Search results for: causal explanation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 796

Search results for: causal explanation

736 Understanding the Nature of Conflicts in Africa: Analytical and Theoretical Explanations

Authors: Kingfahd Adewale Adedapo, Adekunle Ajisebiyawo

Abstract:

The focus of this paper is to explore the different theoretical perspectives that underline academic attempts at understanding and explaining the nature of conflicts in Africa. The African environment is riddled with the past history of conflicts among groups either for an economic outlet or imperial space, and most often, such past negative interactions have made it difficult even now for some of these groups to live harmoniously together within the present state system and to trust each other. The paper observed that no one theory or explanatory schema could offer a holistic explanation of conflict in Africa. At best, each of the possible theories can only offer a partial explanation of the causes and nature of conflict in a particular African society or state. This paper, therefore, attempted to synthesize the many sources of theories of conflicts and provided the intellectual background from which these different theories emanated. Therefore, if this paper has done anything at all, it is to offer the basis for assessing different theoretical strands aimed at offering cogent and reliable explanations for most of the conflicts in Africa and especially in the West African sub-region.

Keywords: conflict, functionalism, humanitarianism, structuralism, theory

Procedia PDF Downloads 105
735 Paradox of Business Strategic toward Sustainable Business: A Case Study of Hijab Fashion in Bandung

Authors: Lisandy Arinta Suryana, Santi Novani, Utomo Sarjono

Abstract:

Paradox of business strategic is associated with the contradictory practice. It becomes one of the critical way to survive and win in the dynamic competitive landscape – high level of uncertainty and rapid change in the business environment. Those characteristics are similar with the environment of hijab fashion business, especially in Indonesia. This paper aims to describe the success of paradoxical strategic based on historical data of hijab fashion business which have been validated by qualitative approach. This paper discusses two main aspects of paradoxical strategic such as paradox in human resource management, and logistic center management. Then, the detail effects from each practice are described in term of causal loop diagram. Moreover, the practice of paradoxical strategic depends on leadership that can make a brave and dynamic decision by capturing the main problems and opportunities in their business, and also build commitment to achieve a specific goal.

Keywords: paradox of business strategic, paradoxical strategic, causal loop diagram, sustainable business, hijab fashion business, business strategic

Procedia PDF Downloads 391
734 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data

Authors: Rudra P. Pradhan

Abstract:

This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.

Keywords: energy consumption, financial development, FATF countries, Panel VECM

Procedia PDF Downloads 267
733 A Strategic Perspective on a Qualitative Model of Type II Workplace Aggression in Healthcare Sector

Authors: Francesco Ceresia

Abstract:

Workplace aggression is broadly recognized as a main work-related risk for healthcare organizations the world over. Scholars underlined that nonfatal workplace aggressions can be also produced by Type II workplace aggression, that occur when the aggressor has a legitimate relationship with the organization and commits an act of hostility while being served or cared for by members of the organization. Several reviews and meta-analysis highlighted the main antecedents and consequences of Type II verbal and physical workplace aggression in the healthcare sector, also focusing on its economic and psychosocial costs. However, some scholars emphasized the need for a systemic and multi-factorial approach to deeply understand and effectively respond to such kind of aggression. The main aim of the study is to propose a qualitative model of Type II workplace aggression in a health care organization in accordance with the system thinking and multi-factorial perspective. A case study research approach, conducted in an Italian non-hospital healthcare organization, is presented. Two main data collection methods have been adopted: individual and group interviews with a sample (N = 24) of physicians, nurses and clericals. A causal loop diagram (CLD) that describes the main causal relationships among the key-variables of the proposed model has been outlined. The main feedback loops and the causal link polarities have been also defined to fully describe the structure underlining the Type II workplace aggression phenomenon. The proposed qualitative model shows how the Type II workplace aggression is related with burnout, work performance, job satisfaction, turnover intentions, work motivation and emotional dissonance. Finally, strategies and policies to reduce the strength of workplace aggression’s drivers are suggested.

Keywords: healthcare, system thinking, work motivation, workplace aggression

Procedia PDF Downloads 305
732 The Effect of Explicit Focus on Form on Second Language Learning Writing Performance

Authors: Keivan Seyyedi, Leila Esmaeilpour, Seyed Jamal Sadeghi

Abstract:

Investigating the effectiveness of explicit focus on form on the written performance of the EFL learners was the aim of this study. To provide empirical support for this study, sixty male English learners were selected and randomly assigned into two groups of explicit focus on form and meaning focused. Narrative writing was employed for data collection. To measure writing performance, participants were required to narrate a story. They were given 20 minutes to finish the task and were asked to write at least 150 words. The participants’ output was coded then analyzed utilizing Independent t-test for grammatical accuracy and fluency of learners’ performance. Results indicated that learners in explicit focus on form group appear to benefit from error correction and rule explanation as two pedagogical techniques of explicit focus on form with respect to accuracy, but regarding fluency they did not yield any significant differences compared to the participants of meaning-focused group.

Keywords: explicit focus on form, rule explanation, accuracy, fluency

Procedia PDF Downloads 514
731 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 253
730 Effectuation in Production: How Production Managers Can Apply Decision-Making Techniques of Successful Entrepreneurs

Authors: Malte Brettel, David Bendig, Michael Keller, Marius Rosenberg

Abstract:

What are the core competences necessary in order to sustain manufacturing in high-wage countries? Aspiring countries all over the world gain market share in manufacturing and rapidly close the productivity and quality gap that has until now protected some parts of the industry in Europe and the United States from dislocation. However, causal production planning and manufacturing, the basis for productivity and quality, is challenged by the ever-greater need for flexibility and customized products in an uncertain business environment. This article uses a case-study-based approach to assess how production managers in high-wage countries can apply decision-making principals from successful entrepreneurs. 'Effectuation' instead of causal decision making can be applied to handle uncertainty of mass customization, to seek the right partners in alliances and to advance towards virtual production. The findings help managers to use their resources more efficiently and contribute to bridge the gap between production research and entrepreneurship.

Keywords: case studies, decision-making behavior, effectuation, production planning

Procedia PDF Downloads 348
729 Reconceptualizing “Best Practices” in Public Sector

Authors: Eftychia Kessopoulou, Styliani Xanthopoulou, Ypatia Theodorakioglou, George Tsiotras, Katerina Gotzamani

Abstract:

Public sector managers frequently herald that implementing best practices as a set of standards, may lead to superior organizational performance. However, recent research questions the objectification of best practices, highlighting: a) the inability of public sector organizations to develop innovative administrative practices, as well as b) the adoption of stereotypical renowned practices inculcated in the public sector by international governance bodies. The process through which organizations construe what a best practice is, still remains a black box that is yet to be investigated, given the trend of continuous changes in public sector performance, as well as the burgeoning interest of sharing popular administrative practices put forward by international bodies. This study aims to describe and understand how organizational best practices are constructed by public sector performance management teams, like benchmarkers, during the benchmarking-mediated performance improvement process and what mechanisms enable this construction. A critical realist action research methodology is employed, starting from a description of various approaches on best practice nature when a benchmarking-mediated performance improvement initiative, such as the Common Assessment Framework, is applied. Firstly, we observed the benchmarker’s management process of best practices in a public organization, so as to map their theories-in-use. As a second step we contextualized best administrative practices by reflecting the different perspectives emerged from the previous stage on the design and implementation of an interview protocol. We used this protocol to conduct 30 semi-structured interviews with “best practice” process owners, in order to examine their experiences and performance needs. Previous research on best practices has shown that needs and intentions of benchmarkers cannot be detached from the causal mechanisms of the various contexts in which they work. Such causal mechanisms can be found in: a) process owner capabilities, b) the structural context of the organization, and c) state regulations. Therefore, we developed an interview protocol theoretically informed in the first part to spot causal mechanisms suggested by previous research studies and supplemented it with questions regarding the provision of best practice support from the government. Findings of this work include: a) a causal account of the nature of best administrative practices in the Greek public sector that shed light on explaining their management, b) a description of the various contexts affecting best practice conceptualization, and c) a description of how their interplay changed the organization’s best practice management.

Keywords: benchmarking, action research, critical realism, best practices, public sector

Procedia PDF Downloads 129
728 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 87
727 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion

Authors: Prajamitra Bhuyan

Abstract:

Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.

Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome

Procedia PDF Downloads 242
726 The Role of the Injured Party's Fault in the Apportionment of Damages in Tort Law: A Comparative-Historical Study between Common Law and Islamic Law

Authors: Alireza Tavakoli Nia

Abstract:

In order to understand the role of the injured party's fault in dividing liability, we studied its historical background. In common law, the traditional contributory negligence rule was a complete defense. Then the legislature and judicial procedure modified that rule to one of apportionment. In Islamic law, too, the Action rule was at first used when the injured party was the sole cause, but jurists expanded the scope of this rule, so this rule was used in cases where both the injured party's fault and that of the other party are involved. There are some popular approaches for apportionment of damages. Some common law countries like Britain had chosen ‘the causal potency approach’ and ‘fixed apportionment’. Islamic countries like Iran have chosen both ‘the relative blameworthiness’ and ‘equal apportionment’ approaches. The article concludes that both common law and Islamic law believe in the division of responsibility between a wrongdoer claimant and the defendant. In contrast, in the apportionment of responsibility, Islamic law mostly believes in equal apportionment that is way easier and saves time and money, but common law legal systems have chosen the causal potency approach, which is more complicated than the rival approach but is fairer.

Keywords: contributory negligence, tort law, damage apportionment, common law, Islamic law

Procedia PDF Downloads 147
725 Interpretation as Ontological Determination and Negotiation

Authors: Nicolas Cuevas-Alvear

Abstract:

The subject of this paper is the concept of interpretation. Its purpose is to expose the need for a new concept of interpretation and to trace the construction route of interpretation as determination and negotiation. The thesis it defends is that interpretation is the determination of events and the negotiation of those determinations in communication. To meet its objective, this manuscript is divided into five sections. The first section introduces the subject and the need for a new concept of interpretation. The second section explicitly formulates the research questions and the objectives of the project for the construction of a new concept of interpretation. The third section presents the state of the art, specifically, the theory of Radical interpretation proposed by Donald Davidson and the theory of the Hermeneutic Circle proposed by Hans Georg Gadamer. In addition, in this section, there is a reconstruction of Ernst Cassirer's explanation of language as a symbolic form. The fourth section is an explanation of the proposal based on the theories presented. Specifically: language as a symbolic form explains interpretation as a determination of events using objective, subjective and intersubjective elements, and these three elements are negotiated in interpretation as communication. The last section is the bibliography proposed to carry out the project.

Keywords: interpretation, metaphysics, semantics, Donald Davidson, ERNST Cassirer

Procedia PDF Downloads 195
724 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths

Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan

Abstract:

It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market. By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.

Keywords: precision machinery industry, key success factors (KSFs), key success paths (KSPs), overall profitability, product pricing power, competitive advantages

Procedia PDF Downloads 268
723 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 120
722 Feasibility of Small Hydropower Plants Odisha

Authors: Sanoj Sahu, Ramakar Jha

Abstract:

Odisha (India) is in need of reliable, cost-effective power generation. A prolonged electricity crisis and increasing power demand have left over thousands of citizens without access to electricity, and much of the population suffers from sporadic outages. The purpose of this project is to build a methodology to evaluate small hydropower potential, which can be used to alleviate the Odisha’s energy problem among rural communities. This project has three major tasks: the design of a simple SHEP for a single location along a river in the Odisha; the development of water flow prediction equations through a linear regression analysis; and the design of an ArcGIS toolset to estimate the flow duration curves (FDCs) at locations where data do not exist. An explanation of the inputs to the tool, as well has how it produces a suitable output for SHEP evaluation will be presented. The paper also gives an explanation of hydroelectric power generation in the Odisha, SHEPs, and the technical and practical aspects of hydroelectric power. Till now, based on topographical and rainfall analysis we have located hundreds of sites. Further work on more number of site location and accuracy of location is to be done.

Keywords: small hydropower, ArcGIS, rainfall analysis, Odisha’s energy problem

Procedia PDF Downloads 448
721 Competition, Stability, and Economic Growth: A Causality Approach

Authors: Mahvish Anwaar

Abstract:

Research Question: In this paper, we explore the causal relationship between banking competition, banking stability, and economic growth. Research Findings: The unbalanced panel data starting from 2000 to 2018 is collected to analyze the causality among banking competition, banking stability, and economic growth. The main focus of the study is to check the direction of causality among selected variables. The results of the study support the demand following, supply leading, feedback, and neutrality hypothesis conditional to different measures of banking competition, banking stability, and economic growth. Theoretical Implication: Jayakumar, Pradhan, Dash, Maradana, and Gaurav (2018) proposed a theoretical model of the causal relationship between banking competition, banking stability, and economic growth by using different indicators. So, we empirically test the proposed indicators in our study. This study makes a contribution to the literature by showing the defined relationship between developing and developed countries. Policy Implications: The study covers various policy implications regarding investors to analyze how to properly manage their finances, and government agencies will take help from the present study to find the best and most suitable policies by examining how the economy can grow concerning its finances.

Keywords: competition, stability, economic growth, vector auto-regression, granger causality

Procedia PDF Downloads 64
720 Determine Causal Factors Affecting the Responsiveness and Productivity of Non-Governmental Universities

Authors: Davoud Maleki

Abstract:

Today, education and investment in human capital is a long-term investment without which the economy will be stagnant Stayed. Higher education represents a type of investment in human resources by providing and improving knowledge, skills and Attitudes help economic development. Providing efficient human resources by increasing the efficiency and productivity of people and on the other hand with Expanding the boundaries of knowledge and technology and promoting technology such as the responsibility of training human resources and increasing productivity and efficiency in High specialized levels are the responsibility of universities. Therefore, the university plays an infrastructural role in economic development and growth because education by creating skills and expertise in people and improving their ability.In recent decades, Iran's higher education system has been faced with many problems, therefore, scholars have looked for it is to identify and validate the causal factors affecting the responsiveness and productivity of non-governmental universities. The data in the qualitative part is the result of semi-structured interviews with 25 senior and middle managers working in the units It was Islamic Azad University of Tehran province, which was selected by theoretical sampling method. In data analysis, stepwise method and Analytical techniques of Strauss and Corbin (1992) were used. After determining the central category (answering for the sake of the beneficiaries) and using it in order to bring the categories, expressions and ideas that express the relationships between the main categories and In the end, six main categories were identified as causal factors affecting the university's responsiveness and productivity.They are: 1- Scientism 2- Human resources 3- Creating motivation in the university 4- Development based on needs assessment 5- Teaching process and Learning 6- University quality evaluation. In order to validate the response model obtained from the qualitative stage, a questionnaire The questionnaire was prepared and the answers of 146 students of Master's degree and Doctorate of Islamic Azad University located in Tehran province were received. Quantitative data in the form of descriptive data analysis, first and second stage factor analysis using SPSS and Amos23 software were analyzed. The findings of the research indicated the relationship between the central category and the causal factors affecting the response The results of the model test in the quantitative stage confirmed the generality of the conceptual model.

Keywords: accountability, productivity, non-governmental, universities, foundation data theory

Procedia PDF Downloads 62
719 Causal-Comparative Study on the Benefit of Faculty Intervention on Student Academic Performance

Authors: Anne Davies

Abstract:

Numerous students matriculating into university programs are surprised to find they are underprepared for the academic challenges of undergraduate studies. In many cases, they are unaware of their weaknesses as a scholar and unsure of how to develop their skills to succeed academically. Hypothesis: Early proactive intervention from faculty and staff members can mitigate academic issues and promote better student success outcomes. Method: After three weeks in their first semester, first-year students struggling-academically were recruited to attend individual weekly remediation sessions to develop effective learning practices. A causal-comparative methodology was used to evaluate their progress as compared to prior students with similar academic performances. Observations: Students welcomed the intervention from faculty and staff to remediate their individual needs. Those who received help in the third week had better outcomes than previous students with comparable performances who did not receive any interventional support. At the end of the semester, most students were back on track to complete their chosen degree programs. Conclusions: Early intervention by faculty and staff can improve the success of students in maintaining their status in their programs. In the future, this program will be incorporated into all first-year experience courses.

Keywords: Academic outcomes, program retention, remediation, undergraduate students

Procedia PDF Downloads 133
718 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 157
717 Challenging Human Trade in Sub-Saharan Africa and Beyond: A Foresight Approach to Contextualizing and Understanding the Consequences of Sub-Saharan Africa’s Demographic Emergence

Authors: Ricardo Schnug

Abstract:

This paper puts the transnational crime of human trafficking in the context of Sub-Saharan Africa and its quickly growing youth bulge. By mapping recent and concurrent trends and emerging issues, it explores the implications that it has not only for the region itself but also for the greater global dynamics of the issue. Through the application of Causal Layered Analysis to various alternative future scenarios as well as the identification of the core narrative surrounding the international discourse, it is possible to understand more deeply the forces that underlie future trafficking and what change becomes possible. With the provision of a reconstructed narrative that avoids the current blind spots, this research points out the need for a new and organic leadership paradigm that allows for a more holistic and future-oriented inquiry about socio-economic and political change and what it entails for a transnational crime such as human trafficking. 'Ubuntu' as a social and leadership philosophy then, provides the principles needed for creating this path towards a truly preferred future. Furthermore, this paper inspires follow-up research and the continuous monitoring and transdisciplinary research of this region’s demographic emergence as well as its possible consequences that have been explored in this inquiry.

Keywords: causal layered analysis, emerging issues, human trafficking, scenarios, sub-Saharan Africa

Procedia PDF Downloads 193
716 Casual Effects of Informal Care and Health on Falls and Other Accidents among the Elderly Population in China

Authors: Hong Wu, Naiji Lu, Chenguang Wang, Xinming Tu

Abstract:

This article analyzes the causal effects of informal care, mental health, and physical health on falls and other accidents (e.g. traffic accidents) among elderly people. To purge potential reversal causal effects, e.g., past accidents induce more future informal care, we use two-stage least squares to identify the impacts. By using longitudinal data from a representative national China Health and retirement longitudinal study of people aged 45 and older in China, our findings indicate that informal care decreases while poor health conditions increase the occurrence of accidents. We also find heterogeneous impacts on the occurrence of accidents, varying by gender, urban status, and past accident history. Our findings suggest the following three policy implications. First, policy makers who aim to decrease accidents should take informal care to elders into account. Second, ease of birth policy and postponed retirement policy are urgent to meet the demand of informal care. Third, medical policies should attach great importance to not only physical health but also mental health of elderly parents especially for older people with accident history.

Keywords: accident, China, fall, informal care, mental health, physical health

Procedia PDF Downloads 478
715 Designing an Effective Accountability Model for Islamic Azad University Using the Qualitative Approach of Grounded Theory

Authors: Davoud Maleki, Neda Zamani

Abstract:

The present study aims at exploring the effective accountability model of Islamic Azad University using a qualitative approach of grounded theory. The data of this study were obtained from semi-structured interviews with 25 professors and scholars in Islamic Azad University of Tehran who were selected by theoretical sampling method. In the data analysis, the stepwise method and Strauss and Corbin analytical methods (1992) were used. After identification of the main component (balanced response to stakeholders’ needs) and using it to bring the categories together, expressions and ideas representing the relationships between the main and subcomponents, and finally, the revealed components were categorized into six dimensions of the paradigm model, with the relationships among them, including causal conditions (7 components), main component (balanced response to stakeholders’ needs), strategies (5 components), environmental conditions (5 components), intervention features (4 components), and consequences (3 components). Research findings show an exploratory model for describing the relationships between causal conditions, main components, accountability strategies, environmental conditions, university environmental features, and that consequences.

Keywords: accountability, effectiveness, Islamic Azad University, grounded theory

Procedia PDF Downloads 87
714 Trading Volume on the Tunisian Financial Market: An Approach Explaining the Hypothesis of Investors Overconfidence

Authors: Fatma Ismailia, Malek Saihi

Abstract:

This research provides an explanation of exchange incentives on the Tunis stock market from a behavioural point of view. The elucidation of the anomalies of excessive volume of transactions and that of excessive volatility cannot be done without the recourse to the psychological aspects of investors. The excessive confidence has been given the predominant role for the explanation of these phenomena. Indeed, when investors store increments, they become more confident about the precision of their private information and their exchange activities then become more aggressive on the subsequent periods. These overconfident investors carry out the intensive exchanges leading to an increase of securities volatility. The objective of this research is to identify whether the trading volume and the excessive volatility of securities observed on the Tunisian stock market come from the excessive exchange of overconfident investors. We use a sample of daily observations over the period January 1999 - October 2007 and we relied on various econometric tests including the VAR model. Our results provide evidence on the importance to consider the bias of overconfidence in the analysis of Tunis stock exchange specificities. The results reveal that the excess of confidence has a major impact on the trading volume while using daily temporal intervals.

Keywords: overconfidence, trading volume, efficiency, rationality, anomalies, behavioural finance, cognitive biases

Procedia PDF Downloads 412
713 Financing from Customers for SMEs and Managing Financial Risks: The Role of Customer Relationships

Authors: Yongsheng Guo, Mengyu Lu

Abstract:

This study investigates how Chinese SMEs manage financial risks in financing from customers from the perspectives of ethics and national culture. A grounded theory approach is adopted to identify the causal conditions, actions/interactions, and consequences. 32 interviews were conducted, and systematic coding methods were used to identify themes and categories. This study found that Chinese ethical principles, including integrity, friendship, and reciprocity, and cultural traits, including collectivism, acquaintance society, and long-term orientation, provide conditions for financing from customers. The SMEs establish trust-based relationships with customers through personal communications and social networks and reduce financial risk through diversification, frequent operations, and enterprise reputations. Both customers and SMEs can get benefits like financial resources and customer experiences. This study creates a theoretical framework that connects the causal conditions, processes, and outcomes, providing a deeper understanding of financing from customers. A resource and process capability theory of SMEs and a customer capital and customer value model are proposed to connect accounting and finance concepts. Suggestions are proposed for the authorities as more guidance and regulations are needed for this informal finance.

Keywords: CRM, culture, ethics, SME, risk management

Procedia PDF Downloads 45
712 Energy Consumption and Economic Growth: Testimony of Selected Sub-Saharan Africa Countries

Authors: Alfred Quarcoo

Abstract:

The main purpose of this paper is to examine the causal relationship between energy consumption and economic growth in Sub-Saharan Africa using panel data techniques. An annual data on energy consumption and Economic Growth (proxied by real gross domestic product per capita) spanning from 1990 to 2016 from the World bank index database was used. The results of the Augmented Dickey–Fuller unit root test shows that the series for all countries are not stationary at levels. However, the log of economic growth in Benin and Congo become stationary after taking the differences of the data, and log of energy consumption become stationary for all countries and Log of economic growth in Kenya and Zimbabwe were found to be stationary after taking the second differences of the panel series. The findings of the Johansen cointegration test demonstrate that the variables Log of Energy Consumption and Log of economic growth are not co-integrated for the cases of Kenya and Zimbabwe, so no long-run relationship between the variables were established in any country. The Granger causality test indicates that there is a unidirectional causality running from energy use to economic growth in Kenya and no causal linkage between Energy consumption and economic growth in Benin, Congo and Zimbabwe.

Keywords: Cointegration, Granger Causality, Sub-Sahara Africa, World Bank Development Indicators

Procedia PDF Downloads 54
711 Green Bonds as a Financing Mechanism for Energy Transition in Emerging Markets: The Case of Morocco

Authors: Abdelhamid Nechad, Ahmed Maghni, Khaoula Zahir

Abstract:

Energy transition is one of Morocco's key sustainable development issues and is at the heart of the 2030 National Sustainable Development Strategy. On the one hand, it reflects the Moroccan government's determination to reduce the negative impact of energy consumption on the environment, and on the other, its determination to rely essentially on renewable energies to meet its energy needs. With this in mind, several tools are being implemented, including green bonds designed to finance projects with a high environmental or climate impact. Thus, since 2015, several green bonds have been issued for a cumulative total of $0.4 Billion . This article aims to examine the impact of green bonds on Morocco's energy transition. Through the Granger causality and cointegration test, this article examines the existence of a short- and long-term causal relationship between green bond issuance and investment in renewable energy projects on the one hand, and between green bond issuance and CO₂ emission reductions on the other. The results suggest that there is no short-term causal relationship between green bond issuance and renewable energy investments on one hand and CO₂ emissions reduction on the other hand. However, in the long run, there is a relationship between green bond issuance and CO₂ emissions reduction in Morocco.

Keywords: climate impact, CO₂ emissions, energy transition, green bonds, Morocco

Procedia PDF Downloads 25
710 Nostalgic Tourism in Macau: The Bidirectional Causal Relationship between Destination Image and Experiential Value

Authors: Aliana Leong, T. C. Huan

Abstract:

The purpose of Nostalgic themed tourism product is becoming popular in many countries. This study intends to investigate the role of nostalgia in destination image, experiential value and their effect on subsequent behavioral intention. The survey used stratified sampling method to include respondents from all the nearby Asian regions. The sampling is based on the data of inbound tourists provided by the Statistics and Census Service (DSEC) of government of Macau. The questionnaire consisted of five sections of 5 point Likert scale questions: (1) nostalgia, (2) destination image both before and after experience, (3) expected value, (4) experiential value, and (5) future visit intention. Data was analysed with structural equation modelling. The result indicates that nostalgia plays an important part in forming destination image and experiential value before individual had a chance to experience the destination. The destination image and experiential value share a bidirectional causal relationship that eventually contributes to future visit intention. The study also discovered that while experiential value is more effective in generating destination image, the later contribute more to future visit intention. The research design measures destination image and experiential value before and after respondents had experience the destination. The distinction between destination image and expected/experiential value can be examined because the longitudinal design of research method. It also allows this study to observe how nostalgia translates to future visit intention.

Keywords: nostalgia, destination image, experiential value, future visit intention

Procedia PDF Downloads 390
709 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153
708 Detecting Impact of Allowance Trading Behaviors on Distribution of NOx Emission Reductions under the Clean Air Interstate Rule

Authors: Yuanxiaoyue Yang

Abstract:

Emissions trading, or ‘cap-and-trade', has been long promoted by economists as a more cost-effective pollution control approach than traditional performance standard approaches. While there is a large body of empirical evidence for the overall effectiveness of emissions trading, relatively little attention has been paid to other unintended consequences brought by emissions trading. One important consequence is that cap-and-trade could introduce the risk of creating high-level emission concentrations in areas where emitting facilities purchase a large number of emission allowances, which may cause an unequal distribution of environmental benefits. This study will contribute to the current environmental policy literature by linking trading activity with environmental injustice concerns and empirically analyzing the causal relationship between trading activity and emissions reduction under a cap-and-trade program for the first time. To investigate the potential environmental injustice concern in cap-and-trade, this paper uses a differences-in-differences (DID) with instrumental variable method to identify the causal effect of allowance trading behaviors on emission reduction levels under the clean air interstate rule (CAIR), a cap-and-trade program targeting on the power sector in the eastern US. The major data source is the facility-year level emissions and allowance transaction data collected from US EPA air market databases. While polluting facilities from CAIR are the treatment group under our DID identification, we use non-CAIR facilities from the Acid Rain Program - another NOx control program without a trading scheme – as the control group. To isolate the causal effects of trading behaviors on emissions reduction, we also use eligibility for CAIR participation as the instrumental variable. The DID results indicate that the CAIR program was able to reduce NOx emissions from affected facilities by about 10% more than facilities who did not participate in the CAIR program. Therefore, CAIR achieves excellent overall performance in emissions reduction. The IV regression results also indicate that compared with non-CAIR facilities, purchasing emission permits still decreases a CAIR participating facility’s emissions level significantly. This result implies that even buyers under the cap-and-trade program have achieved a great amount of emissions reduction. Therefore, we conclude little evidence of environmental injustice from the CAIR program.

Keywords: air pollution, cap-and-trade, emissions trading, environmental justice

Procedia PDF Downloads 152
707 Challenging the Theory of Mind: Autism Spectrum Disorder, Social Construction, and Biochemical Explanation

Authors: Caroline Kim

Abstract:

The designation autism spectrum disorder (ASD) groups complex disorders in the development of the brain. Autism is defined essentially as a condition in which an individual lacks a theory of mind. The theory of mind, in this sense, explains the ability of an individual to attribute feelings, emotions, or thoughts to another person. An autistic patient is characteristically unable to determine what an interlocutor is feeling, or to understand the beliefs of others. However, it is possible that autism cannot plausibly characterized as the lack of theory of mind in an individual. Genes, the bran, and its interplay with environmental factors may also cause autism. A mutation in a gene may be hereditary, or instigated by diseases such as mumps. Though an autistic patient may experience abnormalities in the cerebellum and the cortical regions, these are in fact only possible theories as to a biochemical explanation behind the disability. The prevailing theory identifying autism with lacking the theory of mind is supported by behavioral observation, but this form of observation is itself determined by socially constructed standards, limiting the possibility for empirical verification. The theory of mind infers that the beliefs and emotions of people are causally based on their behavior. This paper demonstrates the fallacy of this inference, critiquing its basis in socially constructed values, and arguing instead for a biochemical approach free from the conceptual apparatus of language and social expectation.

Keywords: autism spectrum disorder, sociology of psychology, social construction, the theory of mind

Procedia PDF Downloads 406