally, we will extend previous works in order to propose an accurate and realistic energy model for calculating instantaneous power consumption of electric vehicles.

Keywords: electric vehicle, vehicular networks, energy models, traffic simulation

Procedia PDF Downloads 345
751 Solutions to Reduce CO2 Emissions in Autonomous Robotics

Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu

Abstract:

Mobile robots can be used in many different applications, including mapping, search, rescue, reconnaissance, hazard detection, and carpet cleaning, exploration, etc. However, they are limited due to their reliance on traditional energy sources such as electricity and oil which cannot always provide a convenient energy source in all situations. In an ever more eco-conscious world, solar energy offers the most environmentally clean option of all energy sources. Electricity presents threats of pollution resulting from its production process, and oil poses a huge threat to the environment. Not only does it pose harm by the toxic emissions (for instance CO2 emissions), it produces the combustion process necessary to produce energy, but there is the ever present risk of oil spillages and damages to ecosystems. Solar energy can help to mitigate carbon emissions by replacing more carbon intensive sources of heat and power. The challenge of this work is to propose the design and the implementation of electric battery recharge stations. Those recharge docks are based on the use of renewable energy such as solar energy (with photovoltaic panels) with the object to reduce the CO2 emissions. In this paper, a comparative study of the CO2 emission productions (from the use of different energy sources: natural gas, gas oil, fuel and solar panels) in the charging process of the Segway PT batteries is carried out. To make the study with solar energy, a photovoltaic panel, and a Buck-Boost DC/DC block has been used. Specifically, the STP005S-12/Db solar panel has been used to carry out our experiments. This module is a 5Wp-photovoltaic (PV) module, configured with 36 monocrystalline cells serially connected. With those elements, a battery recharge station is made to recharge the robot batteries. For the energy storage DC/DC block, a series of ultracapacitors have been used. Due to the variation of the PV panel with the temperature and irradiation, and the non-integer behavior of the ultracapacitors as well as the non-linearities of the whole system, authors have been used a fractional control method to achieve that solar panels supply the maximum allowed power to recharge the robots in the lesser time. Greenhouse gas emissions for production of electricity vary due to regional differences in source fuel. The impact of an energy technology on the climate can be characterised by its carbon emission intensity, a measure of the amount of CO2, or CO2 equivalent emitted by unit of energy generated. In our work, the coal is the fossil energy more hazardous, providing a 53% more of gas emissions than natural gas and a 30% more than fuel. Moreover, it is remarkable that existing fossil fuel technologies produce high carbon emission intensity through the combustion of carbon-rich fuels, whilst renewable technologies such as solar produce little or no emissions during operation, but may incur emissions during manufacture. The solar energy thus can help to mitigate carbon emissions.

Keywords: autonomous robots, CO2 emissions, DC/DC buck-boost, solar energy

Procedia PDF Downloads 406
750 Area Exclosure as a Government Strategy to Restore Woody Plant Species Diversity: Case Study in Southern Ethiopia

Authors: Tsegaw Abebe, Temesgen Abebe

Abstract:

Land degradation is one of a serious environmental challenge in Ethiopia and is one of the major underlying causes for declining agricultural productivity. The Ethiopia government realized the significance of environmental restoration specifically on deforested and degraded land after the 1973 and 1984/85 major famines that struck the country. Among the various conservation strategies, the establishment of area exclosures have been regarded as an effective response to halt and reverse the problems of land degradation. There are limited studies in Ethiopia dealing how the conversion of free grazing lands and degraded lands by closures increase biomass accumulation. However, these studies are not sufficient to conclude about the strength of area closures to restore degraded vegetations at the diverse agro-ecological condition. The overall objective of this study was, therefore, to assess and evaluate the usefulness of area closure technique in enhancing rehabilitation of degraded ecosystem and thereby increase the natural capital in the study site (southern Ethiopia). Woody plant species were collected from area exclosure for eight year and adjacent degraded land with similar landscape positions using systematic sampling plot design technique. Woody species diversity was determined by Shannon diversity. Comparative assessment result of woody plant species analysis showed that the density of woody species in the exclosure and degraded site were 778 and 222 individuals per hectare, respectively. A total of 16 woody species, representing 12 families were recorded in the study site. Out of the 12 families, all were recorded in the exclosure while 5 were recorded in the degraded site. Out of the 16 species, 15 were recorded in the exclosure while six were in the degraded site. A total of 10 species were recorded in the exclosure, which were absent in the degraded site. Similarly, one species was recorded in the degraded site which was not present in the exclosure. The results showed that protecting of degraded site from human and animal disturbances promotes woody plant species regenerations and productivity Apart from increasing woody plant species, the local communities have benefited from the exclosure in the form of both products (grass harvesting) and services (ecological). Due to this reason the local communities have positive attitudes and contribute a lot for the success of enclosures in the study site. The present study clearly showed that area closure interventions should be oriented towards managing and improving the productivity of the degraded land, in such a way that both the need for conservation of biodiversity and environmental sustainability, and the demands of the local people for biomass resources can be achieved.

Keywords: degraded land, exclosure, land restoration, woody vegetation

Procedia PDF Downloads 401
749 Dependence of Autoignition Delay Period on Equivalence Ratio for i-Octane, Primary Reference Fuel

Authors: Sunil Verma

Abstract:

In today’s world non-renewable sources are depleting quickly, so there is a need to produce efficient and unconventional engines to minimize the use of fuel. Also, there are many fatal accidents happening every year during extraction, distillation, transportation and storage of fuel. Reason for explosions of gaseous fuel is unwanted autoignition. Autoignition characterstics of fuel are mandatory to study to build efficient engines and to avoid accidents. This report is concerned with study of autoignition delay characteristics of iso-octane by using rapid compression machine. The paper clearly explains the dependence of ignition delay characteristics on variation of equivalence ratios from lean to rich mixtures. The equivalence ratio is varied from 0.3 to 1.2.

Keywords: autoignition, iso-octane, combustion, rapid compression machine, equivalence ratio, ignition delay

Procedia PDF Downloads 428
748 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products

Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch

Abstract:

Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.

Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method

Procedia PDF Downloads 260
747 Conservation Agriculture under Mediterranean Climate: Effects on below and Above-Ground Processes during Wheat Cultivation

Authors: Vasiliki Kolake, Christos Kavalaris, Sofia Megoudi, Maria Maxouri, Panagiotis A. Karas, Aris Kyparissis, Efi Levizou

Abstract:

Conservation agriculture (CA), is a production system approach that can tackle the challenges of climate change mainly through facilitating carbon storage into the soil and increasing crop resilience. This is extremely important for the vulnerable Mediterranean agroecosystems, which already face adverse environmental conditions. The agronomic practices used in CA, i.e. permanent soil cover and no-tillage, result in reduced soil erosion and increased soil organic matter, preservation of water and improvement of quality and fertility of the soil in the long-term. Thus the functional characteristics and processes of the soil are considerably affected by the implementation of CA. The aim of the present work was to assess the effects of CA on soil nitrification potential and mycorrhizal colonization about the above-ground production in a wheat field. Two adjacent but independent field sites of 1.5ha each were used (Thessaly plain, Central Greece), comprising the no-till and conventional tillage treatments. The no-tillage site was covered by residues of the previous crop (cotton). Potential nitrification and the nitrate and ammonium content of the soil were measured at two different soil depths (3 and 15cm) at 20-days intervals throughout the growth period. Additionally, the leaf area index (LAI) was monitored at the same time-course. The mycorrhizal colonization was measured at the commencement and end of the experiment. At the final harvest, total yield and plant biomass were also recorded. The results indicate that wheat yield was considerably favored by CA practices, exhibiting a 42% increase compared to the conventional tillage treatment. The superior performance of the CA crop was also depicted in the above-ground plant biomass, where a 26% increase was recorded. LAI, which is considered a reliable growth index, did not show statistically significant differences between treatments throughout the growth period. On the contrary, significant differences were recorded in endomycorrhizal colonization one day before the final harvest, with CA plants exhibiting 20% colonization, while the conventional tillage plants hardly reached 1%. The on-going analyses of potential nitrification measurements, as well as nitrate and ammonium determination, will shed light on the effects of CA on key processes in the soil. These results will integrate the assessment of CA impact on certain below and above-ground processes during wheat cultivation under the Mediterranean climate.

Keywords: conservation agriculture, LAI, mycorrhizal colonization, potential nitrification, wheat, yield

Procedia PDF Downloads 111
746 The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine

Authors: Hanbey Hazar

Abstract:

An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased.

Keywords: diesel engine, dimethyl adipate (DMA), exhaust emissions, coating

Procedia PDF Downloads 261
745 The Influence of Crude Oil on Growth of Freshwater Algae

Authors: Al-Saboonchi Azhar

Abstract:

The effects of Iraqi crude oil on growth of three freshwater algae (Chlorella vulgaris Beij., Scenedesmus acuminatus (Lag.) Chodat. and Oscillatoria princeps Vauch.) were investigated, basing on it's biomass expressed as Chl.a. Growth rate and doubling time of the cell were calculated. Results showed that growth rate and species survival varied with concentrations of crude oil and species type. Chlorella vulgaris and Scenedesmus acuminatus were more sensitive in culture containing crude oil as compared with Oscillatoria princeps cultures. The growth of green algae were significantly inhibited in culture containing (5 mg/l) crude oil, while the growth of Oscillatoria princeps reduced in culture containing (10 mg/l) crude oil.

Keywords: algae, crude oil, green algae, Cyanobacteria

Procedia PDF Downloads 544
744 Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach

Authors: Razaq A. Olaitan, Ayansina Ayanlade

Abstract:

Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems.

Keywords: aerosol loading, aerosol types, health risks, optical properties

Procedia PDF Downloads 38
743 Possibilities and Challenges for District Heating

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

From a system perspective, there are several benefits of DH. A possibility to utilize the excess heat from waste incineration and biomass-based combined heat and power (CHP) production (e.g. possibility to utilize the excess heat from electricity production) are two examples. However, in a future sustainable society, the benefits of DH may be less obvious. Due to the climate changes and increased energy efficiency of buildings, the demand for space heating is expected to decrease. Due to the society´s development towards circular economy, a larger amount of the waste will be material recycled, and the possibility for DH production by the energy recovery through waste incineration will be reduced. Furthermore, the benefits of biomass-based CHP production will be less obvious since the marginal electricity production will no longer be linked to high greenhouse gas emissions due to an increased share of renewable electricity capacity in the electricity system. The purpose of the study is (1) to provide an overview of the possible development of other sectors which may influence the DH in the future and (2) to detect new business strategies which would enable for DH to adapt to the future conditions and remain competitive to alternative heat production in the future. A system approach was applied where DH is seen as a part of an integrated system which consists of other sectors as well. The possible future development of other sectors and the possible business strategies for DH producers were searched through a systematic literature review In order to remain competitive to the alternative heat production in the future, DH producers need to develop new business strategies. While the demand for space heating is expected to decrease, the space cooling demand will probably increase due to the climate changes, but also due to the better insulation of buildings in the cases where the home appliances are the heat sources. This opens up a possibility for applying DH-driven absorption cooling, which would increase the annual capacity utilization of the DH plants. The benefits of the DH related to the energy recovery from the waste incineration will exist in the future since there will always be a need to take care of materials and waste that cannot be recycled (e.g. waste containing organic toxins, bacteria, such as diapers and hospital waste). Furthermore, by operating central controlled heat pumps, CHP plants, and heat storage depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid. DH producers can also enable development of local biofuel supply chains and reduce biofuel production costs by integrating biofuel and DH production in local DH systems.

Keywords: district heating, sustainable business strategies, sustainable development, system approach

Procedia PDF Downloads 70
742 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine

Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski

Abstract:

Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: electric vehicle, power generator, range extender, Wankel engine

Procedia PDF Downloads 140
741 Fuel Cells Not Only for Cars: Technological Development in Railways

Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz

Abstract:

Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.

Keywords: railway, hydrogen, fuel cells, hybrid vehicles

Procedia PDF Downloads 170
740 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor

Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap

Abstract:

Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor.  It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.

Keywords: biodiesel, palm oil, transesterification, oscillatory baffled reactor

Procedia PDF Downloads 156
739 Anaerobic Co-Digestion of Pressmud with Bagasse and Animal Waste for Biogas Production Potential

Authors: Samita Sondhi, Sachin Kumar, Chirag Chopra

Abstract:

The increase in population has resulted in an excessive feedstock production, which has in return lead to the accumulation of a large amount of waste from different resources as crop residues, industrial waste and solid municipal waste. This situation has raised the problem of waste disposal in present days. A parallel problem of depletion of natural fossil fuel resources has led to the formation of alternative sources of energy from the waste of different industries to concurrently resolve the two issues. The biogas is a carbon neutral fuel which has applications in transportation, heating and power generation. India is a nation that has an agriculture-based economy and agro-residues are a significant source of organic waste. Taking into account, the second largest agro-based industry that is sugarcane industry producing a high quantity of sugar and sugarcane waste byproducts such as Bagasse, Press Mud, Vinasse and Wastewater. Currently, there are not such efficient disposal methods adopted at large scales. According to manageability objectives, anaerobic digestion can be considered as a method to treat organic wastes. Press mud is lignocellulosic biomass and cannot be accumulated for Mono digestion because of its complexity. Prior investigations indicated that it has a potential for production of biogas. But because of its biological and elemental complexity, Mono-digestion was not successful. Due to the imbalance in the C/N ratio and presence of wax in it can be utilized with any other fibrous material hence will be digested properly under suitable conditions. In the first batch of Mono-digestion of Pressmud biogas production was low. Now, co-digestion of Pressmud with Bagasse which has desired C/N ratio will be performed to optimize the ratio for maximum biogas from Press mud. In addition, with respect to supportability, the main considerations are the monetary estimation of item result and ecological concerns. The work is designed in such a way that the waste from the sugar industry will be digested for maximum biogas generation and digestive after digestion will be characterized for its use as a bio-fertilizer for soil conditioning. Due to effectiveness demonstrated by studied setups of Mono-digestion and Co-digestion, this approach can be considered as a viable alternative for lignocellulosic waste disposal and in agricultural applications. Biogas produced from the Pressmud either can be used for Powerhouses or transportation. In addition, the work initiated towards the development of waste disposal for energy production will demonstrate balanced economy sustainability of the process development.

Keywords: anaerobic digestion, carbon neutral fuel, press mud, lignocellulosic biomass

Procedia PDF Downloads 156
738 Improved Dielectric Properties of CaCu₃Ti₄O₁₂ by Calcination at Different Temperatures

Authors: Lovepreet Kaur Dhugga, Dwijendra P. Singh

Abstract:

Calcium copper titanate (CCTO) was synthesized via the sol-gel auto-combustion method. The precursor was calcined at 800°C and 1000°C for 6 hours providing brown-coloured powders, which were pelletized and sintered at 1000°C for 12 hrs to determine their dielectric behaviour in the frequency range (100Hz-10MHz) at room temperature. The dielectric constant(εr) and loss tangent (tanδ) has been found to be ~ 6153 and 0.5 for 800°C and ~ 5504 and 0.2 for 1000°C respectively, at frequency 1kHz. Microstructure study revealed maximum grain growth occurs in sample calcined at 800°C, responsible for its high dielectric constant. Phase identification of CaCu₃Ti₄O₁₂ has been carried out through X-ray diffraction. It can be used in various electronic applications as it shows large εᵣ and low tanδ values over a wide frequency spectrum, including energy storage devices, microwave shielding, and sensors.

Keywords: calcium copper titanate, dielectric behaviour, microstructure, X-ray diffraction

Procedia PDF Downloads 53
737 Resource Assessment of Animal Dung for Power Generation: A Case Study

Authors: Gagandeep Kaur, Yadwinder Singh Brar, D. P. Kothari

Abstract:

The paper has an aggregate analysis of animal dung for converting it into renewable biomass fuel source that could be used to help the Indian state Punjab to meet rising power demand. In Punjab district Bathinda produces over 4567 tonnes of animal dung daily on a renewable basis. The biogas energy potential has been calculated using values for the daily per head animal dung production and total no. of large animals in Bathinda of Punjab. The 379540 no. of animals in district could produce nearly 116918 m3 /day of biogas as renewable energy. By converting this biogas into electric energy could produce 89.8 Gwh energy annually.

Keywords: livestock, animal dung, biogas, renewable energy

Procedia PDF Downloads 495