Search results for: relative wear
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2831

Search results for: relative wear

2771 Development and Characterization of Wear Properties of Aluminum 8011 Hybrid Metal Matrix Composites

Authors: H. K. Shivanand, A. Yogananda

Abstract:

The objective of present investigation is to study the effect of reinforcements on the wear properties of E-Glass short fibers and Flyash reinforced Al 8011 hybrid metal matrix composites. The alloy of Al 8011 reinforced with E-glass and fly ash particulates are prepared by simple stir casting method. The MMC is obtained for different composition of E-glass and flyash particulates (varying E-glass with constant fly ash and varying flyash with constant E-glass percentage). The wear results of ascast hybrid composites with different compositions of reinforcements at varying sliding speeds and different loads are discussed. The results reveals that as the percentage of reinforcement increases wear rate will decrease.

Keywords: metal matrix composites, aluminum alloy 8011, stir casting, wear test

Procedia PDF Downloads 350
2770 Wear Resistance of Graphene Oxide and Carbon Nanotubes Silanized Coatings

Authors: Henrique Gomes dos Santos, Manoel Henrique Alves, Jane Zoppas Ferreira, Annelise Kopp Alves

Abstract:

This work aimed to seek an environmentally sustainable surface coating alternative by researching the influence of the addition of graphene oxide (GO) and carbon nanotubes (CNT) on the silanization of coatings to increase the wear resistance in galvanized steel, using the pin-on-disk test. The results obtained were compared between different concentrations of additives and the number of coating layers, in addition to comparing with samples without coating and only with silane layers. Bis-1,2-(triethoxysilyl)ethane (BTSE) silane was used in silanizing the coatings with CNT or GO and applied to the samples through dip-coating to form one, four, or eight layers. The wear test results found that three samples stood out in relation to the objective, showing an increase in wear resistance compared to the galvanized sample only. The rolling effect and the lubricity character presented by carbon nanotubes were positive for the increase in wear resistance obtained. The reduction in wear compared to the galvanized-only sample reached 82%. Raman spectroscopy was also carried out to detect the presence of silane, GO, and CNT, in addition to roughness tests and SEM to assess the homogeneity of the coating. The carbonaceous additives, graphene oxide, and carbon nanotubes in certain amounts of layers and specific concentrations fulfilled their objective against the wear imposed on the substrate.

Keywords: silane, coating, graphene oxide, carbon nanotubes, wear resistance

Procedia PDF Downloads 13
2769 The Tribological Behaviors of Vacuum Gas Nitriding Titanium and Steel Substrates at Different Process Temperatures

Authors: Hikmet Cicek

Abstract:

Metal nitrides show excellence tribological properties and they used for especially on machine parts. In this work, the vacuum gas nitriding proses were applied to the titanium, D2 and 52100 steel substrates at three different proses temperatures (500 °C, 600°C and 700 °C). Structural, mechanical and tribological properties of the samples were characterized. X-Ray diffractometer, scanning electron microscope and energy dispersive spectroscopy analyses were conducted to determine structural properties. Microhardness test and pin-on-disc wear test were made to observe tribological properties. Coefficient of friction, wear rate and wear traces were examined comparatively. According to the test results, the process temperature very effective parameter for the vacuum gas nitriding method.

Keywords: gas nitriding, tribology, wear, coating

Procedia PDF Downloads 199
2768 Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges

Authors: Jie Chen, Chris Cheng, Kai Zhang

Abstract:

Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed.

Keywords: fracture surface, microstructure, polycrystalline diamond, PDC, wear surface

Procedia PDF Downloads 53
2767 Developing an Active Leisure Wear Range: A Dilemma for Khanna Enterprises

Authors: Jagriti Mishra, Vasundhara Chaudhary

Abstract:

Introduction: The case highlights various issues and challenges faced by Khanna Enterprises while conceptualizing and execution of launching Active Leisure wear in the domestic market, where different steps involved in the range planning and production have been elaborated. Although Khanna Enterprises was an established company which dealt in the production of knitted and woven garments, they took the risk of launching a new concept- Active Leisure wear for Millennials. Methodology: It is based on primary and secondary research where data collection has been done through survey, in-depth interviews and various reports, forecasts, and journals. Findings: The research through primary and secondary data and execution of active leisure wear substantiated the acceptance, not only by the millennials but also by the generation X. There was a demand of bigger sizes as well as more muted colours. Conclusion: The sales data paved the way for future product development in tune with the strengths of Khanna Enterprises.

Keywords: millennials, range planning, production, active leisure wear

Procedia PDF Downloads 209
2766 Tribological Properties of Different Mass Ratio High Velocity Oxygen Fuel-Sprayed Al₂O₃-TiO₂ Coatings on Ti-6Al-4V Alloy

Authors: Mehmet Fahri Sarac, Gokcen Akgun

Abstract:

Ti–6Al–4V alloys are widely used in biomedical industries because of its attractive mechanical and physicochemical properties. However, they have poor wear resistance. High velocity oxygen fuel (HVOF) coatings were investigated as a way to improve the wear resistance of this alloy. In this paper, different mass ratio of Al₂O₃-TiO₂ powders (60/40, 87/13 and 97/3) was employed to enhance the tribological properties of Ti–6Al–4V. The tribological behavior was investigated by wear tests using ball-on-disc and pin-on-disc tribometer. The microstructures of the contact surfaces were determined by a scanning electron microscopy before and after the test to study the wear mechanism. Uncoated and coated surfaces after wear test are also subjected to micro-hardness tests. The tribological test results showed that the microhardness, friction and wear resistance of coated Ti-6Al-4V alloys increases by increasing TiO₂ content in the powder composite when other experimental conditions were constant. Finally, Al₂O₃-TiO₂ powder composites for the investigated conditions, both coating samples had satisfactory values of friction and wear resistance, and they could be suitable candidates for Ti–6Al–4V material.

Keywords: HVOF (High Velocity Oxygen Fuel), Al₂O₃-TiO₂, Ti-6Al-4V, tribology

Procedia PDF Downloads 195
2765 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia

Authors: David Robert Irvine

Abstract:

In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.

Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear

Procedia PDF Downloads 159
2764 Temperature Dependent Tribological Properties of Graphite

Authors: Pankaj Kumar Das, Niranjan Kumar, Prasun Chakraborti

Abstract:

Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear.

Keywords: high temperature tribology, oxidation, turbostratic graphite, wear

Procedia PDF Downloads 514
2763 Contemporary Army Prints for Women’s Wear Kurti

Authors: Shaleni Bajpai, Nancy Stephan

Abstract:

Various designs of women’s kurtis with different styles, motifs and prints were available in market but none of the kurtis was found in army print. Mostly army prints are used for men’s wear like jackets, trousers, caps, bags. The main colours available in military prints were beige, parrot green, red, dark blue, light blue, orange, bottle green, pink and the original military green colour. As the original camouflage is banned in civil wears so the different variety and colours were used in this study to popularize army prints in women’s wear. The aim of this project was to construct different styles of women kurti’s with various colours of different military prints. Mood board, inspiration and colour board was prepared to design the kurtis. The fabric used for construction was army printed poplin and crepe. The designing and construction of kurti’s were divided into two categories such as - casual and party wear. Casual wear had simple silhouette like a-line, high-low and waist coat style whereas party wear included princess line, panelled and bandhani style. Structured questionnaire was prepared to assess the acceptance of newly designed kurtis with respect to colour combination, overall appearance and cost. Purposively sampling method was adopted for selection of respondents. Opinion was taken from 100 women of various age groups. The result and analysis was presented through graph and percentage. Kurtis in army print of both the categories were appreciated by the respondents.

Keywords: army, kurti, casual wear, party wear

Procedia PDF Downloads 302
2762 Evaluation of PTFE Composites with Mineral Tailing Considering Friction, Wear and Cost

Authors: Antônio P. de Araújo Neto, Ruy D. A. da Silva Neto, Juliana R. de Souza, Salete K. P. de Medeiros, João T. N. de Medeiros

Abstract:

The tribological test with Pin-On-Disc configuration measures friction and wear properties in dry or lubricated sliding surfaces of a variety of materials and coatings. Polymeric matrix composites loaded with mineral filler were used, 1%, 3%, 10%, 30%, and 50% mass percentage of filler, to reduce the material cost by using mineral tailings. Using a pin-on-disc tribometer to quantify coefficient of friction and wear resistance of the specimens. The parameters known to performing the test were 300 rpm rotation, normal load of 16N and duration of 33.5 minutes. The composite with 10% mineral filler performed better, considering that the wear resistance was good when compared to the other compositions and an average low coefficient of friction, in the order of μ ≤ 0.15.

Keywords: microcomposites, microparticles tailings of scheelite, PTFE, tribology

Procedia PDF Downloads 369
2761 Investigation of Stellram Indexable Milling Cutter XDLT09-D41 Tool Wear for Machining of Ti6Al4V

Authors: Saad Nawaz, Yu Gang, Miao Haibin

Abstract:

Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand, titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study, Stellram Indexable milling cutter XDLT09-D41 is used for rough down milling of Ti6Al4V for small depth of cut under different combinations of parameters and application of high-pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, and thermal crack. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal deformations were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. It was found that maximum tool life was obtained at the speed of 40m/min, feed rate of 358mm/min and depth of cut of 0.8mm. In the end, it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and deformation propagation.

Keywords: tool wear, cutting speed, flank wear , tool life

Procedia PDF Downloads 316
2760 The Friction and Wear Behaviour of Ti2AlC MAX Phase

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of Ti2AlC were investigated. In order to modify the surface properties of Ti2AlC, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti2AlC. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti2AlC from 6 GPa to 13GPa. In the pin-on-disc test, it was found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti2AlC/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti2AlC under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti2AlC.

Keywords: MAX phase, wear, hardness, boronizing

Procedia PDF Downloads 309
2759 Wear Characteristics of Al Based Composites Fabricated with Nano Silicon Carbide Particles

Authors: Mohammad Reza Koushki Ardestani, Saeed Daneshmand, Mohammad Heydari Vini

Abstract:

In the present study, AA7075/SiO2 composites have been fabricated via liquid metallurgy process. Using the degassing process, the wet ability of the molten aluminum alloys increased which improved the bonding between aluminum matrix and reinforcement (SiO2) particles. AA7075 alloy and SiO2 particles were taken as the base matrix and reinforcements, respectively. Then, contents of 2.5 and 5 wt. % of SiO2 subdivisions were added into the AA7075 matrix. To improve wettability and distribution, reinforcement particles were pre-heated to a temperature of 550°C for each composite sample. A uniform distribution of SiO2 particles was observed through the matrix alloy in the microstructural study. A hardened EN32 steel disc as the counter face was used to evaluate the wear rate pin-on-disc, a wear testing machine containing. The results showed that the wear rate of the AA/SiO2 composites was lesser than that of the monolithic AA7075 samples. Finally, The SEM worn surfaces of samples were investigated.

Keywords: Al7075, SiO₂, wear, composites, stir casting

Procedia PDF Downloads 101
2758 Filler Elastomers Abrasion at Steady State: Optimal Use Conditions

Authors: Djeridi Rachid, Ould Ouali Mohand

Abstract:

The search of a mechanism for the elastomer abrasive wear study is an open issue. The practice difficulties are complex due to the complexity of deformation mechanism, to the complex mechanism of the material tearing and to the marked interactions between the tribological parameters. In this work, we present an experimental technique to study the elastomers abrasive wear. The interaction 'elastomer/indenter' implicate dependant ant temporary of different tribological parameters. Consequently, the phenomenon that governs this interaction is not easy to explain. An optimal elastomers compounding and an adequate utilization conditions of these materials that define its resistance at the abrasion is discussed. The results are confronted to theoretical models: the weight loss variation in function of blade angle or in function of cycle number is in agreement with rupture models and with the mechanism of fissures propagation during the material tearing in abrasive wear of filler elastomers. The weight loss in function of the sliding velocity shows the existence of a critical velocity that corresponds to the maximal wear. The adding of silica or black carbon influences in a different manner on wear abrasive behavior of filler elastomers.

Keywords: abrasion wear, filler elastomer, tribology, hyperelastic

Procedia PDF Downloads 322
2757 An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF

Authors: L. Capitanu, V. Floresci, L. L. Badita

Abstract:

Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals.

Keywords: plastics, composites with short glass fibres, moulding, wear, experimental modelling, glass fibres content influence

Procedia PDF Downloads 266
2756 Design of Semi-Automatic Vent and Flash Remover

Authors: Inba Blesso P., Senthil Kumar P.

Abstract:

The main consideration of any tire manufacturing process is wear resistance. One of the factors that cause tire wear is improper removal of vent and flash from the tire surface. The contact point between tyre surface and vent is highly supposed to wear. When the vehicle running at higher speed with heavy load, the tire vent and flash is wearing initially and it makes few of the tire surface material to wear along with it. Hence, provision must be given to efficient removal vent and flash thereby tire wear. Human efforts in trimming of tire vent results in time consuming and inaccurate output. Hence, this lead to the reduction in production rate and profit. Thus, the development of automated system can helps to attain minimum time consumption and provide a possible way to get the profitable production. Semi-automated system that employs Pneumatic actuators and sequencing circuits are focused in this study. By implementing this, one can achieve the accurate results with reduction in time and profitable output.

Keywords: tire manufacturing, pneumatic system, vent and flash removal, engineering and technology

Procedia PDF Downloads 381
2755 Wear Performance of SLM Fabricated 1.2709 Steel Nanocomposite Reinforced by TiC-WC for Mould and Tooling Applications

Authors: Daniel Ferreira, José M. Marques Oliveira, Filipe Oliveira

Abstract:

Wear phenomena is critical in injection moulding processes, causing failure of the components, and making the parts more expensive with an additional wasting time. When very abrasive materials are being injected inside the steel mould’s cavities, such as polymers reinforced with abrasive fibres, the consequences of the wear are more evident. Maraging steel (1.2709) is commonly employed in moulding components to resist in very aggressive injection conditions. In this work, the wear performance of the SLM produced 1.2709 maraging steel reinforced by ultrafine titanium and tungsten carbide (TiC-WC), was investigated using a pin-on-disk testing apparatus. A polypropylene reinforced with 40 wt.% fibreglass (PP40) disk, was used as the counterpart material. The wear tests were performed at 40 N constant load and 0.4 ms-1 sliding speed at room temperature and humidity conditions. The experimental results demonstrated that the wear rate in the 18Ni300-TiC-WC composite is lower than the unreinforced 18Ni300 matrix. The morphology and chemical composition of the worn surfaces was observed by 3D optical profilometry and scanning electron microscopy (SEM), respectively. The resulting debris, caused by friction, were also analysed by SEM and energy dispersive X-ray spectroscopy (EDS). Their morphology showed distinct shapes and sizes, which indicated that the wear mechanisms, may be different in maraging steel produced by casting and SLM. The coefficient of friction (COF) was recorded during the tests, which helped to elucidate the wear mechanisms involved.

Keywords: selective laser melting, nanocomposites, injection moulding, polypropylene with fibreglass

Procedia PDF Downloads 154
2754 The Friction and Wear Behavior of 0.35 VfTiC-Ti3SiC2 Composite

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modify the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7 N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.

Keywords: MAX phase, boronizing, hardness, wear

Procedia PDF Downloads 349
2753 Wear Progress and -Mechanisms in Torpedo Ladles in Steel Industry

Authors: Mattahias Maj, Fabio Tatzgern, Karl Adam, Damir Kahrimanovic, Markus Varga

Abstract:

Torpedo ladles are necessary transport carriages in steel production to move the molten crude iron from the blast furnace to the steel refining plant. This requires the ladles to be high temperature resistant and insulate well to preserve the temperature and hold the risk of solidification at bay. Therefore, the involved refractories lining the inside of the torpedo ladles are chosen mostly according to their thermal properties, although wear of the materials by the liquid iron is also of major importance. In this work, we combined investigations of the thermal behaviour with wear studies of the lining over the whole lifetime of a torpedo ladle. Additional numerical simulations enabled a detailed model of the mechanical loads and temperature propagation at the various stations (heating, filling, emptying, cooling). The core of the investigation were detailed 3D measurements of the ladle’s cavity and thereby quantitative information of the wear progress at different time intervals during the lifetime of the ladles. The measurements allowed for a separation of different wear zones according to severity, namely the “splash zone” where the melt directly hits the ladle, the “melt zone” where during transport always liquid melt is present, and the “slag zone”, where the slag floats on the melt causing the most severe wear loss. Numerical simulations of the filling process were taken to calculate stress levels and temperature gradients, which led to the different onset of wear on those zones. Thermal imaging and punctual temperature measurements allowed for a study of the thermal consequences entailed by the wear onset. Additional “classical” damage analysis of the worn refractories complete the investigation. Thereby the wear mechanisms leading to the substantial wear loss were disclosed.

Keywords: high temperature, tribology, liquid-solid interaction, refractories, thermography

Procedia PDF Downloads 226
2752 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study

Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe

Abstract:

The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.

Keywords: finite element, pile-up, scratch test, wear mode

Procedia PDF Downloads 327
2751 Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Authors: Moaz H. Ali, Ahmed H. Al-Saadi

Abstract:

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, lightweight, and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provide a serious challenge for cutting tool material during the machining process. The reduction in cutting temperature distributions leads to an increase in tool life and a decrease in wear rate. Hence, the chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The result of low thermal conductivity and diffusivity of this alloy in the concentration of high temperatures at the tool-work-piece and tool-chip interface. Consequently, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. Otherwise, the result will be accelerating tool wear, increasing manufacturing cost and time consuming.

Keywords: machinability, titanium alloy (ti-6al-4v), chip formation, milling process

Procedia PDF Downloads 450
2750 Evaluation of tribological performance of aged and unaged biodiesel

Authors: Yuan-Ching Lin, Tian-Yi Huang, Ming-Jhe Hsieh

Abstract:

In this work, soybean biodiesel was blended with petroleum diesel as testing oils (B2). The tribiological performance of the B2 biodiesel before and after aging was evaluated using a reciprocating cylinder-on-flat wear test rig (Cameron-Plint TE-77) at various temperatures. The worn surface of each tested specimen was observed using a field-emission scanning electron microscope (FESEM). The compositions of the chemical films on each worn surface were determined using an energy dispersive spectrometer (EDS). The experimental results demonstrate that the tribiological behavior of the B2 was superior to that of other testing oils. Furthermore, the aging of biodiesel caused acidification, which resulted in poorer wear performance in the same experimental condition compared with others. The worn morphology of the specimen that was tested in the aged soybean biodiesel exhibited corrosion wear, reflecting low wear resistance.

Keywords: biodiesel, soybean, tribological performance

Procedia PDF Downloads 494
2749 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron

Authors: Liqiang Gong, Hanguang Fu

Abstract:

In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.

Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations

Procedia PDF Downloads 65
2748 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology

Authors: Vasu Velagapudi, G. Suresh

Abstract:

PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.

Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate

Procedia PDF Downloads 395
2747 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 108
2746 Characterization of the Worn Surfaces of Brake Discs and Friction Materials after Dynobench Tests

Authors: Ana Paula Gomes Nogueira, Pietro Tonolini, Andrea Bonfanti

Abstract:

Automotive braking systems must convert kinetic into thermal energy by friction. Nowadays, the disc brake system is the most widespread configuration on the automotive market, which its specific configuration provides a very efficient heat dissipation. At the same time, both discs and pads wear out. Different wear mechanisms can act during the braking, which makes the understanding of the phenomenon essential for the strategies to be applied when an increased lifetime of the components is required. In this study, a specific characterization approach was conducted to analyze the worn surfaces of commercial pad friction materials and its conterface cast iron disc after dynobench tests. Scanning electronic microscope (SEM), confocal microscope, and focus ion beam microscope (FIB) were used as the main tools of the analysis, and they allowed imaging of the footprint of the different wear mechanisms presenting on the worn surfaces. Aspects such as the temperature and specific ingredients of the pad friction materials are discussed since they play an important role in the wear mechanisms.

Keywords: wear mechanism, surface characterization, brake tests, friction materials, disc brake

Procedia PDF Downloads 53
2745 Performance Evaluation of Solid Lubricant Characteristics at Different Sliding Conditions

Authors: Suresh Kumar Reddy Narala, Rakesh Kumar Gunda

Abstract:

In modern industry, mechanical parts are subjected to friction and wear, leading to heat generation, which affects the reliability, life and power consumption of machinery. To overcome the tribological losses due to friction and wear, a significant portion of lubricant with high viscous properties allows very smooth relative motion between two sliding surfaces. Advancement in modern tribology has facilitated the use of applying solid lubricants in various industrial applications. Solid lubricant additives with high viscous thin film formation between the sliding surfaces can adequately wet and adhere to a work surface. In the present investigation, an attempt has been made to investigate and evaluate the tribological studies of various solid lubricants like MoS¬2, graphite, and boric acid at different sliding conditions. The base oil used in this study was SAE 40 oil with a viscosity of 220 cSt at 400C. The tribological properties were measured on pin-on-disc tribometer. An experimental set-up has been developed for effective supply of solid lubricants to the pin-disc interface zone. The results obtained from the experiments show that the friction coefficient increases with increase in applied load for all the considered environments. The tribological properties with MoS2 solid lubricant exhibit larger load carrying capacity than that of graphite and boric acid. The present research work also contributes to the understanding of the behavior of film thickness distribution of solid lubricant using potential contact technique under different sliding conditions. The results presented in this research work are expected to form a scientific basis for selecting the best solid lubricant in various industrial applications for possible minimization of friction and wear.

Keywords: friction, wear, temperature, solid lubricant

Procedia PDF Downloads 348
2744 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing

Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa

Abstract:

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.

Keywords: flank wear, vibration, milling, signal processing, monitoring

Procedia PDF Downloads 598
2743 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 303
2742 Tribological Behavior of EP Additives with Different Percentage of Sulfur

Authors: Salete Martins Alves, José Josemar de Oliveira Junior

Abstract:

The current efforts on design of lubricants are based in attending the new requirement of modern equipment with the focus on the choice of base oil and additives. Nowadays, there are different types of lubricant oils’ bases, such as mineral oils, synthetic oils, re-refined oils and vegetable oils. The lubrication in the boundary condition is controlled mainly by EP additives that interact with the surface forming very thin films. Therefore, the study’s goal is to evaluate the action of three EP additives, with different percentage of sulfur, on friction and wear reduction. They were evaluated in mineral and synthetic oils. Lubricants were prepared with synthetic and mineral oils and added 3 % and 5 % of EP additives. The friction and wear characteristics were studied using HFRR test. In this test, a normal load of 10 N was applied at a frequency of 20 Hz. The analysis of results has appointed that the percentage of sulfur in mineral oil has influenced on wear reduction. However, synthetic oil had good performance with low sulfur content.

Keywords: boundary lubrication, EP additives, sulfur, wear

Procedia PDF Downloads 404