Search results for: ecosystem-based approaches
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4020

Search results for: ecosystem-based approaches

3180 Efficient Management of Construction Logistics: A Challenge to Both Conventional and Technological Systems in the Developing Nations

Authors: Nuruddeen Usman, Ahmad Muhammad Ibrahim

Abstract:

Management of construction logistics at construction sites becomes increasingly complex with rising construction volume, which made it relatively inefficient in the developing nations even with the technological advancement. The objective of this research is to conceptually synthesise the approaches and challenges befall in the course of construction logistic management, with the aim to proffer possible solution to it. Therefore, this study appraised the glitches associated with both conventional and technological methods of construction logistic management that result in its inefficiency. Thus, this investigation found that, both conventional and the technological issues were due to certain obstacles that affect the construction logistic management which resulted into delays, accidents, fraudulent activities, time and cost overrun. Therefore, this study has developed a framework that might bring a lasting solution to the challenges of construction logistic management.

Keywords: construction, conventional, logistic, technological

Procedia PDF Downloads 559
3179 Senior Management in Innovative Companies: An Approach from Creativity and Innovation Management

Authors: Juan Carlos Montalvo-Rodriguez, Juan Felipe Espinosa-Cristia, Pablo Islas Madariaga, Jorge Cifuentes Valenzuela

Abstract:

This article presents different relationships between top management and innovative companies, based on the developments of creativity and innovation management. First of all, it contextualizes the innovative company in relation to management, creativity, and innovation. Secondly, it delves into the vision of top management of innovative companies, from the perspectives of the management of creativity and innovation. Thirdly, their commonalities are highlighted, bearing in mind the importance that both approaches attribute to aspects such as leadership, networks, strategy, culture, technology, environment, and complexity in the top management of innovative companies. Based on the above, an integration of both fields of study is proposed, as an alternative to deepen the relationship between senior management and the innovative company.

Keywords: top management, creativity, innovation, innovative firm, leadership, strategy

Procedia PDF Downloads 267
3178 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 141
3177 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 399
3176 Going the Distance – Building Peer Support during a Time of Crisis

Authors: Lisa Gray, Henry Kronner, Tameca Harris-Jackson, Mimi Sodhi, Ruth Gerritsen-McKane, Donette Considine

Abstract:

The MSW Peer Mentorship Program (PMP) was developed as one of several approaches to foster student success. The key purposes of the PMP are to help new graduate students transition to a graduate program, facilitate relationship building between students, grow and sustain student satisfaction, and build a strong connection to the MSW program. This pilot program also serves as an additional source of support for students during the era of the Covid-19 pandemic. Further, the long-term goals of the program are to assist in student retention. Preliminary findings suggest that both mentors and mentees enrolled in PMP find the peer mentoring relationship to have a positive impact on their graduate learning experience.

Keywords: covid-19, mentorship, peer support, student success

Procedia PDF Downloads 225
3175 Well-being at Work in the Sports Sector: Systematic Review and Perspectives

Authors: Ouazoul Abdeloauhd, Jemjami Nadia

Abstract:

The concept of well-being at work is one of today's significant challenges in maintaining quality of life and managing psycho-social risks at work. Indeed, work in the sports sector has evolved, and this exponential evolution, marked by increasing demands and psychological, physical, and social challenges, which sometimes exceed the resources of sports actors, influences their sense of well-being at work. Well-being and burnout as antagonists provide information on the quality of working life in sports. The Basic aim of this literature review is to analyze the scientific corpus dealing with the subject of well-being at work in the sports sector while exploring the link between sports burnout and well-being. The results reveal the richness of the conceptual approaches and the difficulties of implementing them. Prospects for future research have, therefore, been put forward.

Keywords: well-being, burnout, quality of life, psycho-social risk, work on sports sector

Procedia PDF Downloads 97
3174 Cluster Analysis of Customer Churn in Telecom Industry

Authors: Abbas Al-Refaie

Abstract:

The research examines the factors that affect customer churn (CC) in the Jordanian telecom industry. A total of 700 surveys were distributed. Cluster analysis revealed three main clusters. Results showed that CC and customer satisfaction (CS) were the key determinants in forming the three clusters. In two clusters, the center values of CC were high, indicating that the customers were loyal and SC was expensive and time- and energy-consuming. Still, the mobile service provider (MSP) should enhance its communication (COM), and value added services (VASs), as well as customer complaint management systems (CCMS). Finally, for the third cluster the center of the CC indicates a poor level of loyalty, which facilitates customers churn to another MSP. The results of this study provide valuable feedback for MSP decision makers regarding approaches to improving their performance and reducing CC.

Keywords: cluster analysis, telecom industry, switching cost, customer churn

Procedia PDF Downloads 325
3173 Exploring Deep Neural Network Compression: An Overview

Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart

Abstract:

The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.

Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition

Procedia PDF Downloads 50
3172 Algorithmic Skills Transferred from Secondary CSI Studies into Tertiary Education

Authors: Piroska Biró, Mária Csernoch, János Máth, Kálmán Abari

Abstract:

Testing the first year students of Informatics at the University of Debrecen revealed that students start their tertiary studies in programming with a low level of programming knowledge and algorithmic skills. The possible reasons which lead the students to this very unfortunate result were examined. The results of the test were compared to the students’ results in the school leaving exams and to their self-assessment values. It was found that there is only a slight connection between the students’ results in the test and in the school leaving exams, especially at intermediate level. Beyond this, the school leaving exams do not seem to enable students to evaluate their own abilities.

Keywords: deep and surface approaches, metacognitive abilities, programming and algorithmic skills, school leaving exams, tracking code

Procedia PDF Downloads 389
3171 Automated Java Testing: JUnit versus AspectJ

Authors: Manish Jain, Dinesh Gopalani

Abstract:

Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.

Keywords: aspect oriented programming, AspectJ, aspects, JU-nit, software testing

Procedia PDF Downloads 335
3170 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy

Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi

Abstract:

Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.

Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing

Procedia PDF Downloads 156
3169 My Perfect Partner: Creative Methods in Relationship Education

Authors: Janette Porter, Kay Standing

Abstract:

The paper presents our experiences of working in both mainstream and Special Education Needs and Disabilities (SEND) schools in England from 2012-2019, using creative methodologies to deliver and evaluate healthy relationship education. It aims to explore to explore how young people's perceptions of relationships and their "perfect partner" are mediated by factors such as gender, body image, and social media. It will be an interactive session, inviting participants to reflect on their own experiences of relationship education, and to take part in an example of a classroom activity of 'a perfect partner'. Young people aged 16-25 are most at risk of relationship abuse and intimate partner violence. This can be enacted both on the body, through physical and sexual violence, but also emotional and psychological abuse. In England and Wales relationship education became compulsory in schools in September 2020. There is increasing recognition for the need for whole school approaches to prevent gender-based violence, in particular domestic abuse, from happening in the first place and for equipping schools to feel more confident supporting young people affected by gender-based violence. The project used creative methods, including arts, drama, music, poetry, song, and creative writing, to engage participants in sensitive topics related to relationship education. Interactive workshops with pupils aged 11-19 enabled young people to express themselves freely, pupils then used drama to share their knowledge with their peer group. We co-produced material with young people, including an accessible resource pack for use in SEND schools, particularly for children with visual and sensory impairments. The project was evaluated by questionnaires and interviews with pupils. The paper also reflects on the ethical issues involved in the research. After the project, young people had a better understanding of healthy and unhealthy relationships, improved knowledge of the early warning signs of abuse and knew where to go to for help and advice. It found that creative methods are an effective way to engage young people in relationship education and sensitive topics. We argue that age and ability appropriate relationship education should be compulsory across the curriculum and that implementing creative and art-based approaches to address sensitive topics can enhance the effectiveness of relationship education programs in promoting healthy relationships and preventing abuse. The paper provides academic and practitioner perspectives, providing a reflection on our research, looking at practical, methodological, and ethical issues involved in research on Gender Based Violence with young people in a school setting.

Keywords: relationship education, healthy relationships, creative methods, young people

Procedia PDF Downloads 59
3168 The Principle of Transparency as a Tool to Potentiate Gender-Based Approaches in the World Trade Organization

Authors: Desiree Llaguno Cerezo, Elizabeth Valdes-Miranda Fernandez

Abstract:

Women have a critical role in sustaining the economy and in the development of trade. However, such a role has long been invisible due to orthodox conceptions that have ignored the gender variable in commercial analyses. Today, it is generally accepted that neither the economy nor business are gender-neutral and that the performance of these activities often impact negatively the lives of women. Women’s participation in trade, on equal terms as men, in any of the various possible roles -producer, wage earner, consumer, merchant, taxpayer- will not only favour the lives of women but also the performance of the economies in which they participate. Transparency, as a principle of the multilateral trading system, can play a significant role as a strategy for the empowerment of women.

Keywords: trade, human rights, gender equality, transparency, WTO, women workers, women's economic empowerment

Procedia PDF Downloads 161
3167 Quality Education for the Poor People: Strategy of Islamic Education in the Medium Community

Authors: Naufal Ahmad Rijalul Alam

Abstract:

This article presents a quality of education for the poor people in Indonesia and the offering of strategy to be done. It also investigates the influence of Islamic Education which stands behind the religious values in developing effort of government to respond the problem with using humanities approaches in medium society. The offering strategy resulted in four agenda: 1) building a shared commitment, 2) encouraging the improvement of the quality of public and private schools, 3) encouraging the use of 'the indicator of disaffection' for gifted children, and 4) encouraging the enlargement of vocational training centers and polytechnics. The conclusion is that the quality of education can be increased with these four agenda, although they are not too easy because it deals with other factors such as the economy, politics, and culture which is happening in the country.

Keywords: quality education, poor people, strategy of Islamic education, medium community

Procedia PDF Downloads 485
3166 The Factors Affecting Pupil Psychological Well-Being in Mainstream Schools: A Systematic Review

Authors: Chantelle Francis, Karen McKenzie, Charlotte Emmerson

Abstract:

In the context of the rise in mental health difficulties amongst pupils, this review explores the factors that have been indicated as affecting psychological well-being in mainstream school contexts. Search terms relating to school-based psychological well-being were entered into five databases, and twenty-two studies were included in the review. The results suggested that pupil psychological well-being is affected by both direct and indirect factors. The former included a sense of belonging and inclusion, relationships with teachers, and academic attainment. The latter included family socioeconomic status, whole-school approaches, and individual differences factors, such as gender and Special Educational Needs. The implications for policymakers and practitioners are discussed.

Keywords: psychological wellbeing, mainstream schools, special educational needs, school-based wellbeing

Procedia PDF Downloads 123
3165 Islamic Financial Engineering: An Overview

Authors: Mahfoud Djebbar

Abstract:

The past two decades or so have witnessed phenomenal growth of the Islamic financial services industry. The whole industry has been thriving at about 15 percent per annum. This development entails the Islamic financial engineering, IFE, to some kind of crossroads, lagging behind its conventional counterpart. Therefore, IFE, and particularly traded products development, and in order to achieve its goals, two approaches are available, i.e., replicating engineering and innovative engineering. We also try to emphasis the innovative strategy since it guards the Islamic identity of different financial products and processes, and thereby, improves the creativity in the Islamic financial industry. The attempt also centers on sukukization (Islamic securitization), innovation, liquidity management, and risk management and hedging in the Islamic financial system. Finally, the challenges facing IFE are also addressed.

Keywords: islamic financial engineering, hedging and risk management, innovation, securitization, money market instruments, islamic capital markets

Procedia PDF Downloads 559
3164 The Gender Factor in Sustainable Development Goal Investing: Evidence from Applying Conjoint Analysis

Authors: Deniss Rozkov, Hendrik Idema

Abstract:

This paper researches the gender-based differences among US-American institutional investors regarding their preferences for sustainable development goals (SDGs) when investing. After employing a structured questionnaire as well as applying a choice-based conjoint analysis, it is found that female investors place significantly more emphasis on SDGs, especially in the social and ecological domain, exhibiting significantly stronger “other-regarding” characteristics compared to their male counterparts. Further, the results of the survey show that females show significantly higher risk aversion than males by selecting moderately conservative and moderate risk approaches.

Keywords: sustainable development goals, investing, socially responsible investor, gender, conjoint analysis

Procedia PDF Downloads 92
3163 Study the Relationship amongst Digital Finance, Renewable Energy, and Economic Development of Least Developed Countries

Authors: Fatima Sohail, Faizan Iftikhar

Abstract:

This paper studies the relationship between digital finance, renewable energy, and the economic development of Pakistan and least developed countries from 2000 to 2022. The paper used panel analysis and generalized method of moments Arellano-Bond approaches. The findings show that under the growth model, renewable energy (RE) has a strong and favorable link with fixed broadband and mobile subscribers. However, FB and MD have a strong but negative association with the uptake of renewable energy (RE) in the average and simple model. This paper provides valuable insights for policymakers, investors of the digital economy.

Keywords: digital finance, renewable energy, economic development, mobile subscription, fixed broadband

Procedia PDF Downloads 46
3162 Mobile Health Approaches in the Management of Breast Cancer: A Qualitative Content Analysis

Authors: Hyekyung Woo, Gwihyun Kim

Abstract:

mHealth, which encompasses mobile health technologies and interventions, is rapidly evolving in various medical specialties, and its impact is evident in oncology. This review describes current trends in research addressing the integration of mHealth into the management of breast cancer by examining evaluations of mHealth and its contributions across the cancer care continuum. Mobile technologies are perceived as effective in prevention and as feasible for managing breast cancer, but the diagnostic accuracy of these tools remains in doubt. Not all phases of breast cancer treatment involve mHealth, and not all have been addressed by research. These drawbacks in the application of mHealth to breast cancer management call for intensified research to strengthen its role in breast cancer care.

Keywords: mobile application, breast cancer, content analysis, mHealth

Procedia PDF Downloads 314
3161 An Examination of Economic Evaluation Approaches in Mental Health Promotion Initiatives Targeted at Black and Asian Minority Ethnic Communities in the UK: A Critical Discourse Analysis

Authors: Phillipa Denise Peart

Abstract:

Black Asian and Minority Ethnic (BAME) people are more at risk of developing mental health disorders because they are more exposed to unfavorable social, economic, and environmental circumstances. These include housing, education, employment, community development, stigma, and discrimination. However, the majority of BAME mental health intervention studies focus on treatment with therapeutically effective drugs and use basic economic methods to evaluate their effectiveness; as a result, little is invested in the economic assessment of psychosocial interventions in BAME mental health. The UK government’s austerity programme and reduced funds for mental health services, has increased the need for the evaluation and assessment of initiatives to focus on value for money. The No Health without Mental Health policy (2011) provides practice guidance to practitioners, but there is little or no mention of the need to provide mental health initiatives targeted at BAME communities that are effective in terms of their impact and the cost-effectiveness. This, therefore, appears to contradict with and is at odds with the wider political discourse, which suggests there should be an increasing focus on health economic evaluation. As a consequence, it could be argued that whilst such policies provide direction to organisations to provide mental health services to the BAME community, by not requesting effective governance, assurance, and evaluation processes, they are merely paying lip service to address these problems and not helping advance knowledge and practice through evidence-based approaches. As a result, BAME communities suffer due to lack of efficient resources that can aid in the recovery process. This research study explores the mental health initiatives targeted at BAME communities, and analyses the techniques used when examining the cost effectiveness of mental health initiatives for BAME mental health communities. Using critical discourse analysis as an approach and method, mental health services will be selected as case studies, and their evaluations will be examined, alongside the political drivers that frame, shape, and direct their work. In doing so, it will analyse what the mental health policies initiatives are, how the initiatives are directed and demonstrate how economic models of evaluation are used in mental health programmes and how the value for money impacts and outcomes are articulated by mental health programme staff. It is anticipated that this study will further our understanding in order to provide adequate mental health resources and will deliver creative, supportive research to ensure evaluation is effective for the government to provide and maintain high quality and efficient mental health initiatives targeted at BAME communities.

Keywords: black, Asian and ethnic minority, economic models, mental health, health policy

Procedia PDF Downloads 114
3160 Detailed Feasibility and Design of a Grid-Tied PV and Building Integrated Photovoltaic System for a Commercial Healthcare Building

Authors: Muhammad Ali Tariq

Abstract:

Grid-connected PV systems have drawn tremendous attention of researchers in the past recent years. The report elucidates the development of efficient and stable solar PV energy conversion systems after thorough analysis at various facets like PV module characteristics, its arrangement, power electronics and MPPT topologies, the stability of the grid, and economic viability over its lifetime. This report and feasibility study will try to bring all optimizing approaches and design calculations which are required for generating energy from BIPV and roof-mounted solar PV in a convenient, sustainable, and user-friendly way.

Keywords: building integrated photovoltaic system, grid integration, solar resource assessment, return on investment, multi MPPT-inverter, levelised cost of electricity

Procedia PDF Downloads 140
3159 Parallel Computation of the Covariance-Matrix

Authors: Claude Tadonki

Abstract:

We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.

Keywords: covariance-matrix, multicore, numerical computing, parallel computing

Procedia PDF Downloads 317
3158 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 172
3157 Healing Architecture and Evidence Based Design: An Interior Design Example in Medicana KızıLtoprak Hospital

Authors: Yunus Emre Kara, Atilla Kuzu, Levent Cirpici

Abstract:

Recently, in the interior design of hospitals, the effect of the physical environment on the healing process has been frequently emphasized, and the importance of psychological and behavioral factors has increased day by day. When designing new hospital interiors, it became important to create spaces that not only meet medical requirements but also support the healing process of patients with interior design. In this study, the patient rooms, corridor, atrium area, waiting area, and entrance counter in a hospital were handled with patient-centered design, evidence-based design, and remedial architectural approaches, and it was seen that the healing and reassuring elements in hospitals were extremely important.

Keywords: evidence based design, healing architecture, hospital, organic design, parametric design

Procedia PDF Downloads 193
3156 Artificial Intelligence in Duolingo

Authors: Jwana Khateeb, Lamar Bawazeer, Hayat Sharbatly, Mozoun Alghamdi

Abstract:

This research paper explores the idea of learning new languages through an innovative-mobile based learning technology. Throughout this paper we will discuss and examine a mobile-based application called Duolingo. Duolingo is a college standard application for learning foreign languages such as Spanish and English. It is a smart application where it uses smart adaptive technologies to advance the level of their students at each period of time by offering new tasks. Furthermore, we will discuss the history of the application and the methodology used within it. We have conducted a study in which we surveyed ten people about their experience using Duolingo. The results are examined and analyzed in which it indicates the effectiveness on Duolingo students who are seeking to learn new languages. Thus, the research paper will furthermore discuss the diverse methods and approaches in learning new languages through this mobile-based application.

Keywords: Duolingo, AI, personalized, customized

Procedia PDF Downloads 293
3155 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 112
3154 Reemergence of Behaviorism in Language Teaching

Authors: Hamid Gholami

Abstract:

During the years, the language teaching methods have been the offshoots of schools of thought in psychology. The methods were mainly influenced by their contemporary psychological approaches, as Audiolingualism was based on behaviorism and Communicative Language Teaching on constructivism. In 1950s, the text books were full of repetition exercises which were encouraged by Behaviorism. In 1980s they got filled with communicative exercises as suggested by constructivism. The trend went on to nowadays that sees no specific method as prevalent since none of the schools of thought seem to be illustrative of the complexity in human being learning. But some changes can be notable; some textbooks are giving more and more space to repetition exercises at least to enhance some aspects of language proficiency, namely collocations, rhythm and intonation, and conversation models. These changes may mark the reemergence of one of the once widely accepted schools of thought in psychology; behaviorism.

Keywords: language teaching methods, psychology, schools of thought, Behaviorism

Procedia PDF Downloads 564
3153 Enterprise Security Architecture: Approaches and a Framework

Authors: Amir Mohtarami, Hadi Kandjani

Abstract:

The amount of business-critical information in enterprises is growing at an extraordinary rate, and the ability to catalog that information and properly protect it using traditional security mechanisms is not keeping pace. Alongside the Information Technology (IT), information security needs a holistic view in enterprise. In other words, a comprehensive architectural approach is required, focusing on the information itself, understanding what the data are, who owns it, and which business and regulatory policies should be applied to the information. Enterprise Architecture Frameworks provide useful tools to grasp different dimensions of IT in organizations. Usually this is done by the layered views on IT architecture, but not requisite security attention has been held in this frameworks. In this paper, after a brief look at the Enterprise Architecture (EA), we discuss the issue of security in the overall enterprise IT architecture. Due to the increasing importance of security, a rigorous EA program in an enterprise should be able to consider security architecture as an integral part of its processes and gives a visible roadmap and blueprint for this aim.

Keywords: enterprise architecture, architecture framework, security architecture, information systems

Procedia PDF Downloads 707
3152 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry

Authors: B. Güney, Ç. Teke

Abstract:

In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.

Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming

Procedia PDF Downloads 655
3151 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid

Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang

Abstract:

Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.

Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal

Procedia PDF Downloads 86