Search results for: temperature terms
13081 Comparative Study of the Earth Land Surface Temperature Signatures over Ota, South-West Nigeria
Authors: Moses E. Emetere, M. L. Akinyemi
Abstract:
Agricultural activities in the South–West Nigeria are mitigated by the global increase in temperature. The unpredictive surface temperature of the area had increased health challenges amongst other social influence. The satellite data of surface temperatures were compared with the ground station Davis weather station. The differential heating of the lower atmosphere were represented mathematically. A numerical predictive model was propounded to forecast future surface temperature.Keywords: numerical predictive model, surface temperature, satellite date, ground data
Procedia PDF Downloads 47413080 Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.Keywords: corrugated absorber, double flow, flat plate, solar air heater
Procedia PDF Downloads 35313079 Onion Storage and the Roof Influence in the Tropics
Authors: O. B. Imoukhuede, M. O. Ale
Abstract:
The periodic scarcity of onion requires an urgent solution in Nigerian agro- economy. The high percentage of onion losses incurred after the harvesting period is due to non-availability of appropriate facility for its storage. Therefore, some storage structures were constructed with different roofing materials. The response of the materials to the weather parameters like temperature and relative humidity were evaluated to know their effects on the performance of the storage structures. The temperature and relative humidity were taken three times daily alongside with the weight of the onion in each of the structures; the losses as indicated by loss indices like shrinkage, rottenness, sprouting, and colour were identified and percentage loss per week determined. The highest mean percentage loss (22%) was observed in the structure with iron roofing materials while structure with thatched materials had the lowest (9.4%); The highest temperature was observed in the structure with Asbestos roofing materials and no significant difference in the temperature value in the structure with thatched and Iron materials; highest relatively humidity was found in Asbestos roofing material while the lowest in the structure with iron matetrials. It was conclusively found that the storage structure with thatched roof had the best performance in terms of losses.Keywords: Nigeria, onion, storage structures, weather parameters, roof materials, losses
Procedia PDF Downloads 56013078 Dyeing of Polyester/Cotton Blends with Reverse-Micelle Encapsulated High Energy Disperse/Reactive Dye Mixture
Authors: Chi-Wai Kan, Yanming Wang, Alan Yiu-Lun Tang, Cheng-Hao Lee Lee
Abstract:
Dyeing of polyester/cotton blend fabrics in various polyester/cotton percentages (32/68, 40/60 and 65/35) was investigated using (poly(ethylene glycol), PEG) based reverse-micelle. High energy disperse dyes and warm type reactive dyes were encapsulated and applied on polyester/cotton blend fabrics in a one bath one step dyeing process. Comparison of reverse micellar-based and aqueous-based (water-based) dyeing was conducted in terms of colour reflectance. Experimental findings revealed that the colour shade of the dyed fabrics in reverse micellar non-aqueous dyeing system at a lower dyeing temperature of 98°C is slightly lighter than that of conventional aqueous dyeing system in two-step process (130oC for disperse dyeing and 70°C for reactive dyeing). The exhaustion of dye in polyester-cotton blend fabrics, in terms of colour reflectance, were found to be highly fluctuated at dyeing temperature of 98°C.Keywords: one-bath dyeing, polyester/cotton blends, disperse/reactive dyes, reverse micelle
Procedia PDF Downloads 15113077 Densities and Viscosities of Binary Mixture Containing Diethylamine and 2-Alkanol
Authors: Elham jassemi Zargani, Mohammad almasi
Abstract:
Densities and viscosities for binary mixtures of diethylamine + 2 Alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15 to 323.15 K. Excess molar volumes V_m^E and viscosity deviations Δη were calculated and correlated by the Redlich−Kister type function to derive the coefficients and estimate the standard error. For mixtures of diethylamine with used 2-alkanols, V_m^E and Δη are negative over the entire range of mole fraction. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the inter-molecular interactions between the unlike molecules of the binary mixtures.Keywords: densities, viscosities, diethylamine, 2-alkanol, Redlich-Kister
Procedia PDF Downloads 38913076 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement.Keywords: pin on disk test, contact temperature, wear, sliding surface, friction, ambient temperature
Procedia PDF Downloads 8413075 Biomedical Definition Extraction Using Machine Learning with Synonymous Feature
Authors: Jian Qu, Akira Shimazu
Abstract:
OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%.Keywords: information retrieval, definition retrieval, OOV (out of vocabulary), biomedical information retrieval
Procedia PDF Downloads 49613074 The Analysis of Solar Radiation Exergy in Hakkari
Authors: Hasan Yildizhan
Abstract:
According to the Solar Energy Potential Atlas (GEPA) prepared by Turkish Ministry of Energy, Hakkari is ranked first in terms of sunshine duration and it is ranked eighth in terms of solar radiation energy. Accordingly, Hakkari has a rich potential of investment with regard to solar radiation energy. The part of the solar radiation energy arriving on the surface of the earth which is transposable to useful work is determined by means of exergy analysis. In this study, the radiation exergy values for Hakkari have been calculated and evaluated by making use of the monthly average solar radiation energy and temperature values measured by General Directorate of State Meteorology.Keywords: solar radiation exergy, Hakkari, solar energy potential, Turkey
Procedia PDF Downloads 71313073 Controlling of Water Temperature during the Electrocoagulation Process Using an Innovative Flow Columns -Electrocoagulation Reactor
Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola
Abstract:
A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 35 0C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-35 0C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 35 0C to the vicinity of 28 0C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.8 0C and from 29.8 to 31.9 0C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 28 0C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 35 0C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.Keywords: water temperature, flow column, electrocoagulation
Procedia PDF Downloads 37513072 Effect of Citric Acid and Clove on Cured Smoked Meat: A Traditional Meat Product
Authors: Esther Eduzor, Charles A. Negbenebor, Helen O. Agu
Abstract:
Smoking of meat enhances the taste and look of meat, it also increases its longevity, and helps preserve the meat by slowing down the spoilage of fat and growth of bacteria. The Lean meat from the forequarter of beef carcass was obtained from the Maiduguri abattoir. The meat was cut into four portions with weight ranging from 525-545 g. The meat was cut into bits measuring about 8 cm in length, 3.5 cm in thickness and weighed 64.5 g. Meat samples were washed, cured with various concentration of sodium chloride, sodium nitrate, citric acid and clove for 30 min, drained and smoked in a smoking kiln at a temperature range of 55-600°C, for 8 hr a day for 3 days. The products were stored at ambient temperature and evaluated microbiologically and organoleptically. In terms of processing and storage there were increases in pH, free fatty acid content, a decrease in water holding capacity and microbial count of the cured smoked meat. The panelists rated control samples significantly (p < 0.05) higher in terms of colour, texture, taste and overall acceptability. The following organisms were isolated and identified during storage: Bacillus specie, Bacillus subtilis, streptococcus, Pseudomonas, Aspergillus niger, Candida and Penicillium specie. The study forms a basis for new product development for meat industry.Keywords: citric acid, cloves, smoked meat, bioengineering
Procedia PDF Downloads 44813071 A Numerical Investigation of Total Temperature Probes Measurement Performance
Authors: Erdem Meriç
Abstract:
Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes
Procedia PDF Downloads 14113070 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells
Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis
Abstract:
This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening
Procedia PDF Downloads 7313069 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification
Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk
Procedia PDF Downloads 27913068 Effects of Roof Materials on Onion Storage
Authors: Imoukhuede Oladunni Bimpe, Ale Monday Olatunbosun
Abstract:
Periodic scarcity of onion requires urgent solution in Nigerian agro-economy. The high percentage of onion losses incurred after harvesting period is due to non-availability of appropriate facility for its storage. Therefore, some storage structures were constructed with different roofing materials. The response of the materials to the weather parameters like temperature and relative humidity were evaluated to know their effects on the performance of the storage structures. The temperature and relative humidity were taken three times daily alongside with the weight of the onion in each of the structures; the losses as indicated by loss indices like shrinkage, rottenness, sprouting and colour were identified and percentage loss per week determined. The highest mean percentage loss (22%) was observed in the structure with iron roofing materials while structure with thatched materials had the lowest (9.4%); The highest temperature was observed in the structure with Asbestos roofing materials and no significant difference in the temperature value in the structure with thatched and Iron materials; highest relatively humidity was found in Asbestos roofing material while the lowest in the structure with Iron materials. It was conclusively found that the storage structure with thatched roof had the best performance in terms of losses.Keywords: onion, storage structures, weather parameters, roof materials, losses
Procedia PDF Downloads 61513067 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack
Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær
Abstract:
This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.Keywords: PEM electrolysis stack, current density, temperature, pressure
Procedia PDF Downloads 20313066 Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer
Authors: Soo-Yeon Seo, Jong-Wook Lim, Se-Ki Song
Abstract:
Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature.Keywords: FRP (Fiber Reinforced Polymer), high temperature, experiment under temperature change, calcium silicate board
Procedia PDF Downloads 39613065 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge
Authors: Heng Han, Zhilei Liang, Xiangong Zhou
Abstract:
In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed; By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1℃, which meets the requirements of construction control accuracy; For the main cable with a diameter greater than 400mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.Keywords: suspension bridge, main cable, temperature field, finite element
Procedia PDF Downloads 16413064 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic
Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad
Abstract:
Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.Keywords: CSTR, temperature, PID, fuzzy logic
Procedia PDF Downloads 46013063 Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures
Authors: Kewen Li
Abstract:
Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal, including geothermal, power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using thermoelectric generator (TEG), however, can directly transform thermal energy into electricity by using Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the big disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C) TEG system. The efficiency of the system was improved significantly, about 20% greater. Laboratory experiments have been conducted to measure the output power, including both open and net power, at different conditions: different modes of connections between TEG modules, different mechanical structures, different temperature differences between hot and cold sides. The cost of the TEG power generator has been reduced further because of the increased efficiency and is lower than that of photovoltaics (PV) in terms of equivalent energy generated. The TEG apparatus has been pilot tested and the data will be presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are co-produced.Keywords: TEG, direct power generation, efficiency, thermoelectric effect
Procedia PDF Downloads 24213062 Influence of Pouring Temperature on the Formation of Spheroidal and Lamellar Graphite in Cast Iron
Authors: Mehmet Ekici
Abstract:
The objective of this research is to investigate the effect of pouring temperature on the microstructure of the cast iron. The pattern was designed with 300 mm of width, and the thickness variations are 1.25 mm and poured at five different temperatures; 1300, 1325, 1350, 1375 and 1400°C. Several cast irons, prepared with different chemical compositions and microstructures (three lamellar and three spheroidal structures) have been examined by extensive mechanical testing and optical microscopy. The fluidity of spheroidal and lamellar graphite in cast iron increases with the pouring temperature. The numbers of nodules were decreased by increasing pouring temperature for spheroidal structures. Whereas, the numbers of flakes of lamellar structures changed by both pouring temperature and chemical composition. In general, with increasing pouring temperature, the amount of pearlite in the internal structure of both lamellar and spheroidal graphite cast iron materials were increased.Keywords: spheroidal graphite cast iron, lamellar graphite in cast iron, pouring temperature, tensile test and impact test
Procedia PDF Downloads 33613061 Evaluation of Thermal Barrier Coating According to Temperature and Curvature
Authors: Hyunwoo Song, Jeong-Min Lee, Yongseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
To avoid the damage of gas turbine blade from high-temperature, thermal barrier coating (TBC) is applied on the blade. However, it is damaged by thermal fatigue during the operation of gas turbine, and this damage lead to delamination of TBC between top coat and bond coat. The blade can be damaged after the failure of TBC, so durability evaluation of TBC should be performed. The durability of thermal barrier coating was decreased according to the increase of temperature, because thermal stress according to increase of temperature. Also, the curvature can be affect to durability of TBC, because the stress is determined by the shape of the TBC. Therefore, the effect of temperature and curvature on the stress should be evaluated. In this study, finite element analysis according to temperature and curvature were performed in the same condition of Kim et al. Finally, the stress was evaluated from the finite element analysis results according to temperature and curvature.Keywords: curvature, finite element analysis, thermal barrier coating, thermal fatigue, temperature
Procedia PDF Downloads 56713060 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid
Authors: S. Levitsky, R. Bergman
Abstract:
Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.Keywords: elastic tube, sound propagation, temperature effect, viscoelastic liquid
Procedia PDF Downloads 42113059 Temperature Distribution Simulation of Divergent Fluid Flow with Helical Arrangement
Authors: Ehan Sabah Shukri, Wirachman Wisnoe
Abstract:
Numerical study is performed to investigate the temperature distribution in an annular diffuser fitted with helical tape hub. Different pitches (Y = 20 mm, and Y = 30 mm) for the helical tape are studied with different heights (H = 20 mm, 22 mm, and 24 mm) to be compared. The geometry of the annular diffuser and the inlet condition for both hub arrangements are kept constant. The result obtains that using helical tape insert with different pitches and different heights will force the temperature to distribute in a helical direction; however the use of helical tape hub with height (H = 22 mm) for both pitches enhance the temperature distribution in a good manner.Keywords: helical tape, divergent fluid flow, temperature distribution, swirl flow, CFD
Procedia PDF Downloads 44813058 Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature
Authors: R. Nasrin, M. Ferdows
Abstract:
Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level.Keywords: PV module, solar radiation, efficiency, cell temperature
Procedia PDF Downloads 36313057 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures
Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý
Abstract:
In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.Keywords: aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature
Procedia PDF Downloads 42913056 Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors
Authors: Longkui Zhu, Zhengcao Li
Abstract:
High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution.Keywords: advanced high temperature gas-cooled reactor, hydrogen and nitrogen diffusion, microstructure evolution, nuclear graphite, radioactive waste management
Procedia PDF Downloads 31213055 A Study on the Magnetic and Mechanical Properties of Nd-Fe-B Sintered Magnets According to Sintering Temperature
Authors: J. H. Kim, S. Y. Park, K. M. Lim, S. K. Hyun
Abstract:
The effect of sintering temperature on the magnetic and mechanical properties of Nd-Fe-B sintered magnets has been investigated in this study. The sintering temperature changed from 950°C to 1120°C. While remanence and hardness of the magnets increased with increasing sintering temperature, the coercivity first increased, and then decreased. The optimum magnetic and mechanical properties of the magnets were obtained at the sintering temperature of 1050°C. In order to clarify the reason for the variation on magnetic and mechanical properties of the magnets, we systematically analyzed the microstructure.Keywords: magnetic and mechanical property, microstructure, permanent magnets, sintered Nd-Fe-B magnet
Procedia PDF Downloads 33713054 Pre-Service Teachers’ Conceptual Representations of Heat and Temperature
Authors: Abdeljalil Métioui
Abstract:
The purpose of this paper is to present the results of research on the conceptual representations of 128 Quebec (Canada) pre-service teachers enrolled in their third year of university in a program to train elementary teachers about heat and temperature. To identify their conceptual representations about heat and temperature, we constructed a multiple-choice questionnaire consisting of five questions. For each question, they had to explain their choice of an answer. At the methodological level, this step is essential to be able to identify the student conceptual representations. It should be noted that the selected questions were based: (1) on the works have done worldwide on primary and secondary students’ misconceptions about heat and temperature; (2) on the notions prescribed in the curriculum related to the physical world and (3) on student’s everyday contexts. As illustrations, the following are the erroneous conceptual representations identified in our analysis of the data collected: (1) The change of state of the matter does not require a constant temperature, (2) The temperature is a measure in degrees to indicate the level of heat of an object or person, (3) The mercury contained in a thermometer expands when it is heated so that the particles which constitute it expand and (4) The sensation of cold (or warm) is related to the difference in temperature. In conclusion, we will see that it is possible to develop situations of conflict, dealing specifically with the limits of the analogy between heat and temperature. These situations must consider the conceptual representations of the pre-service teachers, as well as the relevant scientific understanding of the concept of heat and temperature.Keywords: conceptual representation, heat, temperature, pre-service teachers
Procedia PDF Downloads 13313053 High-Temperature Behavior of Boiler Steel by Friction Stir Processing
Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar
Abstract:
High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing
Procedia PDF Downloads 23913052 Catalytic Combustion of Methane over Co/Mo and Co/Mn Catalysts at Low Temperature
Authors: Ahmed I. Osman, Jehad K. Abu-Dahrieh, Jillian M. Thompson, David W. Rooney
Abstract:
Natural gas (the main constituent is Methane 95%) is considered as an alternative to petroleum for the production of synthetics fuels. Nowadays, methane combustion at low temperature has received much attention however; it is the most difficult hydrocarbon to be combusted. Co/Mo and (4:1 wt/wt) catalysts were prepared from a range of different precursors and used for the low temperature total methane oxidation (TMO). The catalysts were characterized by, XRD, BET and H2-TPR and tested under reaction temperatures of 250-400 °C with a GHSV= 36,000 mL g-1 h-1. It was found that the combustion temperature was dependent on the type of the precursor, and that those containing chloride led to catalysts with lower activity. The optimum catalyst was Co/Mo (4:1wt/wt) where greater than 20% methane conversion was observed at 250 °C. This catalyst showed a high degree of stability for TMO, showing no deactivation during 50 hours of time on stream.Keywords: methane low temperature total oxidation, oxygen carrier, Co/Mo, Co/Mn
Procedia PDF Downloads 544