Search results for: high value crop
20783 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops
Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann
Abstract:
The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule
Procedia PDF Downloads 15020782 Application of Groundwater Model for Optimization of Denitrification Strategies to Minimize Public Health Risk
Authors: Mukesh A. Modi
Abstract:
High-nitrate concentration in groundwater of unconfined aquifers has been a serious issue for public health risk at a global scale. Various anthropogenic activities in agricultural land and urban land of alluvial soil have been observed to be responsible for the increment of nitrate in groundwater. The present study was designed to identify suitable denitrification strategies to minimize the effects of high nitrate in groundwater near the Mahi River of Vadodara block, Gujarat. There were 11 wells of Jal Jeevan Mission, Ministry of Jal Shakti, along with 3 observation wells of Gujarat Water Resources Development Corporation have been used for the duration of 21 years. MODFLOW and MT3DMS codes have been used to simulate solute transport phenomena along with attempted effectively for optimization. Current research is one step ahead by optimizing various denitrification strategies with the simulation of the model. The in-situ and ex-situ denitrification strategies viz. NAS (No Action Scenario), CAS (Crop Alternation Scenario), PS (Phytoremediation Scenario), and CAS + PS (Crop Alternation Scenario + Phytoremediation Scenario) have been selected for the optimization. The groundwater model simulates the most suitable denitrification strategy considering the hydrogeological characteristics at the targeted well.Keywords: groundwater, high nitrate, MODFLOW, MT3DMS, optimization, denitrification strategy
Procedia PDF Downloads 3020781 Application of Molecular Markers for Crop Improvement
Authors: Monisha Isaac
Abstract:
Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane.Keywords: molecular markers, crop productivity, genetic diversity, genotype
Procedia PDF Downloads 51620780 Impact of Tillage and Crop Establishment on Fertility and Sustainability of the Rice-Wheat Cropping System in Inceptisols of Varanasi, Up, India
Authors: Pramod Kumar Sharma, Pratibha Kumari, Udai Pratap Singh, Sustainability
Abstract:
In the Indo-Gangetic Plains of South-East Asia, the rice-wheat cropping system (RWCS) is dominant with conventional tillage (CT) without residue management, which shows depletion of soil fertility and non-sustainable crop productivity. Hence, this investigation was planned to identify suitable natural resource management practices involving different tillage and crop establishment (TCE) methods along with crop residue and their effects, on the sustainability of dominant cropping systems through enhancing soil fertility and productivity. This study was conducted for two consecutive years 2018-19 and 2019-20 on a long-term field experiment that was started in the year 2015-16 taking six different combinations of TCE methods viz. CT, partial conservation agriculture (PCA) i.e. anchored residue of rice and full conservation agriculture (FCA)] i.e. anchored residue of rice and wheat under RWCS in terms of crop productivity, sustainability of soil health, and crop nutrition by the crops. Results showed that zero tillage direct-seeded rice (ZTDSR) - zero tillage wheat (ZTW) [FCA + green gram residue retention (RR)] recorded the highest yield attributes and yield during both the crops. Compared to conventional tillage rice (CTR)-conventional tillage wheat (CTW) [residue removal (R 0 )], the soil quality parameters were improved significantly with ZTDSR-ZTW (FCA+RR). Overall, ZTDSR-ZTW (FCA+RR) had higher nutrient uptake by the crops than CT-based treatment CTR-CTW (R 0 ) and CTR-CTW (RI).These results showed that there is significant profitability of yield and resource utilization by the adoption of FCA it may be a better alternative to the dominant tillage system i.e. CT in RWSC.Keywords: tillage and crop establishment, soil fertility, rice-wheat cropping system, sustainability
Procedia PDF Downloads 10620779 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 33520778 Optimized Cropping Calendar and Land Suitability for Maize through GIS and Crop Modelling
Authors: Marilyn S. Painagan, Willie Jones B. Saliling
Abstract:
This paper reports an optimized cropping calendar and land suitability for maize in North Cotabato derived from modeling crop productivity over time and space. Using Quantum GIS, eight representative soil types and 0.3o x 0.3o climate grids shapefiles were intersected to form thirty two pedoclimatic zones within the boundaries of the province. Surveys were done to ascertain crop performance and phenological properties on field. Based on these surveys, crop parameters were calibrated specific for a variety of maize. Soil properties and climatic data (daily precipitation, maximum and minimum temperatures) from pedoclimatic zones were loaded to the FAO Aquacrop Water Productivity Model along with the crop properties from field surveys to simulate yield from 1980 to 2010. The average yield per month was computed to come up with the month of planting having the highest and lowest probable yield in a year assuming that all lands were planted with maize. The yield attributes were visualized in the Quantum GIS environment. The study revealed that optimal cropping patterns varied across North Cotabato. Highest probable yield (8000 kg/ha) can be obtained when maize is planted on May and September (sandy clay-loam soils) in the northern part of the province while the lowest probable yield (1000 kg/ha) can be obtained when maize is planted on January, February and March (clay loam soils) at the northern part of the province. Yields are simulated on the basis of varieties currently planted by farmers of North Cotabato. The resulting maps suggest where and when maize is most suitable to achieve high yields. There is a need to ground truth and validate the cropping calendar on field.Keywords: aquacrop, quantum GIS, maize, cropping calendar, water productivity
Procedia PDF Downloads 25520777 Maintenance of Non-Crop Plants Reduces Insect Pest Population in Tropical Chili Pepper Agroecosystems
Authors: Madelaine Venzon, Dany S. S. L. Amaral, André L. Perez, Natália S. Diaz, Juliana A. Martinez Chiguachi, Maira C. M. Fonseca, James D. Harwood, Angelo Pallini
Abstract:
Integrating strategies of sustainable crop production and promoting the provisioning of ecological services on farms and within rural landscapes is a challenge for today’s agriculture. Habitat management, through increasing vegetational diversity, enhances heterogeneity in agroecosystems and has the potential to improve the recruitment of natural enemies of pests, which promotes biological control services. In tropical agroecosystems, however, there is a paucity of information pertaining to the resources provided by associated plants and their interactions with natural enemies. The maintenance of non-crop plants integrated into and/or surrounding crop fields provides the farmer with a low-investment option to enhance biological control. We carried out field experiments in chili pepper agroecosystems with small stakeholders located in the Zona da Mata, State of Minas Gerais, Brazil, from 2011 to 2015 where we assessed: (a) whether non-crop plants within and around chili pepper fields affect the diversity and abundance of aphidophagous species; (b) whether there are direct interactions between non-crop plants and aphidophagous arthropods; and (c) the importance of non-crop plant resources for survival of Coccinellidae and Chrysopidae species. Aphidophagous arthropods were dominated by Coccinellidae, Neuroptera, Syrphidae, Anthocoridae and Araneae. These natural enemies were readily observed preying on aphids, feeding on flowers or extrafloral nectaries and using plant structures for oviposition and/or protection. Aphid populations were lower on chili pepper fields associated with non-crop plants that on chili pepper monocultures. Survival of larvae and adults of different species of Coccinellidae and Chrysopidae on non-crop resources varied according to the plant species. This research provides evidence that non-crop plants in chili pepper agroecosystems can affect aphid abundance and their natural enemy abundance and survival. It is also highlighting the need for further research to fully characterize the structure and function of plant resources in these and other tropical agroecosystems. Financial support: CNPq, FAPEMIG and CAPES (Brazil).Keywords: Conservation biological control, aphididae, Coccinellidae, Chrysopidae, plant diversification
Procedia PDF Downloads 28820776 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia
Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo
Abstract:
Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.Keywords: climate variability, crop income, household, rainfall, temperature
Procedia PDF Downloads 37620775 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography
Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway
Abstract:
This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.Keywords: steganography, stego, LSB, crop
Procedia PDF Downloads 26920774 Linkages Between Climate Change, Agricultural Productivity, Food Security and Economic Growth
Authors: Jihène Khalifa
Abstract:
This study analyzed the relationships between Tunisia’s economic growth, food security, agricultural productivity, and climate change using the ARDL model for the period from 1990 to 2022. The ARDL model reveals a positive correlation between economic growth and lagged agricultural productivity. Additionally, the vector autoregressive (VAR) model highlights the beneficial impact of lagged agricultural productivity on economic growth and the negative effect of rainfall on economic growth. Granger causality analysis identifies unidirectional relationships from economic growth to agricultural productivity, crop production, food security, and temperature variations, as well as from temperature variations to crop production. Furthermore, a bidirectional causality is established between crop production and food security. The study underscores the impact of climate change on crop production and suggests the need for adaptive strategies to mitigate these climate effects.Keywords: economic growth, agriculture, food security, climate change, ARDl, VAR
Procedia PDF Downloads 3120773 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 11920772 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices
Authors: Ganesh B. Shinde, Vijaya B. Musande
Abstract:
Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices
Procedia PDF Downloads 31820771 Evaluating Habitat Manipulation as a Strategy for Rodent Control in Agricultural Ecosystems of Pothwar Region, Pakistan
Authors: Nadeem Munawar, Tariq Mahmood
Abstract:
Habitat manipulation is an important technique that can be used for controlling rodent damage in agricultural ecosystems. It involves intentionally manipulation of vegetation cover in adjacent habitats around the active burrows of rodents to reduce shelter, food availability and to increase predation pressure. The current study was conducted in the Pothwar Plateau during the respective non-crop period of wheat-groundnut (post-harvested and un-ploughed/non-crop fallow lands) with the aim to assess the impact of the reduction in vegetation height of adjacent habitats (field borders) on rodent’s richness and abundance. The study area was divided into two sites viz. treated and non-treated. At the treated sites, habitat manipulation was carried out by removing crop cache, and non-crop vegetation’s over 10 cm in height to a distance of approximately 20 m from the fields. The trapping sessions carried out at both treated and non-treated sites adjacent to wheat-groundnut fields were significantly different (F 2, 6 = 13.2, P = 0.001) from each other, which revealed that a maximum number of rodents were captured from non-treated sites. There was a significant difference in the overall abundance of rodents (P < 0.05) between crop stages and between treatments in both crops. The manipulation effect was significantly observed on damage to crops, and yield production resulted in the reduction of damage within the associated croplands (P < 0.05). The outcomes of this study indicated a significant reduction of rodent population at treated sites due to changes in vegetation height and cover which affect important components, i.e., food, shelter, movements and increased risk sensitivity in their feeding behavior; therefore, they were unable to reach levels where they cause significant crop damage. This method is recommended for being a cost-effective and easy application.Keywords: agricultural ecosystems, crop damage, habitat manipulation, rodents, trapping
Procedia PDF Downloads 16520770 Diversification of Rice-Based Cropping Systems under Irrigated Condition
Authors: A. H. Nanher, N. P. Singh
Abstract:
In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return.Keywords: integrated farming systems, sustainable intensification, system of crop intensification, wheat
Procedia PDF Downloads 42420769 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 10720768 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa
Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori
Abstract:
The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.Keywords: agro-ecosystem, conventional farm, dialectical, sustainability
Procedia PDF Downloads 21620767 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic
Authors: Miroslav Dumbrovsky
Abstract:
The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.Keywords: soil degradation, land consolidation, soil erosion, soil conservation
Procedia PDF Downloads 35620766 Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues
Authors: Sánchez Acuña, Juan Camilo, Granados Gómez, Mildred Magaly, Navarrete Rodríguez, Luisa Fernanda
Abstract:
Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.Keywords: bioethanol, biofuels, banana waste, hydrolysis
Procedia PDF Downloads 42720765 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 7420764 Ecological Effect on Aphid Population in Safflower Crop
Authors: Jan M. Mari
Abstract:
Safflower is a renowned drought tolerant oil seed crop. Previously its flowers were used for cooking and herbal medicines in China and it was cultivated by small growers for his personal needs of oil. A field study was conducted at experimental field, faculty of crop protection, Sindh Agricultural University Tandojam, during winter, 2012-13, to observe ecological effect on aphid population in safflower crop. Aphid population gradually increased with the growth of safflower. It developed with maximum aphid per leaf on 3rd week of February and it decreased in March as crop matured. A non-significant interaction was found with temperature of aphid, zigzag and hoverfly, respectively and a highly significant interaction with temperature was found with 7-spotted, lacewing, 9-spotted, and Brumus, respectively. The data revealed the overall mean population of zigzag was highest, followed by 9-spotted, 7-spotted, lace wing, hover fly and Brumus, respectively. In initial time the predator and prey ratio indicated that there was not a big difference between predator and prey ratio. After January 1st, the population of aphid increased suddenly until 18th February and it established a significant difference between predator prey ratios. After that aphid population started decreasing and it affected ratio between pest and predators. It is concluded that biotic factors, 7-spotted, zigzag, 9-spotted Brumus and lacewing exhibited a strong and positive correlation with aphid population. It is suggested that aphid pest should be monitored regularly and before reaching economic threshold level augmentation of natural enemies may be managed.Keywords: aphid, ecology, population, safflower
Procedia PDF Downloads 26420763 An Investigation of Crop Diversity’s Impact on Income Risk of Selected Crops
Authors: Saeed Yazdani, Sima Mohamadi Amidabadi, Amir Mohamadi Nejad, Farahnaz Nekoofar
Abstract:
As a result of uncertainty and doubts about the quantity of agricultural products, greater significance has been attached to risk management in the agricultural sector. Normally, farmers seek to minimize risks, and crop diversity has always been a means to reduce risk. The study at hand seeks to explore the long-term impact of crop diversity on income risk reduction. The timeframe of the study is 1998 to 2018. Initially, the Herfindahl index was used to estimate crop diversity in different periods, and next, the Hodrick-Prescott filter was applied to estimate income risk both in nominal and real terms. Finally, using the Vector Error Correction Model (VECM), the long-term impact of crop diversity on two modes of risk for the farmer's income has been estimated. Given the long-term pattern’s results, it is evident that in the long-run, crop diversity can reduce income fluctuations in two nominal and real terms. Moreover, results showed that in case the fluctuation shock affects the agricultural income in the short run, to balance out the shock in nominal and real terms, 4 and 3 cycles are needed respectively. In other words, in each cycle, 25% and 33% of the shock impact can be removed, respectively. Thus, as the results of the error correction coefficient showed, policies need to be put in place to prevent income shocks. In case of a shock, they need to be balanced out in a four-year period, taking inflation into account, and in a three-year period irrespective of the inflation and reparative policies such as insurance services should be developed.Keywords: risk, long-term model, Herfindahl index, time series model, vector error correction model
Procedia PDF Downloads 2420762 Indigenous Adaptation Strategies for Climate Change: Small Farmers’ Options for Sustainable Crop Farming in South-Western Nigeria
Authors: Emmanuel Olasope Bamigboye, Ismail Oladeji Oladosu
Abstract:
Local people of south-western Nigeria like in other climes, continue to be confronted with the vagaries of changing environments. Through the modification of existing practice and shifting resource base, their strategies for coping with change have enabled them to successfully negotiate the shifts in climate change and the environment. This article analyses indigenous adaptation strategies for climate change with a view to enhancing sustainable crop farming in south –western Nigeria. Multi-stage sampling procedure was used to select 340 respondents from the two major ecological zones (Forest and Derived Savannah) for good geographical spread. The article draws on mixed methods of qualitative research, literature review, field observations, informal interview and multinomial logit regression to capture choice probabilities across the various options of climate change adaptation options among arable crop farmers. The study revealed that most 85.0% of the arable crop farmers were males. It also showed that the use of local climate change adaptation strategies had no relationship with the educational level of the respondents as 77.3% had educational experiences at varying levels. Furthermore, the findings showed that seven local adaptation strategies were commonly utilized by arable crop farmers. Nonetheless, crop diversification, consultation with rainmakers and involvement in non-agricultural ventures were prioritized in the order of 1-3, respectively. Also, multinomial logit analysis result showed that at p ≤ 0.05 level of significance, household size (P<0.08), sex (p<0.06), access to loan(p<0.16), age(p<0.07), educational level (P<0.17) and functional extension contact (P<0.28) were all important in explaining the indigenous climate change adaptation utilized by the arable crops farmers in south-western Nigeria. The study concluded that all the identified local adaptation strategies need to be integrated into the development process for sustainable climate change adaptation.Keywords: crop diversification, climate change, adaptation option, sustainable, small farmers
Procedia PDF Downloads 29720761 Biodiversity of the National Production through Companion Plants Analysis
Authors: Astrid Rivera, Diego Villatoro
Abstract:
The world population increases at an accelerated pace, and it is essential to find solutions to feed the population. Nevertheless, crop diversity has significantly decreased in the last years, and the increase in food production is not the optimal solution. It is essential to consider the origin of the food, the nutriment contributions, among other dimensions. In this regard, biodiversity plays an indispensable role when designing an effective strategy to face the actual food security problems. Consequently, the purpose of this work is to analyze biodiversity in the Mexican national food production and suggest a proper crop selection based on companion plants, for which empirical and experimental knowledge shows a better scenery than current efforts. As a result, we get a set of crop recommendations to increase production in sustainable and nutritive planning. It is essential to explore more feasible options to advance sustainable development goals beyond an economic aspect.Keywords: biodiversity, food security, companion plats, nutrition
Procedia PDF Downloads 19820760 Application of Mathematical Sciences to Farm Management
Authors: Fahad Suleiman
Abstract:
Agriculture has been the mainstay of the nation’s economy in Nigeria. It provides food for the ever rapidly increasing population and raw materials for the industries. People especially the rural dwellers are gainfully employed on their crop farms and small-scale livestock farms for income earning. In farming, availability of funds and time management are one of the major factors that influence the system of farming in Nigeria in which mathematical science knowledge was highly required in order for farms to be managed effectively. Farmers often applied mathematics, almost every day for a variety of tasks, ranging from measuring and weighing, to land marking. This paper, therefore, explores some of the ways math is used in farming. For instance, farmers use arithmetic variety of farm activities such as seed planting, harvesting crop, cultivation and mulching. It is also important in helping farmers to know how much their livestock weighs, how much milk their cows produce and crop yield per acres, among others.Keywords: agriculture, application, economic, farming, mathematics
Procedia PDF Downloads 24720759 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran
Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi
Abstract:
Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.Keywords: crop coefficient, remote sensing, vegetation indices, wheat
Procedia PDF Downloads 41220758 Site Specific Nutrient Management Need in India Now
Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi
Abstract:
Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.Keywords: nutrient, pesticide, crop, yield
Procedia PDF Downloads 43020757 Weeds Density Affects Yield and Quality of Wheat Crop under Different Crop Densities
Authors: Ijaz Ahmad
Abstract:
Weed competition is one of the major biotic constraints in wheat crop productivity. Avena fatua L. and Silybum marianum (L.) Gaertn. are among the worst weeds of wheat, greatly deteriorating wheat quality subsequently reducing its market value. In this connection, two-year experiments were conducted in 2018 & 2019. Different seeding rate wheat viz; 80, 100, 120 and 140 kg ha-1 and different weeds ratio (A. fatua: S. marianum ) sown at the rate 1:8, 2:7, 3:6, 4:5, 5:4, 6:3, 7:2, 8:1 and 0:0 respectively. The weeds ratio and wheat densities are indirectly proportional. However, the wheat seed at the rate of 140 kg ha-1 has minimal weeds interference. Yield losses were 17.5% at weeds density 1:8 while 7.2% at 8:1. However, in wheat density, the highest percent losses were computed on 80 kg ha-1 while the lowest was recorded on 140 kg ha-1. Since due to the large leaf canopy of S. marianum other species can't sustain their growth. Hence, it has been concluded that S. marianum is the hotspot that causes reduction to the yield-related parameters, followed by A. fatua and the other weeds. Due to the morphological mimicry of A. fatua with wheat crop during the vegetative growth stage, it cannot be easily distinguished. Therefore, managing A. fatua and S. marianum before seed setting is recommended for reducing the future weed problem. Based on current studies, it is suggested that sowing wheat seed at the rate of 140 kg ha-1 is recommended to better compete with all the field weeds.Keywords: fat content, holly thistle, protein content, weed competition, wheat, wild oat
Procedia PDF Downloads 20720756 Transmission Dynamics of Lumpy Skin Disease in Ethiopia
Authors: Wassie Molla, Klaas Frankena, Mart De Jong
Abstract:
Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission
Procedia PDF Downloads 29820755 Farmers Perception in Pesticide Usage in Curry Leaf (Murraya koeinigii (L.))
Authors: Swarupa Shashi Senivarapu Vemuri
Abstract:
Curry leaf (Murraya koeinigii (L.)) exported from India had insecticide residues above maximum residue limits, which are hazardous to consumer health and caused rejection of the commodity at the point of entry in Europe and middle east resulting in a check on export of curry leaf. Hence to study current pesticide usage patterns in major curry leaf growing areas, a survey on pesticide use pattern was carried out in curry leaf growing areas in Guntur districts of Andhra Pradesh during 2014-15, by interviewing farmers growing curry leaf utilizing the questionnaire to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of farmers are less, where 13.96 per cent were only high school educated, and 13.96% were illiterates. 18.60% farmers were found cultivating curry leaf crop in less than 1 acre of land, 32.56% in 2-5 acres, 20.93% in 5-10 acres and 27.91% of the farmers in more than 10 acres of land. Majority of the curry leaf farmers (93.03%) used pesticide mixtures rather than applying single pesticide at a time, basically to save time, labour, money and to combat two or more pests with single spray. About 53.48% of farmers applied pesticides at 2 days interval followed by 34.89% of the farmers at 4 days interval, and about 11.63% of the farmers sprayed at weekly intervals. Only 27.91% of farmers thought that the quantity of pesticides used at their farm is adequate, 90.69% of farmers had perception that pesticides are helpful in getting good returns. 83.72% of farmers felt that crop change is the only way to control sucking pests which damages whole crop. About 4.65% of the curry leaf farmers opined that integrated pest management practices are alternative to pesticides and only 11.63% of farmers felt natural control as an alternative to pesticides. About 65.12% of farmers had perception that high pesticide dose will give higher yields. However, in general, Curry leaf farmers preferred to contact pesticide dealers (100%) and were not interested in contacting either agricultural officer or a scientist. Farmers were aware of endosulfan ban 93.04%), in contrast, only 65.12, per cent of farmers knew about the ban of monocrotophos on vegetables. Very few farmers knew about pesticide residues and decontamination by washing. Extension educational interventions are necessary to produce fresh curry leaf free from pesticide residues.Keywords: Curry leaf, decontamination, endosulfan, leaf roller, psyllids, tetranychid mite
Procedia PDF Downloads 33520754 The Status of Precision Agricultural Technology Adoption on Row Crop Farms vs. Specialty Crop Farms
Authors: Shirin Ghatrehsamani
Abstract:
Higher efficiency and lower environmental impact are the consequence of using advanced technology in farming. They also help to decrease yield variability by diminishing weather variability impact, optimizing nutrient and pest management as well as reducing competition from weeds. A better understanding of the pros and cons of applying technology and finding the main reason for preventing the utilization of the technology has a significant impact on developing technology adoption among farmers and producers in the digital agriculture era. The results from two surveys carried out in 2019 and 2021 were used to investigate whether the crop types had an impact on the willingness to utilize technology on the farms. The main focus of the questionnaire was on utilizing precision agriculture (PA) technologies among farmers in some parts of the united states. Collected data was analyzed to determine the practical application of various technologies. The survey results showed more similarities in the main reason not to use PA between the two crop types, but the present application of using technology in specialty crops is generally five times larger than in row crops. GPS receiver applications were reported similar for both types of crops. Lack of knowledge and high cost of data handling were cited as the main problems. The most significant difference was among using variable rate technology, which was 43% for specialty crops while was reported 0% for row crops. Pest scouting and mapping were commonly used for specialty crops, while they were rarely applied for row crops. Survey respondents found yield mapping, soil sampling map, and irrigation scheduling were more valuable for specialty crops than row crops in management decisions. About 50% of the respondents would like to share the PA data in both types of crops. Almost 50 % of respondents got their PA information from retailers in both categories, and as the second source, using extension agents were more common in specialty crops than row crops.Keywords: precision agriculture, smart farming, digital agriculture, technology adoption
Procedia PDF Downloads 114