Search results for: professional learning communities (PLCs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10764

Search results for: professional learning communities (PLCs)

2094 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 24
2093 The Impact of Transformational Leadership on Individual Attributes

Authors: Bilal Liaqat, Muhammad Umar, Zara Bashir, Hassan Rafique, Mohsin Abbasi, Zarak Khan

Abstract:

Transformational leadership is one of the most studied topics in the organization sciences. However, the impact of transformational leadership on employee’s individual attributes have not yet been studied. Purpose: This research aims to discover the relationship between transformational leadership and employee motivation, performance and creativity. Moreover, the study will also investigate the influence of transformational leadership on employee performance through employee motivation and employee creativity. Design-Methodology-Approach: The data was collected from employees in different organization. This cross-sectional study collected data from employees and the methodology used includes survey data that were collected from employees in organizations. Structured interviews were also conducted to explain the outcomes from the survey. Findings: The results of this study reveal that transformational leadership has a positive impact on employee’s individual attributes. Research Implications: Although this study expands our knowledge about the role of learning orientation between transformational leadership and employee motivation, performance and creativity, the prospects for further research are still present.

Keywords: employee creativity, employee motivation, employee performance, transformational leadership

Procedia PDF Downloads 229
2092 Wireless Response System Internationalisation Testing for Multilingual

Authors: Bakhtiar Amen, Abduladim Ali, Joan Lu

Abstract:

Recently, wireless technologies have made tremendous influences in advanced technology era, precisely on the learning environment through PADs and smart phones to engage learners to collaborate effectively. In fact, the wireless communication technologies are widely adopted in the education sectors within most of the countries to deliver education support electronically. Today, Introducing multilingual Wireless Response System (WRS) application is an enormous challenge and complex. The purpose of this paper is to implementing internationalization testing strategy through WRS application case study and proposed a questionnaire in multilingual speakers like (Arabic, Kurdish, Chines, Malaysian, Turkish, Dutch, Polish, Russian) to measure the internationalization testing results which includes localization and cultural testing results. This paper identifies issues with each language’s specification attributes for instance right to left (RTL) screen direction related languages, Linguistic test or word spaces in Chines and Dutch languages. Finally, this paper attempt to emphasizes many challenges and solutions that associated with globalization testing model.

Keywords: mobile WRS, internationalization, globalization testing

Procedia PDF Downloads 409
2091 Buddhism and Education for Children: Cultivating Wisdom and Compassion

Authors: Harry Einhorn

Abstract:

This paper aims to explore the integration of Buddhism into educational settings with the goal of fostering the holistic development of children. By incorporating Buddhist principles and practices, educators can create a nurturing environment that cultivates wisdom, compassion, and ethical values in children. The teachings of Buddhism provide valuable insights into mindfulness, compassion, and critical thinking, which can be adapted and applied to educational curricula to enhance children's intellectual, emotional, and moral growth. One of the fundamental aspects of Buddhist philosophy that is particularly relevant to education is the concept of mindfulness. By introducing mindfulness practices, such as meditation and breathing exercises, children can learn to cultivate present-moment awareness, develop emotional resilience, and enhance their ability to concentrate and focus. These skills are essential for effective learning and can contribute to reducing stress and promoting overall well-being in children. Mindfulness practices can also teach children how to manage their emotions and thoughts, promoting self-regulation and creating a positive classroom environment. In addition to mindfulness, Buddhism emphasizes the cultivation of compassion and empathy toward all living beings. Integrating teachings on kindness, empathy, and ethical behavior into the educational framework can help children develop a deep sense of interconnectedness and social responsibility. By engaging children in activities that promote empathy and encourage acts of kindness, such as community service projects and cooperative learning, educators can foster the development of compassionate individuals who are actively engaged in creating a more harmonious and compassionate society. Moreover, Buddhist teachings encourage critical thinking and inquiry, which are crucial skills for intellectual development. By introducing children to fundamental Buddhist concepts such as impermanence, interdependence, and the nature of suffering, educators can engage them in philosophical reflections and broaden their perspectives on life. These teachings promote open-mindedness, curiosity, and a deeper understanding of the interconnectedness of all things. Through the exploration of these concepts, children can develop critical thinking skills and gain insights into the complexities of the world, enabling them to navigate challenges with wisdom and discernment. While integrating Buddhism into education requires sensitivity, cultural awareness, and respect for diverse beliefs and backgrounds, it holds great potential for nurturing the holistic development of children. By incorporating mindfulness practices, fostering compassion and empathy, and promoting critical thinking, Buddhism can contribute to the creation of a more compassionate, inclusive, and harmonious educational environment. This integration can shape well-rounded individuals who are equipped with the necessary skills and qualities to navigate the complexities of the modern world with wisdom, compassion, and resilience. In conclusion, the integration of Buddhism into education offers a valuable framework for cultivating wisdom, compassion, and ethical values in children. By incorporating mindfulness, compassion, and critical thinking into educational practices, educators can create a supportive environment that promotes children's holistic development. By nurturing these qualities, Buddhism can help shape individuals who are not only academically proficient but also morally and ethically responsible, contributing to a more compassionate and harmonious society.

Keywords: Buddhism, education, children, mindfulness

Procedia PDF Downloads 63
2090 Probiotics as an Alternative to Antibiotic Use in Pig Production

Authors: Z. C. Dlamini, R. L. S. Langa, A. I. Okoh, O. A. Aiyegoro

Abstract:

The indiscriminate usage of antibiotics in swine production have consequential outcomes; such as development of bacterial resistance to prophylactic antibiotics and possibility of antibiotic residues in animal products. The use of probiotics appears to be the most effective procedure with positive metabolic nutritional implications. The aim of this study was to investigate the efficacy of probiotic bacteria (Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBRC13956) administered as direct-fed microorganisms in weaned piglets. 45 weaned piglets blocked by weight were dived into 5 treatments groups: diet with antibiotic, diet with no-antibiotic and no probiotic, and diet with probiotic and diet with combination of probiotics. Piglets performance was monitored during the trials. Faecal and Ileum samples were collected for microbial count analysis. Blood samples were collected from pigs at the end of the trial, for analysis of haematological, biochemical and IgG stimulation. The data was analysed by Split-Plot ANOVA using SAS statistically software (SAS 9.3) (2003). The difference was observed between treatments for daily weight and feed conversion ratio. No difference was observed in analysis of faecal samples in regards with bacterial counts, difference was observed in ileums samples with enteric bacteria colony forming unit being lower in P2 treatment group as compared with lactic acid and total bacteria. With exception of globulin and albumin, biochemistry blood parameters were not affected, likewise for haematology, only basophils and segmented neutrophils were differed by having higher concentration in NC treatment group as compared with other treatment groups. Moreover, in IgG stimulation analysis, difference was also observed, with P2 treatment group having high concentration of IgG in P2 treatment group as compared to other groups. The results of this study suggest that probiotics have a beneficial effect on growth performances, blood parameters and IgG stimulation of pigs, most effective when they are administered in synergy form. This means that it is most likely that these probiotics will offer a significant benefit in pig farming by reducing risk of morbidity and mortality and produce quality meat that is more affordable to poorer communities, and thereby enhance South African pig industry’s economy. In addition, these results indicate that there is still more research need to be done on probiotics in regards with, i.e. dosage, shelf life and mechanism of action.

Keywords: antibiotics, biochemistry, haematology, IgG-stimulation, microbial count, probiotics

Procedia PDF Downloads 304
2089 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 266
2088 The Mental Health of Indigenous People During the COVID-19 Pandemic: A Scoping Review

Authors: Suzanne L. Stewart, Sarah J. Ponton, Mikaela D. Gabriel, Roy Strebel, Xinyi Lu

Abstract:

Indigenous Peoples have faced unique barriers to accessing and receiving culturally safe and appropriate mental health care while also facing daunting rates of mental health diagnoses and comorbidities. Indigenous researchers and clinicians have well established the connection of the current mental health issues in Indigenous communities as a direct result of colonization by way of intergenerational trauma throughout Canada’s colonial history. Such mental health barriers and challenges have become exacerbated during the COVID-19 pandemic. Throughout the pandemic, access to mental health, cultural, ceremonial, and community services were severely impacted and restricted; however, it is these same cultural activities and community resources that are key to supporting Indigenous mental health from a traditional and community-based perspective. This research employed a unique combination of a thorough, analytical scoping review of the existent mental health literature of Indigenous mental health in the COVID-19 pandemic, alongside narrative interviews employing an oral storytelling tradition methodology with key community informants that provide comprehensive cultural services to the Indigenous community of Toronto, as well as across Canada. These key informant interviews provided a wealth of insights into virtual transitions of Indigenous care and mental health support; intersections of historical underfunding and current financial navigation in technology infrastructure; accessibility and connection with Indigenous youth in remote locations; as well as maintaining community involvement and traditional practices in a current pandemic. Both the scoping review and narrative interviews were meticulously analyzed for overarching narrative themes to best explore the extent of the literature on Indigenous mental health and services during COVID-19; identify gaps in this literature; identify barriers and supports for the Indigenous community, and explore the intersection of community and cultural impacts to mental health. Themes of the scoping review included: Historical Context; Challenges in Culturally-Based Services; and Strengths in Culturally-Based Services. Meta themes across narrative interviews included: Virtual Transitions; Financial Support for Indigenous Services; Health Service Delivery & Wellbeing; and Culture & Community Connection. The results of this scoping review and narrative interviews provide wide application and contribution to the mental health literature, as well as recommendations for policy, service provision, autonomy in Indigenous health and wellbeing, and crucial insights into the present and enduring mental health needs of Indigenous Peoples throughout the COVID-19 pandemic.

Keywords: indigenous community services, indigenous mental health, indigenous scoping review, indigenous peoples and Covid-19

Procedia PDF Downloads 242
2087 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 116
2086 Teacher in Character Strengthening for Early Childhood

Authors: Siti Aisyah

Abstract:

This article discusses character education which is a very basic education for early childhood with the aim of instilling moral values to prevent unacceptable behaviours. Children can absorb good character when they are in a supportive environment, for that schools should understand and implement character education in the learning process. In the school environment, good character education and habituation can be developed. All parties in the school should be involved, especially the teachers. This research discusses how teachers apply characters on the values of responsibility, honesty, discipline, love and compassion, caring, courage, independence, hard work, mutual cooperation, courtesy, justice, self-control and tolerance. The respondents of this study were teachers involving 200 children from all over Indonesia. The methodology used was a survey method with the result that more than 80% of teachers have been able to exhibit the expected behaviours. The survey was conducted based on observations, types of tasks and assessed performance. The character values can be optimally taught in the school environment based on the teacher's ability to implement them. Through the character education in schools, children can also instil a positive outlook on life.

Keywords: teachers, character strengthening, early childhood, behavior

Procedia PDF Downloads 92
2085 Emergence of Neurodiversity and Awareness of Autism Among School Teachers- A Preliminary Survey

Authors: Tanvi Rajesh Sanghavi

Abstract:

Introduction: Neurodiversity is a concept which captures the different ways in which everyone's brain functions and is considered as part of normal variation. It is a strength-based approach which focuses on the individual's strengths and capabilities and believes in providing support wherever necessary. In many parts of the world, those diagnosed with autism spectrum disorder have been ostracized and ridiculed due to their sensory and communication differences. Hence, it becomes important for the teachers to have knowledge about autism and understand the needs of children with Autism. Need: India is rich in terms of culture, languages and religious diversity. It is important to study neurodiversity in such a population for better understanding of neurodiverse individuals and appropriate intervention. Aim & objectives: This study seeks teachers' knowledge of the causes, traits and educational requirements of children with autism spectrum disorder (ASD). It also aims to find out whether mainstream schools actually provide training programs to the teachers to manage such children along with the necessary accommodations. Method: The current study was a cross-sectional study conducted among school teachers. A total of 30 school teachers were taken for the study. The participants were enrolled after informed consent. The participants were directed to a google form consisting of objective questions. The first part of the questionnaire elicited information about school, teaching experience, qualification, etc. There were specific questions extracting details on attending/conducting sensitization and professional programs in regard to care for autistic children. The second part of the questionnaire consisted of some basic questions on the teacher’s understanding of diagnosis, traits, causes, road to recovery and understanding the educational and communication needs of autistic children from the teacher’s perspective. The responses were tabulated and analyzed descriptively. Results: Most of the teachers had 5–10 years of teaching experience. The majority of the teachers used the term “special child” for autistic children. Around 54.8% (17 teachers) of the total teachers felt that the parents of autistic children should teach their child to learn adaptive skills and 41.9% of the teachers felt that they should take medical intervention. About 50% of the teachers felt that the cause of autism is related to pre-natal maternal factors and about 40% felt that its cause is genetic. Only a small percentage of teachers felt that they were trained to manage the children with autism. More than 50% of the teachers mentioned that their schools do not conduct training programs for managing these children. Discussion & Conclusion: In this study, the knowledge and perspectives of teachers on children with ASD were studied. The most widely held contemporary belief is that genetic factors play a major part in the development of ASD, although the existing evidence is muddled, with numerous opposing perspectives on the nature of this mechanism. It is worth noting that any culture's level of humanity is mirrored in how that society "treats" its vulnerable population.

Keywords: autism, neurodiversity, awareness, education

Procedia PDF Downloads 18
2084 The Destruction of Memory: Ataturk Cultural Centre

Authors: Birge Yildirim Okta

Abstract:

This paper aims to narrate the story of Atatürk Cultural Center in Taksim Square, which was demolished in 2018, and discuss its architectonic as a social place of memory and its existence and demolishment as the space of politics. Focusing on the timeline starting from early republican period till today, the paper uses narrative discourse analysis to research Atatürk Cultural Center as a place of memory and a space of politics in its existence. After the establishment of Turkish Republic, one of most important implementation in Taksim Square, reflecting the internationalist style, was the construction of Opera Building in Prost Plan. The first design of the opera building belonged to Aguste Perret, which could not be implemented due to economic hardship during World War II. Later the project was designed by architects Feridun Kip and Rüknettin Güney in 1946 but could not be completed due to 1960 military coup. Later the project was shifted to another architect Hayati Tabanlıoglu, with a change in its function as a cultural center. Eventually, the construction of the building was completed in 1969 in a completely different design. AKM became a symbol of republican modernism not only with its modern architectural style but also with it is function as the first opera building of the republic, reflecting the western, modern cultural heritage by professional groups, artists and the intelligentsia. In 2005, Istanbul’s council for the protection of cultural heritage decided to list AKM as a grade 1 cultural heritage, ending a period of controversy which saw calls for the demolition of the center as it was claimed it ended its useful lifespan. In 2008 the building was announced to be closed for repairs and restoration. Over the following years, the building was demolished piece by piece silently while Taksim mosque has been built just in front of Atatürk Cultural Center. Belonging to the early republican period, AKM was a representation of a cultural production of a modern society for the emergence and westward looking, secular public space in Turkey. Its erasure from Taksim scene under the rule of the conservative government, Justice and Development Party and the construction of Taksim mosque in front of AKM’s parcel is also representational. The question of governing the city through space has always been an important aspect for governments, those holding political power since cities are the chaotic environments that are seen as a threat for the governments, carrying the tensions of proletariat or the contradictory groups. The story of AKM as a dispositive or a regulatory apparatus demonstrates how space itself is becoming a political medium, to transform the socio-political condition. The article aims to discuss the existence and demolishment of Atatürk Cultural Center by discussing the constructed and demolished building as a place of memory and a space of politics.

Keywords: space of politics, place of memory, atatürk cultural center, taksim square

Procedia PDF Downloads 85
2083 Success Factors and Challenges of Startup Businesses in a Crisis Context

Authors: Joanna Konstantinou

Abstract:

The study is about the challenges faced by entrepreneurs in a crisis context and in turbulent economies. The scope is to determine which factors, if any, are related to the success of a new business venture, such as innovation, access to funding and capital, enhanced digital skills, employment relations and organizational culture as well as a company’s strategic orientation towards international markets. The crisis context has been recorded to have affected the number of SMEs in the Greek economy, the number of people employed as well as the volume of the output produced. Although not all SMEs have been equally impacted by the crisis, which has been identified to affect certain sectors more than others, and although research is not exhaustive in that end, employment relations and patterns, firm’s age, and innovation practices in relation to employees’ learning curve seem to have a positive correlation with the successful survival and resilience of the firm. The aim is to identify important factors that can contribute positively to the success of a startup business, and that will allow businesses to acquire resilience and survive economic adversities, and it will focus on businesses of the Greek economy, the country with the longer lasting economic crisis and the findings will be lessons to learn for other economies.

Keywords: entrepreneurship, innovation, crisis, challenges

Procedia PDF Downloads 237
2082 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System

Authors: Mamta M. Barapatre, V. N. Sahare

Abstract:

Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.

Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept

Procedia PDF Downloads 278
2081 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels

Authors: Shih-Yu Wang, Shun-Wen Hsiao

Abstract:

In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.

Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels

Procedia PDF Downloads 87
2080 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 131
2079 The Clash of the Clans in the British Divorce

Authors: Samuel Gary Beckton

Abstract:

Ever since the Scottish Independence Referendum in 2014, there has been a threat of a second referendum. However, if there was another referendum and the majority favoured independence, it is highly likely to be by a small majority. In this paper, it will look into the hypothetical situation of what could have happened if Scotland had voted in favour of independence in 2014. If this occurred, there would be many Unionists within Scotland, including devoted supporters of the Better Together campaign. There was a possibility of some Scottish Unionists not willing to accept the result of the Referendum unchallenged and use their right of self-determination through the UN Charter for their region to remain within the United Kingdom. The Shetland and Orkney Islands contemplated of opting out of an independent Scotland in 2013. This caught the attention of some politicians and the media, via confirming the possibility of some form of partition in Scotland and could have gained extra attention if partition quickly became a matter of ‘need’ instead of ‘want’. Whilst some Unionists may have used petitions and formed pressure groups to voice their claims, others may have used more hard-line tactics to achieve their political objectives, including possible protest marches and acts of civil unrest. This could have possibly spread sectarian violence between Scottish Unionists and Nationalists. Glasgow has a serious issue of this kind of sectarianism, which has escalated in recent years. This is due to the number communities that have been established from Irish Immigrants, which maintain links with Northern Irish loyalists and republicans. Some Scottish Unionists not only have sympathy towards Northern Irish loyalists but actively participate with the paramilitary groups and gave support. Scottish loyalists could use these contacts to create their own paramilitary group(s), with aid from remaining UK (RUK) benefactors. Therefore, this could have resulted in the RUK facing a serious security dilemma, with political and ethical consequences to consider. The RUK would have the moral obligation to protect Scottish Unionists from persecution and recognise their right of self-determination, whilst ensuring the security and well-being of British citizens within and outside of Scotland. This work takes into consideration the lessons learned from the ‘Troubles’ in Northern Ireland. As an era of ‘Troubles’ could occur in Scotland, extending into England and Northern Ireland. This is due to proximity, the high number of political, communal and family links in Scotland to the RUK, and the delicate peace process within Northern Ireland which shares a similar issue. This paper will use British and Scottish Government documents prior to the Scottish referendum to argue why partition might happen and use cartography of maps of a potential partition plan for Scotland. Reports from the UK National Statistics, National Rail, and Ministry of Defence shall also be utilised, and use of journal articles that were covering the referendum.

Keywords: identity, nationalism, Scotland, unionism

Procedia PDF Downloads 167
2078 The Synchronous Online Environment: Impact on Instructor’s Empathy

Authors: Lystra Huggins

Abstract:

The COVID-19 pandemic affected all facets of life, including pedagogical strategies and perceptual experiences for both instructors and students. While there have also been many challenges and advantages to the online teaching and learning environment, when students’ cameras are on, the daily experiences of students’ lives have been magnified during synchronous online instruction and have served to humanize them in the classroom. This means that students’ everyday experiences, now often on display on ZOOM, allow instructors to see the realities of students. They include children running, spouses walking by parents cooking or sitting on the sofa following the lecture, students at their place of employment or driving from work, or having their classroom engagement interrupted by a delivery. Students’ backgrounds and spaces create unique dynamics during synchronous instruction, which offers a holistic view of them outside academia. This research explores whether witnessing students’ daily experiences leads to empathy from their instructors and whether it results in a greater understanding of students’ challenges and circumstances. Ultimately, it will amplify instructors’ stance on the advantages of students having their cameras on during synchronous online classes to develop a connection with the instructor and a more cohesive classroom environment.

Keywords: instructor’s empathy, synchronous class, asynchronous class, online environment

Procedia PDF Downloads 97
2077 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: spoken dialog system, spoken language understanding, web semantic, name entity recognition

Procedia PDF Downloads 338
2076 The Relationship between the Social Entrepreneur and the Social Dimension of Sustainability: A Bibliometric Survey of the Last Twelve Years

Authors: Leticia Lengler, Jefferson Oliveira, Vania Estivalete, Jordana Marques Kneipp, Lucia Regina Da Rosa Gama Madruga

Abstract:

The way social entrepreneurs act and can positively impact on our society engages the interest of academics, companies and governments, who seek solutions to solve or alleviate issues related to the abuse of natural resources, as well as the increase of poverty (social aspects). Studies on social entrepreneurship have been characterized by diverse ramifications and their transdisciplinary character, permeating various disciplines and approaches. Different bibliometric studies were conducted within the theme of social entrepreneurship. In this context, because it is a topic in development and multifaceted, the aim of this article is to present the main interfaces of the studies on the Social Entrepreneur figure in relation to the social concern of sustainability, highlighting the relevant researches and their trends, as well as their relationship with the organizations. Aiming to achieve this purpose, the specific goals are: to identify the most cited authors and articles, to verify the authors and journals with the greatest number of publications and their approaches and to point out their affiliations, countries, and languages of publications. It is still a secondary objective to identify the emerging trends in relation to the social entrepreneur and his social concern stemming from the discussions on sustainability. This way, we analyzed articles from two international databases (Scopus and Web of Science), from 2004 to 2016. The main results were the increase in the number of publications, with most of them in English language, coming mainly from the United States institutions (such as Indiana University and Harvard University) and the United Kingdom (whose main institutions are University of London and Robert Gordon University). Although publications in Spanish and Portuguese are the least expressive in quantity, some tendencies point to publications that discuss the social entrepreneur in terms of gender (that relates to female entrepreneurship) and social class (that relates to the need of building communities that contemplate the Social entrepreneur at the base of the pyramid). It should be noted that the trends of the themes emerged from the analysis of the publication titles only in Portuguese, since this is the native language of the authors who carry out their studies mainly in Brazil. When considering articles in Portuguese (57 indicated by WOS and 9 by Scopus), a previous analysis of the titles was carried out to identify how researchers were approaching the theme social entrepreneur in a joint way to the social dimension of sustainability. However, the analysis of the titles themselves brought a limitation to our study, since it was felt a need to carry out a qualitative study, in which it could be possible to consider the abstracts of the available articles.

Keywords: base of pyramid, social dimension, social entrepreneur, sustainability

Procedia PDF Downloads 389
2075 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 215
2074 Analyzing Social Media Discourses of Domestic Violence in Promoting Awareness and Support Seeking: An Exploratory Study

Authors: Sudha Subramani, Hua Wang

Abstract:

Domestic Violence (DV) against women is now recognized to be a serious and widespread problem worldwide. There is a growing concern that violence against women has a global public health impact, as well as a violation of human rights. From the existing statistical surveys, it is revealed that there exists a strong relationship between DV and health issues of women like bruising, lacerations, depression, anxiety, flashbacks, sleep disturbances, hyper-arousal, emotional distress, sexually transmitted diseases and so on. This social problem is still considered as behind the closed doors issue and stigmatized topic. Women conceal their sufferings from family and friends, as they experience a lack of trust in others, feelings of shame and embarrassment among the society. Hence, women survivors of DV experience some barriers in seeking the support of specialized services such as health care access, crisis support, and legal guidance. Fortunately, with the popularity of social media like Facebook and Twitter, people share their opinions and emotional feelings to seek the social and emotional support, for sympathetic encouragement, to show compassion and empathy among the public. Considering the DV, social media plays a predominant role in creating the awareness and promoting the support services to the public, as we live in the golden era of social media. The various professional people like the public health researchers, clinicians, psychologists, social workers, national family health organizations, lawyers, and victims or their family and friends share the unprecedentedly valuable information (personal opinions and experiences) in a single platform to improve the social welfare of the community. Though each tweet or post contains a less informational value, the consolidation of millions of messages can generate actionable knowledge and provide valuable insights about the public opinion in general. Hence, this paper reports on an exploratory analysis of the effectiveness of social media for unobtrusive assessment of attitudes and awareness towards DV. In this paper, mixed methods such as qualitative analysis and text mining approaches are used to understand the social media disclosures of DV through the lenses of opinion sharing, anonymity, and support seeking. The results of this study could be helpful to avoid the cost of wide scale surveys, while still maintaining appropriate research conditions is to leverage the abundance of data publicly available on the web. Also, this analysis with data enrichment and consolidation would be useful in assisting advocacy and national family health organizations to provide information about resources and support, raise awareness and counter common stigmatizing attitudes about DV.

Keywords: domestic violence, social media, social stigma and support, women health

Procedia PDF Downloads 291
2073 Impact of COVID-19 on Study Migration

Authors: Manana Lobzhanidze

Abstract:

The COVID-19 pandemic has made significant changes in migration processes, notably changes in the study migration process. The constraints caused by the COVID-19 pandemic led to changes in the studying process, which negatively affected its efficiency. The educational process has partially or completely shifted to distance learning; Both labor and study migration have increased significantly in the world. The employment and education market has become global and consequently, a number of challenges have arisen for employers, researchers, and businesses. The role of preparing qualified personnel in achieving high productivity is justified, the benefits for employers and employees are assessed on the one hand, and the role of study migration for the country’s development is examined on the other hand. Research methods. The research is based on methods of analysis and synthesis, quantitative and qualitative, groupings, relative and mean quantities, graphical representation, comparison, analysis and etc. In-depth interviews were conducted with experts to determine quantitative and qualitative indicators. Research findings. Factors affecting study migration are analysed in the paper and the environment that stimulates migration is explored. One of the driving forces of migration is considered to be the desire for receiving higher pay. Levels and indicators of study migration are studied by country. Comparative analysis has found that study migration rates are high in countries where the price of skilled labor is high. The productivity of individuals with low skills is low, which negatively affects the economic development of countries. It has been revealed that students leave the country to improve their skills during study migration. The process mentioned in the article is evaluated as a positive event for a developing country, as individuals are given the opportunity to share the technology of developed countries, gain knowledge, and then introduce it in their own country. The downside of study migration is the return of a small proportion of graduates from developed economies to their home countries. The article concludes that countries with emerging economies devote less resources to research and development, while this is a priority in developed countries, allowing highly skilled individuals to use their skills efficiently. The paper studies the national education system examines the level of competition in the education market and the indicators of educational migration. The level of competition in the education market and the indicators of educational migration are studied. The role of qualified personnel in achieving high productivity is substantiated, the benefits of employers and employees are assessed on the one hand, and the role of study migration in the development of the country is revealed on the other hand. The paper also analyzes the level of competition in the education and labor markets and identifies indicators of study migration. During the pandemic period, there was a great demand for the digital technologies. Open access to a variety of comprehensive platforms will significantly reduce study migration to other countries. As a forecast, it can be said that the intensity of the use of e-learning platforms will be increased significantly in the post-pandemic period. The paper analyzes the positive and negative effects of study migration on economic development, examines the challenges of study migration in light of the COVID-19 pandemic, suggests ways to avoid negative consequences, and develops recommendations for improving the study migration process in the post-pandemic period.

Keywords: study migration, COVID-19 pandemic, factors affecting migration, economic development, post-pandemic migration

Procedia PDF Downloads 127
2072 Effective Counseling Techniques Working with At-Risk Youth in Residential and Outpatient Settings

Authors: David A. Scott, Michelle G. Scott

Abstract:

The problem of juvenile crime, school suspensions and oppositional behaviors indicates a need for a wide range of intervention programs for at-risk youth. Juvenile court systems and mental health agencies are examining alternative ways to deal with at-risk youth that will allow the adolescent to live within their home community. The previous trend that treatment away from home is more effective than treatment near one's community has shifted. Research now suggests that treatment be close to home for several reasons, such as increased treatment success, parental involvement, and reduced costs. Treatment options consist of a wide range of interventions, including outpatient, inpatient, and community-based services (therapeutic group homes, foster care and in-home preservation services). The juvenile justice system, families and other mental health agencies continue to seek the most effective treatment for at-risk youth in their communities. This research examines two possible treatment modalities, a multi-systemic outpatient program and a residential program. Research examining effective, evidence- based counseling will be discussed during this presentation. The presenter recently completed a three-year research grant examining effective treatment modalities for at-risk youth participating in a multi-systemic program. The presenter has also been involved in several research activities gathering data on effective techniques used in residential programs. The data and discussion will be broken down into two parts, each discussing one of the treatment modalities mentioned above. Data on the residential programs was collected on both a sample of 740 at- risk youth over a five-year period and also a sample of 63 participants during a one-year period residing in a residential programs. The effectiveness of these residential services was measured in three ways: services are evaluated by primary referral sources; follow-up data is obtained at various intervals after program participation to measure recidivism (what percentage got back into trouble with the Department of Juvenile Justice); and a more sensitive, "Offense Seriousness Score", has been computed and analyzed prior to, during and after treatment in the residential program. Data on the multi-systemic program was gathered over the past three years on 190 participants. Research will discuss pre and post test results, recidivism rates, academic performance, parental involvement, and effective counseling treatment modalities.

Keywords: at-risk youth, group homes, therapeutic group homes, recidivism rates

Procedia PDF Downloads 84
2071 Toward Automatic Chest CT Image Segmentation

Authors: Angely Sim Jia Wun, Sasa Arsovski

Abstract:

Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.

Keywords: lung segmentation, binary masks, U-Net, medical software tools

Procedia PDF Downloads 98
2070 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph

Procedia PDF Downloads 175
2069 Information Communication Technology in Early Childhood Education: An Assessment of the Quality of ICT in the New Mega Primary Schools in Ondo State, Southwestern Nigeria

Authors: Oluyemi Christianah Ojo

Abstract:

This study seeks to investigate the quality of ICT provided in the new Caring Heart schools in Ondo State, Nigeria. The population for the study was all caring Heart Mega Schools in Ondo State, Nigeria. Research questions were generated; two instruments CCCMS and TQCUC were used to elicit information from the schools and the teachers. The study adopts descriptive survey approach. The studies revealed and concluded that ICT components were available and adequate in these schools, Charts showing ICT components and other forms of computer devices used as instructional materials were available but were not adequate; teachers teaching computer studies are competent in the delivery of instructions and in handling computer gadgets in the laboratory. The study recommended the provision of steady electricity, uninterrupted internet facilities and provision of adequate ICT components and charts for effective teaching delivery and learning.

Keywords: facilities, information communication technology, mega primary school, primary education

Procedia PDF Downloads 297
2068 Enhance Engineering Pedagogy in Programming Course via Knowledge Graph-Based Recommender System

Authors: Yan Li

Abstract:

Purpose: There is a lack of suitable recommendation systems to assist engineering teaching. The existing traditional engineering pedagogies lack learning interests for postgraduate students. The knowledge graph-based recommender system aims to enhance postgraduate students’ programming skills, with a focus on programming courses. Design/methodology/approach: The case study will be used as a major research method, and the two case studies will be taken in both two teaching styles of the universities (Zhejiang University and the University of Nottingham Ningbo China), followed by the interviews. Quantitative and qualitative research methods will be combined in this study. Research limitations/implications: The case studies were only focused on two teaching styles universities, which is not comprehensive enough. The subject was limited to postgraduate students. Originality/value: The study collected and analyzed the data from two teaching styles of universities’ perspectives. It explored the challenges of Engineering education and tried to seek potential enhancement.

Keywords: knowledge graph and recommender system, engineering pedagogy, programming skills, postgraduate students

Procedia PDF Downloads 74
2067 Rural Tourism in Indian Himalayan Region: A Scope for Sustainable Livelihood

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The present-day tourism sector is globally developing at a fast pace, searching for new ideas and new venues. In the Indian Himalayan Region (IHR), tourism has experienced a vast growth and continuous diversification over the last few years, thus becoming one of the fastest-growing economic sectors in India. With its majestic landscape, high peaks, rich floral and faunal diversity, and cultural history, the IHR has continuously attracted tourists and pilgrims from across the globe. The IHR has attracted a vast range of visitors who seek adventure sports, natural and spiritual solace, peace, cultural assets, food, and festivals, etc. Thus, the multi-functionality of the region has turned tourism into a key component of economic growth for the rural communities in the hills. For the local mountain people, it means valuable economic opportunity for income generation, and for the government and entrepreneurs, it brings profits. As the urban cities gain attention and investment in India, efforts have to be made to protect, safeguard, and strengthen the cultural, spiritual, and natural heritage of IHR for sustainable livelihood development. Furthermore, the socio-economic and environmental insecurities, along with geographical isolation, adds to the challenging survival in the tough terrains of IHR, creating a major threat of outmigration, land abandonment, and degradation. The question the paper intends to answer is: whether the rural community of IHR is aware of the new global trends in rural tourism and the extent of their willingness to adapt to the evolving tourism industry, which impacts the rural economy, including sustainable livelihood opportunity. The objective of the paper is to discuss the integrated nature of rural tourism, which widely depends upon natural resources, cultural heritage, agriculture/horticulture, infrastructural development, education, social awareness, and willingness of the locals. The sustainable management of all these different rural activities can lead to long-term livelihood development and social upliftment. It highlights some gap areas and recommends fewcommunity-based coping measures which the local people can adopt amidst the disorganized sector of rural tourism. Lastly, the main contribution is the exploratory research of the rural tourism vulnerability in the IHR, which would further help in studying the resilience of the tourism sector in the rural parts of a developing nation.

Keywords: community-based approach, sustainable livelihood development, Indian Himalayan region, rural tourism

Procedia PDF Downloads 140
2066 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools

Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz

Abstract:

The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.

Keywords: hearing aids, hearing aids maintenance skill, hearing impaired children, motion graphics

Procedia PDF Downloads 158
2065 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 271