Search results for: ultra-high performance concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14221

Search results for: ultra-high performance concrete

5731 A Weighted Approach to Unconstrained Iris Recognition

Authors: Yao-Hong Tsai

Abstract:

This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Keywords: authentication, iris recognition, adaboost, local binary pattern

Procedia PDF Downloads 225
5730 Printed Thai Character Recognition Using Particle Swarm Optimization Algorithm

Authors: Phawin Sangsuvan, Chutimet Srinilta

Abstract:

This Paper presents the applications of Particle Swarm Optimization (PSO) Method for Thai optical character recognition (OCR). OCR consists of the pre-processing, character recognition and post-processing. Before enter into recognition process. The Character must be “Prepped” by pre-processing process. The PSO is an optimization method that belongs to the swarm intelligence family based on the imitation of social behavior patterns of animals. Route of each particle is determined by an individual data among neighborhood particles. The interaction of the particles with neighbors is the advantage of Particle Swarm to determine the best solution. So PSO is interested by a lot of researchers in many difficult problems including character recognition. As the previous this research used a Projection Histogram to extract printed digits features and defined the simple Fitness Function for PSO. The results reveal that PSO gives 67.73% for testing dataset. So in the future there can be explored enhancement the better performance of PSO with improve the Fitness Function.

Keywords: character recognition, histogram projection, particle swarm optimization, pattern recognition techniques

Procedia PDF Downloads 477
5729 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery

Procedia PDF Downloads 586
5728 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 657
5727 Improving School Design through Diverse Stakeholder Participation in the Programming Phase

Authors: Doris C. C. K. Kowaltowski, Marcella S. Deliberador

Abstract:

The architectural design process, in general, is becoming more complex, as new technical, social, environmental, and economical requirements are imposed. For school buildings, this scenario is also valid. The quality of a school building depends on known design criteria and professional knowledge, as well as feedback from building performance assessments. To attain high-performance school buildings, a design process should add a multidisciplinary team, through an integrated process, to ensure that the various specialists contribute at an early stage to design solutions. The participation of stakeholders is of special importance at the programming phase when the search for the most appropriate design solutions is underway. The composition of a multidisciplinary team should comprise specialists in education, design professionals, and consultants in various fields such as environmental comfort and psychology, sustainability, safety and security, as well as administrators, public officials and neighbourhood representatives. Users, or potential users (teachers, parents, students, school officials, and staff), should be involved. User expectations must be guided, however, toward a proper understanding of a response of design to needs to avoid disappointment. In this context, appropriate tools should be introduced to organize such diverse participants and ensure a rich and focused response to needs and a productive outcome of programming sessions. In this paper, different stakeholder in a school design process are discussed in relation to their specific contributions and a tool in the form of a card game is described to structure the design debates and ensure a comprehensive decision-making process. The game is based on design patterns for school architecture as found in the literature and is adapted to a specific reality: State-run public schools in São Paulo, Brazil. In this State, school buildings are managed by a foundation called Fundação para o Desenvolvimento da Educação (FDE). FDE supervises new designs and is responsible for the maintenance of ~ 5000 schools. The design process of this context was characterised with a recommendation to improve the programming phase. Card games can create a common environment, to which all participants can relate and, therefore, can contribute to briefing debates on an equal footing. The cards of the game described here represent essential school design themes as found in the literature. The tool was tested with stakeholder groups and with architecture students. In both situations, the game proved to be an efficient tool to stimulate school design discussions and to aid in the elaboration of a rich, focused and thoughtful architectural program for a given demand. The game organizes the debates and all participants are shown to spontaneously contribute each in his own field of expertise to the decision-making process. Although the game was specifically based on a local school design process it shows potential for other contexts because the content is based on known facts, needs and concepts of school design, which are global. A structured briefing phase with diverse stakeholder participation can enrich the design process and consequently improve the quality of school buildings.

Keywords: architectural program, design process, school building design, stakeholder

Procedia PDF Downloads 405
5726 The Relationship between Democracy, Freedom and Economic Development

Authors: Ugur Karakaya, Hasan Bulent Kantarcı

Abstract:

In this study, firstly democratic thoughts which directly or indirectly affect economic development and/or the interaction between authoritarian regimes and the economic development and the direction and channels of this interaction were studied and then the study tried to determine how democracy affects economic development. It was concluded that the positive contributions of democracy to economic development were more determinant than the effects that were either negative or restrictive in terms of development. When compared to autocracy, since democracy is more successful in managing social conflicts, ensuring political stability and preventing social disasters such as famine, it contributes more to economic development. Democracy also facilitates delegation of authority, provides a stable investment environment and accelerates mobilization of resources in accordance with economic growth/development. Democracy leads to an increase in human capital accumulation and increases the growth rate through reducing income inequality. It can be said that democratic regimes are the most appropriate ones in terms of increasing economic performance and supporting economic development through their strong institutional structures and the assurance they will ensure in property rights.

Keywords: democracy, economic growth, economic freedom, autocratic regime

Procedia PDF Downloads 498
5725 Integrating Eye-Tracking Analysis to Enhance Web Usability Evaluation

Authors: Johanna Renny Octavia, Meliana Nurdin, Ignatius Kevin Kurniawan, Ricca Aksara

Abstract:

It is widely believed that usability evaluation is necessary to evaluate a website design for further improvement. Traditional methods of usability evaluation have given sufficient insights to reveal usability problems of websites. Eye-tracking analysis has been considered as a useful method that adds a powerful dimension to web usability evaluation. It allows web designers and usability researchers to understand exactly what users do and do not see on a web page, thus disclose more information on web usability and provide a more complete insights on a website design. This paper elaborates on moving beyond traditional methods of web usability evaluation by integrating eye-tracking analysis to enhance the evaluation of website design, and presents three case studies to support this approach. In these case studies, eye movement metrics such as gaze plots and fixation-derived metrics, and user performance data such as task completion times and number of errors were recorded as objective measurements that can inform the necessity for website design improvements.

Keywords: design, eye-tracking, usability evaluation, website

Procedia PDF Downloads 303
5724 Embodied Empowerment: A Design Framework for Augmenting Human Agency in Assistive Technologies

Authors: Melina Kopke, Jelle Van Dijk

Abstract:

Persons with cognitive disabilities, such as Autism Spectrum Disorder (ASD) are often dependent on some form of professional support. Recent transformations in Dutch healthcare have spurred institutions to apply new, empowering methods and tools to enable their clients to cope (more) independently in daily life. Assistive Technologies (ATs) seem promising as empowering tools. While ATs can, functionally speaking, help people to perform certain activities without human assistance, we hold that, from a design-theoretical perspective, such technologies often fail to empower in a deeper sense. Most technologies serve either to prescribe or to monitor users’ actions, which in some sense objectifies them, rather than strengthening their agency. This paper proposes that theories of embodied interaction could help formulating a design vision in which interactive assistive devices augment, rather than replace, human agency and thereby add to a persons’ empowerment in daily life settings. It aims to close the gap between empowerment theory and the opportunities provided by assistive technologies, by showing how embodiment and empowerment theory can be applied in practice in the design of new, interactive assistive devices. Taking a Research-through-Design approach, we conducted a case study of designing to support independently living people with ASD with structuring daily activities. In three iterations we interlaced design action, active involvement and prototype evaluations with future end-users and healthcare professionals, and theoretical reflection. Our co-design sessions revealed the issue of handling daily activities being multidimensional. Not having the ability to self-manage one’s daily life has immense consequences on one’s self-image, and also has major effects on the relationship with professional caregivers. Over the course of the project relevant theoretical principles of both embodiment and empowerment theory together with user-insights, informed our design decisions. This resulted in a system of wireless light units that users can program as a reminder for tasks, but also to record and reflect on their actions. The iterative process helped to gradually refine and reframe our growing understanding of what it concretely means for a technology to empower a person in daily life. Drawing on the case study insights we propose a set of concrete design principles that together form what we call the embodied empowerment design framework. The framework includes four main principles: Enabling ‘reflection-in-action’; making information ‘publicly available’ in order to enable co-reflection and social coupling; enabling the implementation of shared reflections into an ‘endurable-external feedback loop’ embedded in the persons familiar ’lifeworld’; and nudging situated actions with self-created action-affordances. In essence, the framework aims for the self-development of a suitable routine, or ‘situated practice’, by building on a growing shared insight of what works for the person. The framework, we propose, may serve as a starting point for AT designers to create truly empowering interactive products. In a set of follow-up projects involving the participation of persons with ASD, Intellectual Disabilities, Dementia and Acquired Brain Injury, the framework will be applied, evaluated and further refined.

Keywords: assistive technology, design, embodiment, empowerment

Procedia PDF Downloads 278
5723 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor

Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui

Abstract:

This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.

Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer

Procedia PDF Downloads 731
5722 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 72
5721 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 82
5720 Main Chaos-Based Image Encryption Algorithm

Authors: Ibtissem Talbi

Abstract:

During the last decade, a variety of chaos-based cryptosystems have been investigated. Most of them are based on the structure of Fridrich, which is based on the traditional confusion-diffusion architecture proposed by Shannon. Compared with traditional cryptosystems (DES, 3DES, AES, etc.), the chaos-based cryptosystems are more flexible, more modular and easier to be implemented, which make them suitable for large scale-data encyption, such as images and videos. The heart of any chaos-based cryptosystem is the chaotic generator and so, a part of the efficiency (robustness, speed) of the system depends greatly on it. In this talk, we give an overview of the state of the art of chaos-based block ciphers and we describe some of our schemes already proposed. Also we will focus on the essential characteristics of the digital chaotic generator, The needed performance of a chaos-based block cipher in terms of security level and speed of calculus depends on the considered application. There is a compromise between the security and the speed of the calculation. The security of these block block ciphers will be analyzed.

Keywords: chaos-based cryptosystems, chaotic generator, security analysis, structure of Fridrich

Procedia PDF Downloads 684
5719 Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation

Authors: Tanwi Priya, Brijesh Kumar Mishra

Abstract:

Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation.

Keywords: aromatic fractions, electrocoagulation, natural organic matter, spectral indices

Procedia PDF Downloads 278
5718 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: vacuum, thermal, flat-plate solar collector, insulation

Procedia PDF Downloads 395
5717 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance.

Keywords: electric vehicle, multi-machine single-inverter system, multi-machine multi-inverter control, in-wheel motor, master-slave control

Procedia PDF Downloads 221
5716 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea

Authors: Marda Vidrianto, Tania Surya Utami

Abstract:

Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.

Keywords: advance technology, energy efficiency, ESP, mature field, production rate

Procedia PDF Downloads 342
5715 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
5714 Alumina Generated by Electrocoagulation as Adsorbent for the Elimination of the Iron from Drilling Water

Authors: Aimad Oulebsir, Toufik Chaabane, Venkataraman Sivasankar, André Darchen, Titus A. M. Msagati

Abstract:

Currently, the presence of pharmaceutical substances in the environment is an emerging pollution leading to the disruption of ecosystems. Indeed, water loaded with pharmaceutical residues is an issue that has raised the attention of researchers. The aim of this study was to monitor the effectiveness of the alumina electro-generated by the adsorption process the iron of well water for the production of drugs. The Fe2+ was removed from wastewater by adsorption in a batch cell. Performance results of iron removal by alumina electro-generated revealed that the efficiency of the carrier in the method of electro-generated adsorption. The overall Fe2+ of the synthetically solutions and simulated effluent removal efficiencies reached 75% and 65%, respectively. The application of models and isothermal adsorption kinetics complement the results obtained experimentally. Desorption of iron was investigated using a solution of 0.1M NaOH. Regeneration of the tests shows that the adsorbent maintains its capacity after five adsorption/desorption cycles.

Keywords: electrocoagulation, aluminum electrode, electrogenerated alumina, iron, adsorption/desorption

Procedia PDF Downloads 299
5713 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.

Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation

Procedia PDF Downloads 326
5712 A Blockchain-Based Privacy-Preserving Physical Delivery System

Authors: Shahin Zanbaghi, Saeed Samet

Abstract:

The internet has transformed the way we shop. Previously, most of our purchases came in the form of shopping trips to a nearby store. Now, it’s as easy as clicking a mouse. But with great convenience comes great responsibility. We have to be constantly vigilant about our personal information. In this work, our proposed approach is to encrypt the information printed on the physical packages, which include personal information in plain text, using a symmetric encryption algorithm; then, we store that encrypted information into a Blockchain network rather than storing them in companies or corporations centralized databases. We present, implement and assess a blockchain-based system using Ethereum smart contracts. We present detailed algorithms that explain the details of our smart contract. We present the security, cost, and performance analysis of the proposed method. Our work indicates that the proposed solution is economically attainable and provides data integrity, security, transparency, and data traceability.

Keywords: blockchain, Ethereum, smart contract, commit-reveal scheme

Procedia PDF Downloads 150
5711 Study on Filter for Semiconductor of Minimizing Damage by X-Ray Laminography

Authors: Chan Jong Park, Hye Min Park, Jeong Ho Kim, Ki Hyun Park, Koan Sik Joo

Abstract:

This research used the MCNPX simulation program to evaluate the utility of a filter that was developed to minimize the damage to a semiconductor device during defect testing with X-ray. The X-ray generator was designed using the MCNPX code, and the X-ray absorption spectrum of the semiconductor device was obtained based on the designed X-ray generator code. To evaluate the utility of the filter, the X-ray absorption rates of the semiconductor device were calculated and compared for Ag, Rh, Mo and V filters with thicknesses of 25μm, 50μm, and 75μm. The results showed that the X-ray absorption rate varied with the type and thickness of the filter, ranging from 8.74% to 49.28%. The Rh filter showed the highest X-ray absorption rates of 29.8%, 15.18% and 8.74% for the above-mentioned filter thicknesses. As shown above, the characteristics of the X-ray absorption with respect to the type and thickness of the filter were identified using MCNPX simulation. With these results, both time and expense could be saved in the production of the desired filter. In the future, this filter will be produced, and its performance will be evaluated.

Keywords: X-ray, MCNPX, filter, semiconductor, damage

Procedia PDF Downloads 424
5710 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol

Abstract:

Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: aerodynamics, boundary layer, dimple, drag, kinetic energy, turbulence

Procedia PDF Downloads 315
5709 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 389
5708 Testing of Gas Turbine KingTech with Biodiesel

Authors: Nicolas Lipchak, Franco Aiducic, Santiago Baieli

Abstract:

The present work is a part of the research project called ‘Testing of gas turbine KingTech with biodiesel’, carried out by the Department of Industrial Engineering of the National Technological University at Buenos Aires. The research group aims to experiment with biodiesel in a gas turbine Kingtech K-100 to verify the correct operation of it. In this sense, tests have been developed to obtain real data of parameters inherent to the work cycle, to be used later as parameters of comparison and performance analysis. In the first instance, the study consisted in testing the gas turbine with a mixture composition of 50% Biodiesel and 50% Diesel. The parameters arising from the measurements made were compared with the parameters of the gas turbine with a composition of 100% Diesel. In the second instance, the measured parameters were used to calculate the power generated and the thermal efficiency of the Kingtech K-100 turbine. The turbine was also inspected to verify the status of the internals due to the use of biofuels. The conclusions obtained allow empirically demonstrate that it is feasible to use biodiesel in this type of gas turbines, without the use of this fuel generates a loss of power or degradation of internals.

Keywords: biodiesel, efficiency, KingTech, turbine

Procedia PDF Downloads 245
5707 Errors in Selected Writings of EFL Students: A Study of Department of English, Taraba State University, Jalingo, Nigeria

Authors: Joy Aworookoroh

Abstract:

Writing is one of the active skills in language learning. Students of English as a foreign language are expected to write efficiently and proficiently in the language; however, there are usually challenges to optimal performance and competence in writing. Errors, on the other hand, in a foreign language learning situation are more positive than negative as they provide the basis for solving the limitations of the students. This paper investigates the situation in the Department of English, Taraba State University Jalingo. Students are administered a descriptive writing test across different levels of study. The target students are multilingual with an L1 of either Kuteb, Hausa or Junkun languages. The essays are accessed to identify the different kinds of errors in them alongside the classification of the order. Errors of correctness, clarity, engagement, and delivery were identified. However, the study identified that the degree of errors reduces alongside the experience and exposure of the students to an EFL classroom.

Keywords: errors, writings, descriptive essay, multilingual

Procedia PDF Downloads 63
5706 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm

Authors: Mary Anne Roa

Abstract:

Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.

Keywords: congestion control, queue management, computer networks, fuzzy logic

Procedia PDF Downloads 397
5705 Using VR as a Training Tool in the Banking Industry

Authors: Bjørn Salskov, Nicolaj Bang, Charlotte Falko

Abstract:

Future labour markets demand employees that can carry out a non-linear task which is still not possible for computers. This means that employees must have well-developed soft-skills to perform at high levels in such a work environment. One of these soft-skills is presenting a message effectively. To be able to present a message effectively, one needs to practice this. To practice effectively, the trainee needs feedback on the current performance. Here VR environments can be used as a practice tool because it gives the trainee a sense of presence and reality. VR environments are becoming a cost-effective training method since it does not demand the presence of an expert to provide this feedback. The research article analysed in this study suggests that VR environment can be used and are able to provide the necessary feedback to the trainee which in turn will help the trainee become better at the task. The research analysed in this review does, however, show that there is a need for a study with larger sample size and a study which runs over a longer period.

Keywords: training, presentation, presentation skills, VR training, VR as a training tool, VR and presentation

Procedia PDF Downloads 122
5704 Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria

Authors: Abdulkadir Sarauta

Abstract:

Almost every type of industrial process involves the release of trace quantity of toxic organic and inorganic compound that up in receiving water bodies, this study was aimed at assessing the Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria. And the research formed the basis of identifying the presence of PCBs and PAHs in receiving water bodies in the study area, assessing the PCBs and PAHs concentration in receiving water body of Challawa system, evaluate the concentration level of PCBs and PAHs in fishes in the study area, determine the concentration level of PCBs and PAHs in crops irrigated in the study area as well as compare the concentration of PCBs and PAHs with the acceptable limit set by Nigerian, EU, U.S and WHO standard. Data were collected using reconnaissance survey, site inspection, field survey, laboratory experiment as well as secondary data source. A total of 78 samples were collected through stratified systematic random sampling (i.e., 26 samples for each of water, crops and fish) three sampling points were chosen and designated A, B and C along the stretch of the river (i.e. up, middle, and downstream) from Yan Danko Bridge to Tambirawa bridge. The result shows that the Polychlorinated biphenyls (PCBs) was not detected while, polycyclic aromatic hydrocarbons (PAHs) was detected in the whole samples analysed at the trench of Challawa River basin in order to assess the contribution of human activities to global environmental pollution. The total concentrations of ΣPAH and ΣPCB ranges between 0.001 to 0.087mg/l and 0.00 to 0.00mg/l of water samples While, crops samples ranges between 2.0ppb to 8.1ppb and fish samples ranges from 2.0 to 6.7ppb.The whole samples are polluted because most of the parameters analyzed exceed the threshold limits set by WHO, Nigerian, U.S and EU standard. The analytical results revealed that some chemicals are present in water, crops and fishes are significantly very high at Zamawa village which is very close to Challawa industrial estate and also is main effluent discharge point and drinking water around study area is not potable for consumption. Analysis of Variance was obtained by Bartlett’s test performance. There is only significant difference in water because the P < 0.05 level of significant, But there is no difference in crops concentration they have the same performance, likes wise in the fishes. It is said to be of concern to health hazard which will increase incidence of tumor related diseases such as skin, lungs, bladder, gastrointestinal cancer, this show there is high failure of pollution abatement measures in the area. In conclusion, it can be said that industrial activities and effluent has impact on Challawa River basin and its environs especially those that are living in the immediate surroundings. Arising from the findings of this research some recommendations were made the industries should treat their liquid properly by installing modern treatment plants.

Keywords: Challawa River Basin, organic, persistent, pollutant

Procedia PDF Downloads 575
5703 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
5702 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 61