Search results for: coupled
1479 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System
Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan
Abstract:
The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.Keywords: optical soliton, soliton interaction, soliton switching, WDM
Procedia PDF Downloads 5051478 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study
Authors: Amit Kumar
Abstract:
Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality
Procedia PDF Downloads 2801477 Heat and Mass Transfer Study of Supercooled Large Droplet Icing
Authors: Du Yanxia, Stephan E. Bansmer, Gui Yewei, Xiao Guangming, Yang Xiaofeng
Abstract:
The heat and mass transfer characteristics of icing coupled with film flow is studied and the coupled model of the thermal behavior with the flow simulation by single-step method is developed. The behavior of ice and water was analyzed. The results show that under supercooled large droplet (SLD) icing conditions, the film flow is an important phonomena in icing accretion process. The pressure gradient, gravity and shear stress are the main factors affecting the film flow on icing surface, which has important influence on the shape and rate of icing. To predict SLD ice accretion accurately, the heat and mass transfer of ice and film flow should be taken into account.Keywords: SLD, aircraft, icing, heat and mass transfer
Procedia PDF Downloads 6341476 Predicting the Effect of Silicon Electrode Design Parameters on Thermal Performance of a Lithium-Ion Battery
Authors: Harika Dasari, Eric Eisenbraun
Abstract:
The present study models the role of electrode structural characteristics on the thermal behavior of lithium-ion batteries. Preliminary modeling runs have employed a 1D lithium-ion battery coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes and it is observed that silicon anodes with nano-sized particles reduced the temperature of the battery in comparison to anodes with larger particles. These results are discussed in the context of the relationship between particle size and thermal transport properties in the electrode.Keywords: particle size, NMC, silicon, heat generation, separator
Procedia PDF Downloads 2891475 Dynamics of Light Induced Current in 1D Coupled Quantum Dots
Authors: Tokuei Sako
Abstract:
Laser-induced current in a quasi-one-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to a pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation directly by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the lifetime of the quasi-bound states formed when the static bias voltage is applied.Keywords: pulsed laser field, nanowire, electron wave packet, quantum dots, time-dependent Schrödinger equation
Procedia PDF Downloads 3561474 Propagation of W Shaped of Solitons in Fiber Bragg Gratings
Authors: Mezghiche Kamel
Abstract:
We present solitary wave solutions for the perturbed nonlinear Schrodinger (PNLS) equation describing propagation of femtosecond light pulses through the fiber Bragg grating structure where the pulse dynamics is governed by the nonlinear-coupled mode (NLCM) equations. Using the multiple scale analysis, we reduce the NLCM equations into the perturbed nonlinear Schrodinger (PNLS) type equation. Unlike the reported solitary wave solutions of the PNLS equation, the novel ones can describe W shaped of solitons and their properties.Keywords: fiber bragg grating, nonlinear-coupled mode equations, w shaped of solitons, PNLS
Procedia PDF Downloads 7691473 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank
Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park
Abstract:
When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)
Procedia PDF Downloads 7051472 Ultra-Tightly Coupled GNSS/INS Based on High Degree Cubature Kalman Filtering
Authors: Hamza Benzerrouk, Alexander Nebylov
Abstract:
In classical GNSS/INS integration designs, the loosely coupled approach uses the GNSS derived position and the velocity as the measurements vector. This design is suboptimal from the standpoint of preventing GNSSoutliers/outages. The tightly coupled GPS/INS navigation filter mixes the GNSS pseudo range and inertial measurements and obtains the vehicle navigation state as the final navigation solution. The ultra‐tightly coupled GNSS/INS design combines the I (inphase) and Q(quadrature) accumulator outputs in the GNSS receiver signal tracking loops and the INS navigation filter function intoa single Kalman filter variant (EKF, UKF, SPKF, CKF and HCKF). As mentioned, EKF and UKF are the most used nonlinear filters in the literature and are well adapted to inertial navigation state estimation when integrated with GNSS signal outputs. In this paper, it is proposed to move a step forward with more accurate filters and modern approaches called Cubature and High Degree cubature Kalman Filtering methods, on the basis of previous results solving the state estimation based on INS/GNSS integration, Cubature Kalman Filter (CKF) and High Degree Cubature Kalman Filter with (HCKF) are the references for the recent developed generalized Cubature rule based Kalman Filter (GCKF). High degree cubature rules are the kernel of the new solution for more accurate estimation with less computational complexity compared with the Gauss-Hermite Quadrature (GHQKF). Gauss-Hermite Kalman Filter GHKF which is not selected in this work because of its limited real-time implementation in high-dimensional state-spaces. In ultra tightly or a deeply coupled GNSS/INS system is dynamics EKF is used with transition matrix factorization together with GNSS block processing which is well described in the paper and assumes available the intermediary frequency IF by using a correlator samples with a rate of 500 Hz in the presented approach. GNSS (GPS+GLONASS) measurements are assumed available and modern SPKF with Cubature Kalman Filter (CKF) are compared with new versions of CKF called high order CKF based on Spherical-radial cubature rules developed at the fifth order in this work. Estimation accuracy of the high degree CKF is supposed to be comparative to GHKF, results of state estimation are then observed and discussed for different initialization parameters. Results show more accurate navigation state estimation and more robust GNSS receiver when Ultra Tightly Coupled approach applied based on High Degree Cubature Kalman Filter.Keywords: GNSS, INS, Kalman filtering, ultra tight integration
Procedia PDF Downloads 2801471 In vitro Evaluation of the Synergistic Antiviral Activity of Amantadine Coupled with Magnesium Lithospermate B against Enterovirus 71 Infection
Authors: Wen-Yu Lin, Yi-Ching Chung, Jhao-Ren Lin, Tzyy-Rong Jinn
Abstract:
It is well known that enterovirus 71(EV71) causes recurring outbreaks of hand, foot and mouth disease and encephalitis leading to complications or death in young children. And, several enterovirus 71 (EV71) of hand foot and mouth disease (HFMD) with high mortalities occurred in Asia country, such as Hong Kung (1985), Malaysia (1997), Taiwan (1998) and China (2008) that EV71 results in severe neurological complications and sudden death in infants and young children. However, there are still no effective drugs and vaccines to reduce and inhibit EV71 infection. Therefore, the development of specific and effective antiviral strategies against EV71 has become an urgent issue for the protection of children from the hazards of the HFMD. As reported, amantadine is effective in prophylaxis and treatment of the EV71 infections. Thus, the aim of this study was to further evaluate the synergistic antiviral activity of amantadine coupled with magnesium lithospermate B (MLB) against enterovirus 71 infection. In a preliminary test, it is shown that the infected RD cells were treated with amantadine after virus absorption, at concentrations of 3 and 5µM of amantadine suppressed EV71-induced CPE to 13% and 23%, respectively at MOI of 3. Alternatively, at concentrations of 5µg/ml of MLB combined with 3 and 5 µM of amantadine apparently suppressed EV71-induced CPE to 45% and 63%, respectively at MOI of 3. Thus, amantadine coupled with MLB may have the potential for further study to development as the chemopreventive reagents against EV71 infection.Keywords: amantadine, Enterovirus 71, magnesium lithospermate B, RD cells, synergistic effects
Procedia PDF Downloads 2421470 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils
Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana
Abstract:
This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction
Procedia PDF Downloads 641469 Tunneling Current Switching in the Coupled Quantum Dots by Means of External Field
Authors: Vladimir Mantsevich, Natalya Maslova, Petr Arseyev
Abstract:
We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations between localized electrons by means of Heisenberg equations for pseudo operators with constraint. Special role of multi-electronic states was demonstrated. Various single-electron levels location relative to the sample Fermi level and to the applied bias value in symmetric tunneling contact were investigated. Rabi frequency tuning results in the single-electron energy levels spacing. We revealed the appearance of negative tunneling conductivity and demonstrated multiple switching "on" and "off" of the tunneling current depending on the Coulomb correlations value, Rabi frequency amplitude and energy levels spacing. We proved that Coulomb correlations strongly influence the system behavior. We demonstrated the presence of multi-stability in the coupled QDs with Coulomb correlations when single value of the tunneling current amplitude corresponds to the two values of Rabi frequency in the case when both single-electron energy levels are located slightly above eV and are close to each other. This effect disappears when the single-electron energy levels spacing increases.Keywords: Coulomb correlations, negative tunneling conductivity, quantum dots, rabi frequency
Procedia PDF Downloads 4511468 A Low Cost Gain-Coupled Distributed Feedback Laser Based on Periodic Surface p-Contacts
Authors: Yongyi Chen, Li Qin, Peng Jia, Yongqiang Ning, Yun Liu, Lijun Wang
Abstract:
The distributed feedback (DFB) lasers are indispensable in optical phase array (OPA) used for light detection and ranging (LIDAR) techniques, laser communication systems and integrated optics, thanks to their stable single longitudinal mode and narrow linewidth properties. Traditional index-coupled (IC) DFB lasers with uniform gratings have an inherent problem of lasing two degenerated modes. Phase shifts are usually required to eliminate the mode degeneration, making the grating structure complex and expensive. High-quality antireflection (AR) coatings on both lasing facets are also essential owing to the random facet phases introduced by the chip cleavage process, which means half of the lasing energy is wasted. Gain-coupled DFB (GC-DFB) lasers based on the periodic gain (or loss) are announced to have single longitudinal mode as well as capable of the unsymmetrical coating to increase lasing power and efficiency thanks to facet immunity. However, expensive and time-consuming technologies such as epitaxial regrowth and nanoscale grating processing are still required just as IC-DFB lasers, preventing them from practical applications and commercial markets. In this research, we propose a low-cost, single-mode regrowth-free GC-DFB laser based on periodic surface p-contacts. The gain coupling effect is achieved simply by periodic current distribution in the quantum well caused by periodic surface p-contacts, introducing very little index-coupling effect that can be omitted. It is prepared by i-line lithography, without nanoscale grating fabrication or secondary epitaxy. Due to easy fabrication techniques, it provides a method to fabricate practical low cost GC-DFB lasers for widespread practical applications.Keywords: DFB laser, gain-coupled, low cost, periodic p-contacts
Procedia PDF Downloads 1281467 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management
Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag
Abstract:
In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD
Procedia PDF Downloads 3931466 Investigation on the Behavior of Conventional Reinforced Coupling Beams
Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta
Abstract:
Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam
Procedia PDF Downloads 4761465 Heat Transfer Characteristics of Film Condensation
Authors: M. Mosaad, J. H. Almutairi, A. S. Almutairi
Abstract:
In this paper, saturated-vapour film condensation on a vertical wall with the backside cooled by forced convection is analyzed as a conjugate problem. In the analysis, the temperature and heat flux at the wall sides are assumed unknown and determined from the solution. The model is presented in a dimensionless form to take a broad view of the solution. The dimensionless variables controlling this coupled heat transfer process are discovered from the analysis. These variables explain the relative impact of the interactive heat transfer mechanisms of forced convection and film condensation. The study shows that the conjugate treatment of film condensation process yields results different from that predicted by a non-conjugate Nusselt-type solution, wherein the effect of the cooling fluid is neglected.Keywords: film condensation, forced convection, coupled heat transfer, analytical modelling
Procedia PDF Downloads 3211464 Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations
Authors: P. G. Siddheshwar, R. K. Vanishree, C. Kanchana
Abstract:
A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.Keywords: coupled Ginzburg–Landau model, local thermal non-equilibrium (LTNE), local thermal equilibrium (LTE), Rayleigh–Bénard-Brinkman convection
Procedia PDF Downloads 2371463 Problems and Solutions in the Application of ICP-MS for Analysis of Trace Elements in Various Samples
Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Áron Soós, Xénia Vágó, Dávid Andrási
Abstract:
In agriculture for analysis of elements in different food and food raw materials, moreover environmental samples generally flame atomic absorption spectrometers (FAAS), graphite furnace atomic absorption spectrometers (GF-AAS), inductively coupled plasma optical emission spectrometers (ICP-OES) and inductively coupled plasma mass spectrometers (ICP-MS) are routinely applied. An inductively coupled plasma mass spectrometer (ICP-MS) is capable for analysis of 70-80 elements in multielemental mode, from 1-5 cm3 volume of a sample, moreover the detection limits of elements are in µg/kg-ng/kg (ppb-ppt) concentration range. All the analytical instruments have different physical and chemical interfering effects analysing the above types of samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays there is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better (smaller) detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium, arsenic, germanium, vanadium and chromium. To elaborate an analytical method for trace elements with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) Physical interferences; 2) Spectral interferences (elemental and molecular isobaric); 3) Effect of easily ionisable elements; 4) Memory interferences. Analysing food and food raw materials, moreover environmental samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food and food raw materials, moreover environmental samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of the applied elements. So finally we could find “opportunities” to decrease or eliminate the error of the analyses of applied elements (Cr, Co, Ni, Cu, Zn, Ge, As, Se, Mo, Cd, Sn, Sb, Te, Hg, Pb, Bi). To analyse these elements in the above samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of the above elements, which can be corrected using different internal standards.Keywords: elements, environmental and food samples, ICP-MS, interference effects
Procedia PDF Downloads 5041462 Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure
Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah
Abstract:
A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable.Keywords: participating media, LBM, CVFEM- radiation coupled with convection
Procedia PDF Downloads 4061461 Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation.Keywords: new method AGM, sets of coupled nonlinear equations at engineering field, waves equations, integro-differential, fluid and thermal
Procedia PDF Downloads 5461460 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 3671459 Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate
Authors: Muhammad Khalil, Nader Abuelfoutouh, Gasser Abdelal, Adrian Murphy
Abstract:
Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation.Keywords: composite structures, lightning multiphysics, magnetohydrodynamic (MHD), coupled thermal-electrical analysis, thermal plasmas.
Procedia PDF Downloads 3691458 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils
Authors: Sara Soltanpour, Adolfo Foriero
Abstract:
Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil
Procedia PDF Downloads 1251457 Analysis of a Coupled Hydro-Sedimentological Numerical Model for the Western Tombolo of Giens
Authors: Yves Lacroix, Van Van Than, Didier Léandri, Pierre Liardet
Abstract:
The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydro-sedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.Keywords: Almanarre beach, coastal erosion, hydro-sedimentological, numerical model
Procedia PDF Downloads 3761456 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage
Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais
Abstract:
The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless
Procedia PDF Downloads 2941455 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain
Authors: K. Khelil, H. Ammar, K. Saouchi
Abstract:
Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement
Procedia PDF Downloads 4941454 Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm
Authors: Mahendran Samykano, Ram Mohan, Shyam Aravamudhan
Abstract:
The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.Keywords: anodic alumina oxide, electrodeposition, nanowires, nickel
Procedia PDF Downloads 2791453 General Mathematical Framework for Analysis of Cattle Farm System
Authors: Krzysztof Pomorski
Abstract:
In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations
Procedia PDF Downloads 1451452 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions
Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong
Abstract:
A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition
Procedia PDF Downloads 1531451 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 861450 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows
Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar
Abstract:
In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF
Procedia PDF Downloads 358