Search results for: Bayesian estimation
1301 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses
Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan
Abstract:
Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis
Procedia PDF Downloads 3671300 Construction and Demolition Waste Management in Indian Cities
Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee
Abstract:
Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency
Procedia PDF Downloads 3041299 Estimation of Carbon Losses in Rice: Wheat Cropping System of Punjab, Pakistan
Authors: Saeed Qaisrani
Abstract:
The study was conducted to observe carbon and nutrient loss by burning of rice residues on rice-wheat cropping system The rice crop was harvested to conduct the experiment in a randomized complete block design (RCBD) with factors and 4 replications with a net plot size of 10 m x 20 m. Rice stubbles were managed by two methods i.e. Incorporation & burning of rice residues. Soil samples were taken to a depth of 30 cm before sowing & after harvesting of wheat. Wheat was sown after harvesting of rice by three practices i.e. Conventional tillage, Minimum tillage and Zero tillage to observe best tillage practices. Laboratory and field experiments were conducted on wheat to assess best tillage practice and residues management method with estimation of carbon losses. Data on the following parameters; establishment count, plant height, spike length, number of grains per spike, biological yield, fat content, carbohydrate content, protein content, and harvest index were recorded to check wheat quality & ensuring food security in the region. Soil physico-chemical analysis i.e. pH, electrical conductivity, organic matter, nitrogen, phosphorus, potassium, and carbon were done in soil fertility laboratory. Substantial results were found on growth, yield and related parameters of wheat crop. The collected data were examined statistically with economic analysis to estimate the cost-benefit ratio of using different tillage techniques and residue management practices. Obtained results depicted that Zero tillage method have positive impacts on growth, yield and quality of wheat, Moreover, it is cost effective methodology. Similarly, Incorporation is suitable and beneficial method for soil due to more nutrients provision and reduce the need of fertilizers. Burning of rice stubbles has negative impact including air pollution, nutrient loss, microbes died and carbon loss. Recommended the zero tillage technology to reduce carbon losses along with food security in Pakistan.Keywords: agricultural agronomy, food security, carbon sequestration, rice-wheat cropping system
Procedia PDF Downloads 2771298 Comparative Analysis of Feature Extraction and Classification Techniques
Authors: R. L. Ujjwal, Abhishek Jain
Abstract:
In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.Keywords: computer vision, age group, face detection
Procedia PDF Downloads 3681297 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 5641296 Ambivalence as Ethical Practice: Methodologies to Address Noise, Bias in Care, and Contact Evaluations
Authors: Anthony Townsend, Robyn Fasser
Abstract:
While complete objectivity is a desirable scientific position from which to conduct a care and contact evaluation (CCE), it is precisely the recognition that we are inherently incapable of operating objectively that is the foundation of ethical practice and skilled assessment. Drawing upon recent research from Daniel Kahneman (2021) on the differences between noise and bias, as well as different inherent biases collectively termed “The Elephant in the Brain” by Kevin Simler and Robin Hanson (2019) from Oxford University, this presentation addresses both the various ways in which our judgments, perceptions and even procedures can be distorted and contaminated while conducting a CCE, but also considers the value of second order cybernetics and the psychodynamic concept of ‘ambivalence’ as a conceptual basis to inform our assessment methodologies to limit such errors or at least better identify them. Both a conceptual framework for ambivalence, our higher-order capacity to allow for the convergence and consideration of multiple emotional experiences and cognitive perceptions to inform our reasoning, and a practical methodology for assessment relying on data triangulation, Bayesian inference and hypothesis testing is presented as a means of promoting ethical practice for health care professionals conducting CCEs. An emphasis on widening awareness and perspective, limiting ‘splitting’, is demonstrated both in how this form of emotional processing plays out in alienating dynamics in families as well as the assessment thereof. In addressing this concept, this presentation aims to illuminate the value of ambivalence as foundational to ethical practice for assessors.Keywords: ambivalence, forensic, psychology, noise, bias, ethics
Procedia PDF Downloads 871295 Management and Marketing Implications of Tourism Gravity Models
Authors: Clive L. Morley
Abstract:
Gravity models and panel data modelling of tourism flows are receiving renewed attention, after decades of general neglect. Such models have quite different underpinnings from conventional demand models derived from micro-economic theory. They operate at a different level of data and with different theoretical bases. These differences have important consequences for the interpretation of the results and their policy and managerial implications. This review compares and contrasts the two model forms, clarifying the distinguishing features and the estimation requirements of each. In general, gravity models are not recommended for use to address specific management and marketing purposes.Keywords: gravity models, micro-economics, demand models, marketing
Procedia PDF Downloads 4391294 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System
Authors: Mounir Bekaik, Messaoud Ramdani
Abstract:
We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer
Procedia PDF Downloads 3331293 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 191292 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel
Authors: Said Elkassimi, Said Safi, B. Manaut
Abstract:
This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.Keywords: adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF
Procedia PDF Downloads 3131291 Estimation of Small Hydropower Potential Using Remote Sensing and GIS Techniques in Pakistan
Authors: Malik Abid Hussain Khokhar, Muhammad Naveed Tahir, Muhammad Amin
Abstract:
Energy demand has been increased manifold due to increasing population, urban sprawl and rapid socio-economic improvements. Low water capacity in dams for continuation of hydrological power, land cover and land use are the key parameters which are creating problems for more energy production. Overall installed hydropower capacity of Pakistan is more than 35000 MW whereas Pakistan is producing up to 17000 MW and the requirement is more than 22000 that is resulting shortfall of 5000 - 7000 MW. Therefore, there is a dire need to develop small hydropower to fulfill the up-coming requirements. In this regards, excessive rainfall, snow nurtured fast flowing perennial tributaries and streams in northern mountain regions of Pakistan offer a gigantic scope of hydropower potential throughout the year. Rivers flowing in KP (Khyber Pakhtunkhwa) province, GB (Gilgit Baltistan) and AJK (Azad Jammu & Kashmir) possess sufficient water availability for rapid energy growth. In the backdrop of such scenario, small hydropower plants are believed very suitable measures for more green environment and power sustainable option for the development of such regions. Aim of this study is to estimate hydropower potential sites for small hydropower plants and stream distribution as per steam network available in the available basins in the study area. The proposed methodology will focus on features to meet the objectives i.e. site selection of maximum hydropower potential for hydroelectric generation using well emerging GIS tool SWAT as hydrological run-off model on the Neelum, Kunhar and the Dor Rivers’ basins. For validation of the results, NDWI will be computed to show water concentration in the study area while overlaying on geospatial enhanced DEM. This study will represent analysis of basins, watershed, stream links, and flow directions with slope elevation for hydropower potential to produce increasing demand of electricity by installing small hydropower stations. Later on, this study will be benefitted for other adjacent regions for further estimation of site selection for installation of such small power plants as well.Keywords: energy, stream network, basins, SWAT, evapotranspiration
Procedia PDF Downloads 2211290 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 1761289 Estimation of Maximum Earthquake for Gujarat Region, India
Authors: Ashutosh Saxena, Kumar Pallav, Ramji Dwivedi
Abstract:
The present study estimates the seismicity parameter 'b' and maximum possible magnitude of an earthquake (Mmax) for Gujarat region with three well-established methods viz. Kijiko parametric model (KP), Kijiko-Sellevol-Bayern (KSB) and Tapered Gutenberg-Richter (TGR), as a combined seismic source regime. The earthquake catalogue is prepared for a period of 1330 to 2013 in the region Latitudes 20o N to 250 N and Longitudinally extending from 680 to 750 E for earthquake moment magnitude (Mw) ≥4.0. The ’a’ and 'b' value estimated for the region as 4.68 and 0.58. Further, Mmax estimated as 8.54 (± 0.29), 8.69 (± 0.48), and 8.12 with KP, KSB, and TGR, respectively.Keywords: Mmax, seismicity parameter, Gujarat, Tapered Gutenberg-Richter
Procedia PDF Downloads 5431288 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions
Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel
Abstract:
This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.Keywords: acoustic emissions, particle sizing, process monitoring, signal processing
Procedia PDF Downloads 3531287 Design, Construction and Performance Evaluation of a HPGe Detector Shield
Authors: M. Sharifi, M. Mirzaii, F. Bolourinovin, H. Yousefnia, M. Akbari, K. Yousefi-Mojir
Abstract:
A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of the various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.Keywords: HPGe shield, background count, personnel dose, efficiency curve
Procedia PDF Downloads 4561286 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence
Procedia PDF Downloads 3631285 Influence of the Test Environment on the Dynamic Response of a Composite Beam
Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar
Abstract:
Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.Keywords: vibration, composite, endommagement, correlation
Procedia PDF Downloads 3661284 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System
Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov
Abstract:
Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network
Procedia PDF Downloads 4711283 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network
Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi
Abstract:
Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication
Procedia PDF Downloads 4511282 The Beta-Fisher Snedecor Distribution with Applications to Cancer Remission Data
Authors: K. A. Adepoju, O. I. Shittu, A. U. Chukwu
Abstract:
In this paper, a new four-parameter generalized version of the Fisher Snedecor distribution called Beta- F distribution is introduced. The comprehensive account of the statistical properties of the new distributions was considered. Formal expressions for the cumulative density function, moments, moment generating function and maximum likelihood estimation, as well as its Fisher information, were obtained. The flexibility of this distribution as well as its robustness using cancer remission time data was demonstrated. The new distribution can be used in most applications where the assumption underlying the use of other lifetime distributions is violated.Keywords: fisher-snedecor distribution, beta-f distribution, outlier, maximum likelihood method
Procedia PDF Downloads 3471281 Performance Comparison of Cooperative Banks in the EU, USA and Canada
Authors: Matěj Kuc
Abstract:
This paper compares different types of profitability measures of cooperative banks from two developed regions: the European Union and the United States of America together with Canada. We created balanced dataset of more than 200 cooperative banks covering 2011-2016 period. We made series of tests and run Random Effects estimation on panel data. We found that American and Canadian cooperatives are more profitable in terms of return on assets (ROA) and return on equity (ROE). There is no significant difference in net interest margin (NIM). Our results show that the North American cooperative banks accommodated better to the current market environment.Keywords: cooperative banking, panel data, profitability measures, random effects
Procedia PDF Downloads 1131280 An Extended Inverse Pareto Distribution, with Applications
Authors: Abdel Hadi Ebraheim
Abstract:
This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation
Procedia PDF Downloads 821279 Eresa, Hospital General Universitario de Elche
Authors: Ashish Kumar Singh, Mehak Gulati, Neelam Verma
Abstract:
Arginine majorly acts as a substrate for the enzyme nitric oxide synthase (NOS) for the production of nitric oxide, a strong vasodilator. Current study demonstrated a novel amperometric approach for estimation of arginine using nitric oxide synthase. The enzyme was co-immobilized in carbon paste electrode with NADP+, FAD and BH4 as cofactors. The detection principle of the biosensor is enzyme NOS catalyzes the conversion of arginine into nitric oxide. The developed biosensor could able to detect up to 10-9M of arginine. The oxidation peak of NO was observed at 0.65V. The developed arginine biosensor was used to monitor arginine content in fruit juices.Keywords: arginine, biosensor, carbon paste elctrode, nitric oxide
Procedia PDF Downloads 4251278 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 941277 A Modified Estimating Equations in Derivation of the Causal Effect on the Survival Time with Time-Varying Covariates
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
a systematic observation from a defined time of origin up to certain failure or censor is known as survival data. Survival analysis is a major area of interest in biostatistics and biomedical researches. At the heart of understanding, the most scientific and medical research inquiries lie for a causality analysis. Thus, the main concern of this study is to investigate the causal effect of treatment on survival time conditional to the possibly time-varying covariates. The theory of causality often differs from the simple association between the response variable and predictors. A causal estimation is a scientific concept to compare a pragmatic effect between two or more experimental arms. To evaluate an average treatment effect on survival outcome, the estimating equation was adjusted for time-varying covariates under the semi-parametric transformation models. The proposed model intuitively obtained the consistent estimators for unknown parameters and unspecified monotone transformation functions. In this article, the proposed method estimated an unbiased average causal effect of treatment on survival time of interest. The modified estimating equations of semiparametric transformation models have the advantage to include the time-varying effect in the model. Finally, the finite sample performance characteristics of the estimators proved through the simulation and Stanford heart transplant real data. To this end, the average effect of a treatment on survival time estimated after adjusting for biases raised due to the high correlation of the left-truncation and possibly time-varying covariates. The bias in covariates was restored, by estimating density function for left-truncation. Besides, to relax the independence assumption between failure time and truncation time, the model incorporated the left-truncation variable as a covariate. Moreover, the expectation-maximization (EM) algorithm iteratively obtained unknown parameters and unspecified monotone transformation functions. To summarize idea, the ratio of cumulative hazards functions between the treated and untreated experimental group has a sense of the average causal effect for the entire population.Keywords: a modified estimation equation, causal effect, semiparametric transformation models, survival analysis, time-varying covariate
Procedia PDF Downloads 1751276 Fine Characterization of Glucose Modified Human Serum Albumin by Different Biophysical and Biochemical Techniques at a Range
Authors: Neelofar, Khursheed Alam, Jamal Ahmad
Abstract:
Protein modification in diabetes mellitus may lead to early glycation products (EGPs) or amadori product as well as advanced glycation end products (AGEs). Early glycation involves the reaction of glucose with N-terminal and lysyl side chain amino groups to form Schiff’s base which undergoes rearrangements to form more stable early glycation product known as Amadori product. After Amadori, the reactions become more complicated leading to the formation of advanced glycation end products (AGEs) that interact with various AGE receptors, thereby playing an important role in the long-term complications of diabetes. Millard reaction or nonenzymatic glycation reaction accelerate in diabetes due to hyperglycation and alter serum protein’s structure, their normal functions that lead micro and macro vascular complications in diabetic patients. In this study, Human Serum Albumin (HSA) with a constant concentration was incubated with different concentrations of glucose at 370C for a week. At 4th day, Amadori product was formed that was confirmed by colorimetric method NBT assay and TBA assay which both are authenticate early glycation product. Conformational changes in native as well as all samples of Amadori albumin with different concentrations of glucose were investigated by various biophysical and biochemical techniques. Main biophysical techniques hyperchromacity, quenching of fluorescence intensity, FTIR, CD and SDS-PAGE were used. Further conformational changes were observed by biochemical assays mainly HMF formation, fructoseamine, reduction of fructoseamine with NaBH4, carbonyl content estimation, lysine and arginine residues estimation, ANS binding property and thiol group estimation. This study find structural and biochemical changes in Amadori modified HSA with normal to hyperchronic range of glucose with respect to native HSA. When glucose concentration was increased from normal to chronic range biochemical and structural changes also increased. Highest alteration in secondary and tertiary structure and conformation in glycated HSA was observed at the hyperchronic concentration (75mM) of glucose. Although it has been found that Amadori modified proteins is also involved in secondary complications of diabetes as AGEs but very few studies have been done to analyze the conformational changes in Amadori modified proteins due to early glycation. Most of the studies were found on the structural changes in Amadori protein at a particular glucose concentration but no study was found to compare the biophysical and biochemical changes in HSA due to early glycation with a range of glucose concentration at a constant incubation time. So this study provide the information about the biochemical and biophysical changes occur in Amadori modified albumin at a range of glucose normal to chronic in diabetes. Although many implicates currently in use i.e. glycaemic control, insulin treatment and other chemical therapies that can control many aspects of diabetes. However, even with intensive use of current antidiabetic agents more than 50 % of diabetic patient’s type 2 suffers poor glycaemic control and 18 % develop serious complications within six years of diagnosis. Experimental evidence related to diabetes suggests that preventing the nonenzymatic glycation of relevant proteins or blocking their biological effects might beneficially influence the evolution of vascular complications in diabetic patients or quantization of amadori adduct of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes. So this research work may be helpful for the same.Keywords: diabetes mellitus, glycation, albumin, amadori, biophysical and biochemical techniques
Procedia PDF Downloads 2721275 Assessment of Petrophysical Parameters Using Well Log and Core Data
Authors: Khulud M. Rahuma, Ibrahim B. Younis
Abstract:
Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent.Keywords: porosity, cementation factor, saturation exponent, formation factor, water saturation
Procedia PDF Downloads 6931274 New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data
Authors: Dilip K. De, Olukunle C. Olawole, Emmanuel S. Joel, Moses Emetere
Abstract:
A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube.Keywords: charge carrier density, nano materials, new technique, thermionic emission
Procedia PDF Downloads 3211273 The Accuracy of Small Firms at Predicting Their Employment
Authors: Javad Nosratabadi
Abstract:
This paper investigates the difference between firms' actual and expected employment along with the amount of loans invested by them. In addition, it examines the relationship between the amount of loans received by firms and wages. Empirically, using a causal effect estimation and firm-level data from a province in Iran between 2004 and 2011, the results show that there is a range of the loan amount for which firms' expected employment meets their actual one. In contrast, there is a gap between firms' actual and expected employment for any other loan amount. Furthermore, the result shows that there is a positive and significant relationship between the amount of loan invested by firms and wages.Keywords: expected employment, actual employment, wage, loan
Procedia PDF Downloads 1611272 Error Estimation for the Reconstruction Algorithm with Fan Beam Geometry
Authors: Nirmal Yadav, Tanuja Srivastava
Abstract:
Shannon theory is an exact method to recover a band limited signals from its sampled values in discrete implementation, using sinc interpolators. But sinc based results are not much satisfactory for band-limited calculations so that convolution with window function, having compact support, has been introduced. Convolution Backprojection algorithm with window function is an approximation algorithm. In this paper, the error has been calculated, arises due to this approximation nature of reconstruction algorithm. This result will be defined for fan beam projection data which is more faster than parallel beam projection.Keywords: computed tomography, convolution backprojection, radon transform, fan beam
Procedia PDF Downloads 492