Search results for: shear energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9519

Search results for: shear energy

1119 Studying the Effect of Heartfulness Meditation on Brain Activity

Authors: Norman Farb, Anirudh Kumar, Abdul Subhan, Pallavi Gupta, Jahnavi Mundluru, Abdul Subhan, Shankar Pathmakanthan

Abstract:

Long term meditation practice is increasingly recognized for its health benefits. Among a diversity of contemplative traditions, Heartfulness meditation represents a quickly growing set of practices that is largely unstudied. Heartfulness is unique in that it is a meditation practice that focuses on the Heart. It helps individuals to connect to themselves and find inner peace while meditating. In order to deepen ones’ meditation on the heart, the element of Yogic Energy (‘pranahuti’) is used as an aid during meditation. The purpose of this study was to determine whether consistent EEG effects of Heartfulness meditation be observed in sixty experienced Heartfulness meditators, each of whom attended 6 testing sessions. In each session, participants performed three conditions: a set of cognitive tasks, Heartfulness guided relaxation, and Heartfulness Meditation. To measure EEG, the MUSE EEG head band (product of Interaxon Inc) was used. Participants during the cognitive portion were required to answer questions that tested their logical thinking (Cognitive Reflective Test) and creative thinking skills. (Random Associative Test) The order of condition was randomly counter balanced across six sessions. It was hypothesized that Heartfulness meditation would bring increased alpha (8-12Hz) brain activity during meditation and better cognitive task scores in sessions where the tasks followed meditation. Results show that cognitive task scores were higher after meditation in both CRT and RAT, suggesting stronger right brain and left brain activation. Heartfulness meditation produces a significant decrease in brain activity (as indexed by higher levels of alpha) during the early stages of meditation. As the meditation progressed deep meditative state (as indexed by higher levels of delta) were observed until the end of the condition. This lead to the conclusion that Heartfulness Meditation produces a state that is clearly distinguishable from effortful problem solving.

Keywords: heartfulness meditation, neuroplasticity, brain activity, relaxation response

Procedia PDF Downloads 335
1118 NiSe-Ni₃Se₂/Multiwalled Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media

Authors: Oluwaseun A. Oyetade, Roelof J. Kriek

Abstract:

The development of effective catalysts for the oxygen evolution reaction (OER) is of great importance to combat energy-related concerns in the environment. Herein, we report a one-step solvothermal method employed for the fabrication of nickel selenide hybrids (NiSe-Ni₃Se₂) and a series of nickel selenide hybrid/multiwalled carbon nanotube composites (NiSe-Ni₃Se₂/MWCNT) as electrocatalysts for OER in alkaline media. The catalytic activities of these catalysts were investigated via several electrochemical characterization techniques, such as linear sweep voltammetry, chronoamperometric studies at constant potential, electrochemical surface area determination, and Tafel slope calculation, under alkaline conditions. Morphological observations demonstrated the agglomeration of non-uniform NiSe-Ni₃Se₂ microspheres around carbon nanotubes (CNTs), demonstrating the successful synthesis of NiSe-Ni₃Se₂/MWCNT nanocomposites. Among the tested electrocatalysts, the 20% NiSe-Ni₃Se₂/MWCNT nanocomposite demonstrated the highest activity, exhibiting an overpotential of 325 mV to achieve a current density of 10 mA.cm⁻² in 0.1 mol.dm⁻³ KOH solution. The NiSe-Ni₃Se₂/MWCNT nanocomposites showed improved activity toward OER compared to bare NiSe-Ni₃Se₂ hybrids and MWCNTs, exhibiting an overpotential of 528, 392 and 434 mV for 10%, 30% and 50% NiSe-Ni₃Se₂/MWCNT nanocomposites, respectively. These results compare favourably to the overpotential of noble catalysts, such as RuO₂ and IrO₂. Our results imply that the addition of MWCNTs increased the activity of NiSe-Ni₃Se₂ hybrids due to an increased number of catalytic sites, dispersion of NiSe-Ni₃Se₂ hybrid nanoparticles, and electronic conductivity of the nanocomposites. These nanocomposites also demonstrated better long-term stability compared to NiSe-Ni₃Se₂ hybrids and MWCNTs. Hence, NiSe-Ni₃Se₂/MWCNT nanocomposites possess the potential as effective electrocatalysts for OER in alkaline media.

Keywords: carbon nanotubes, electrocatalysts, nanocomposites, nickel selenide hybrids, oxygen evolution reaction

Procedia PDF Downloads 129
1117 Wearable Jacket for Game-Based Post-Stroke Arm Rehabilitation

Authors: A. Raj Kumar, A. Okunseinde, P. Raghavan, V. Kapila

Abstract:

Stroke is the leading cause of adult disability worldwide. With recent advances in immediate post-stroke care, there is an increasing number of young stroke survivors, under the age of 65 years. While most stroke survivors will regain the ability to walk, they often experience long-term arm and hand motor impairments. Long term upper limb rehabilitation is needed to restore movement and function, and prevent deterioration from complications such as learned non-use and learned bad-use. We have developed a novel virtual coach, a wearable instrumented rehabilitation jacket, to motivate individuals to participate in long-term skill re-learning, that can be personalized to their impairment profile. The jacket can estimate the movements of an individual’s arms using embedded off-the-shelf sensors (e.g., 9-DOF IMU for inertial measurements, flex-sensors for measuring angular orientation of fingers) and a Bluetooth Low Energy (BLE) powered microcontroller (e.g., RFduino) to non-intrusively extract data. The 9-DOF IMU sensors contain 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer to compute the quaternions, which are transmitted to a computer to compute the Euler angles and estimate the angular orientation of the arms. The data are used in a gaming environment to provide visual, and/or haptic feedback for goal-based, augmented-reality training to facilitate re-learning in a cost-effective, evidence-based manner. The full paper will elaborate the technical aspects of communication, interactive gaming environment, and physical aspects of electronics necessary to achieve our stated goal. Moreover, the paper will suggest methods to utilize the proposed system as a cheaper, portable, and versatile system vis-à-vis existing instrumentation to facilitate post-stroke personalized arm rehabilitation.

Keywords: feedback, gaming, Euler angles, rehabilitation, augmented reality

Procedia PDF Downloads 277
1116 Healthy Feeding and Drinking Troughs for Profitable Intensive Deep-Litter Poultry Farming

Authors: Godwin Ojochogu Adejo, Evelyn UnekwuOjo Adejo, Sunday UnenwOjo Adejo

Abstract:

The mainstream contemporary approach to controlling the impact of diseases among poultry birds rely largely on curative measures through the administration of drugs to infected birds. Most times as observed in the deep liter poultry farming system, entire flocks including uninfected birds receive the treatment they do not need. As such, unguarded use of chemical drugs and antibiotics has led to wastage and accumulation of chemical residues in poultry products with associated health hazards to humans. However, wanton and frequent drug usage in poultry is avoidable if feeding and drinking equipment are designed to curb infection transmission among birds. Using toxicological assays as guide and with efficiency and simplicity in view, two newly field-tested and recently patented equipments called 'healthy liquid drinking trough (HDT)' and 'healthy feeding trough (HFT)' that systematically eliminate contamination of the feeding and drinking channels, thereby, curbing wide-spread infection and transmission of diseases in the (intensive) deep litter poultry farming system were designed. Upon combined usage, they automatically and drastically reduced both the amount and frequency of antibiotics use in poultry by over > 50%. Additionally, they conferred optimization of feed and water utilization/elimination of wastage by > 80%, reduced labour by > 70%, reduced production cost by about 15%, and reduced chemical residues in poultry meat or eggs by > 85%. These new and cheap technologies which require no energy input are likely to elevate safety of poultry products for consumers' health, increase marketability locally and for export, and increase output and profit especially among poultry farmers and poor people who keep poultry or inevitably utilize poultry products in developing countries.

Keywords: healthy, trough, toxicological, assay-guided, poultry

Procedia PDF Downloads 155
1115 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: drying time, lyophilization, mango, vacuum induced freezing

Procedia PDF Downloads 410
1114 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 241
1113 Appraisal of Oxidative Stress in Pregnant and Non-Pregnant Non Descript Goat from Arid Tracts in India

Authors: Sudha Summarwar, Sudesh Agarwal, Deepali Lall, Nalini Kataria, Jyotsana Pandey

Abstract:

Assessment of antioxidant status is an effective tool to appraise the presence of oxidative stress. A combination of assays can be used to evaluate the antioxidant status like serum catalase (CAT), superoxide dismutase (SOD) and monoamine oxidase (MAO). In human medicine pregnancy is known to be associated with oxidative stress. Oxidative stress produces harmful effects to the developing foetus. Several metabolic changes occur in the maternal body to meet the demand of energy of developing foetus. Due to these changes susceptibility of maternal body increases to oxidative stress. There is paucity of research work on this aspect in nondescript goats. Therefore, the present study was intended to appraise the oxidative stress in pregnant and non-pregnant non-descript goat. Blood samples were collected for serum separation in otherwise healthy pregnant and non-pregnant nondescript goats. Mean values of serum CAT, SOD and MAO were found on a higher side (p≤0.05) with serum SOD values showing a rise of 2.5 times higher than the control healthy value. Correlations among all the three parameters were found to be highly significant (p≤0.01) especially greatest in youngest group of pregnant animals. Illustration of result enlightened the veracity of bumped up production of free radicals in pregnant animals. Technical savoir-faire of oxidative stress supervision is essential for upholding of health status of foetus. The upshot of present study undoubtedly implied the development of oxidative stress in pregnant goats on the basis of altered antioxidant status. These findings conclude that initially the oxidative stress due to pregnancy is critically combated by the intricate defensive mechanism of natural antioxidant system of the body. It appears that this imbalance between oxidant and antioxidant must be checked in time to prevent cellular damage by regularly appraising the antioxidant status through laboratory methods.

Keywords: antioxidant, oxidative stress, pregnancy, serum catalase

Procedia PDF Downloads 334
1112 Equilibrium, Kinetics, and Thermodynamic Studies on Heavy Metal Biosorption by Trichoderma Species

Authors: Sobia Mushtaq, Firdaus E. Bareen, Asma Tayyeb

Abstract:

This study conducted to investigate the metal biosorption potential of indigenous Trichoderma species (T. harzianum KS05T01, T. longibrachiatum KS09T03, Trichoderma sp KS17T09., T. viridi KS17T011, T. atrobruneo KS21T014, and T. citrinoviride) that have been isolated from contaminated soil of Kasur Tannery Waste Management Agency. The effect of different biosorption parameters as initial metal ion concentration, pH, contact time , and temperature of incubation was investigated on the biosorption potential of these species. The metal removal efficiency and (E%) and metal uptake capacity (mg/g) increased along with the increase of initial metal concentration in media. The Trichoderma species can tolerate and survive under heavy metal stress up to 800mg/L. Among the two isotherm models were applied on the biosorption data, Langmuir isotherm model and Freundlich isotherm model, maximum correlation coefficients values (R 2 ) of 1was found for Langmuir model, which showed the better fitted model for the Trichoderma biosorption. The metal biosorption was increased with the increase of temperature and pH of the media. The maximum biosorption was observed between 25-30 o C and at pH 6.-7.5, while the biosorption rate was increased from 3-6 days of incubation, and then the rate of biosorption was slowed down. The biosorption data was better fitted for Pseudo kinetic first order during the initial days of biosorption. Thermodynamic parameters as standard Gibbs free energy (G), standard enthalpy change (H), and standard entropy (S) were calculated. The results confirmed the heavy metal biosorption by Trichoderma species was endothermic and spontaneous reaction in nature. The FTIR spectral analysis and SEM-EDX analysis of the treated and controlled mycelium revealed the changes in the active functional sites and morphological variations of the outer surface. The data analysis envisaged that high metal tolerance exhibited by Trichoderma species indicates its potential as efficacious and successful mediator for bioremediation of the heavy metal polluted environments.

Keywords: heavy metal, fungal biomass, biosorption, kinetics

Procedia PDF Downloads 122
1111 Effects of Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Composition of Bacteria in Feces of Finishing Steers

Authors: Yan Li, Qingxiang Meng, Bo Zhou, Zhenming Zhou

Abstract:

The objective of this study was to compare the effects of ensiled mulberry leaves (EML), and sun-dried mulberry fruit pomace (SMFP) on fecal bacterial communities in Simmental crossbred finishing steers fed the following 3 diets: a standard TMR diet, standard diet containing EML and standard diet containing SMFP, and the diets had similar protein and energy levels. Bacterial communities in the fecal content were analyzed using Illumina Miseq sequencing of the V4 region of the 16S rRNA gene amplification. Quantitative real-time PCR was used to detect the selected bacterial species in the feces. Most of the sequences were assigned to phyla Firmicutes (56.67%) and Bacteroidetes(35.90%), followed by Proteobacteria(1.86%), Verrucomicrobia(1.80%) and Tenericutes(1.37%). And the predominant genera included the 5-7N15 (5.91%), CF231 (2.49%), Oscillospira (2.33%), Paludibacter (1.23%) and Akkermansia(1.11%). As for the treatments, no significant differences were observed in Firmicutes (p = 0.28), Bacteroidetes (p = 0.63), Proteobacteria (p = 0.46), Verrucomicrobia (p = 0.17) and Tenericutes (p = 0.75). On the genus level, classified genera with high abundance (more than 0.1%) mainly came from two phyla: Bacteroidetes and Firmicutes. Also no differences were observed in most genera level, 5-7N15 (p = 0.21), CF231 (p = 0.62), Oscillospira (p = 0.9), Paludibacter (p = 0.33) and Akkermansia (p = 0.37), except that rc4-4 were lower in the CON and SMFP groups compared to the EML animals (p = 0.02). Additionally, there were no differences in richness estimate and diversity indices (p > 0.16), and treatments had no significant effect on most selected bacterial species in the fecal (p > 0.06), except that Ruminococcus albus were higher in the EML group (p < 0.01) and Streptococcus bovis were lower in the CON group (p < 0.01). In conclusion, diets supplemented with EML and SMFP have little influence on fecal bacterial community composition in finishing steers.

Keywords: fecal bacteria community composition, sequencing, ensiled mulberry leaves (EML), sun-dried mulberry fruit pomace (SMFP)

Procedia PDF Downloads 322
1110 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid

Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet

Abstract:

The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.

Keywords: bio-oils, extraction, lignin, phenolic compounds

Procedia PDF Downloads 110
1109 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 79
1108 Legal Personality and Responsibility of Robots

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Arrival of artificial intelligence or smart robots in the modern world put them in charge on pericise and at risk. So acting human activities with robots makes criminal or civil responsibilities for their acts or behavior. The practical usage of smart robots has entered them in to a unique situation when naturalization happens and smart robots are identifies as members of society. There would be some legal situation by adopting these new smart citizens. The first situation is about legal responsibility of robots. Recognizing the naturalization of robot involves some basic right , so humans have the rights of employment, property, housing, using energy and other human rights may be employed for robots. So how would be the practice of these rights in the society and if some problems happens with these rights, how would the civil responsibility and punishment? May we consider them as population and count on the social programs? The second episode is about the criminal responsibility of robots in important activity instead of human that is the aim of inventing robots with handling works in AI technology , but the problem arises when some accidents are happened by robots who are in charge of important activities like army, surgery, transporting, judgement and so on. Moreover, recognizing independent identification for robots in the legal world by register ID cards, naturalization and civilian rights makes and prepare the same rights and obligations of human. So, the civil responsibility is not avoidable and if the robot commit a crime it would have criminal responsibility and have to be punished. The basic component of criminal responsibility may changes in so situation. For example, if designation for criminal responsibility bounds to human by sane, maturity, voluntariness, it would be for robots by being intelligent, good programming, not being hacked and so on. So it is irrational to punish robots by prisoning , execution and other human punishments for body. We may determine to make digital punishments like changing or repairing programs, exchanging some parts of its body or wreck it down completely. Finally the responsibility of the smart robot creators, programmers, the boss in chief, the organization who employed robot, the government which permitted to use robot in important bases and activities , will be analyzing and investigating in their article.

Keywords: robot, artificial intelligence, personality, responsibility

Procedia PDF Downloads 147
1107 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application

Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro

Abstract:

In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.

Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype

Procedia PDF Downloads 159
1106 Preliminary Evaluation of Maximum Intensity Projection SPECT Imaging for Whole Body Tc-99m Hydroxymethylene Diphosphonate Bone Scanning

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Kyoko Saito

Abstract:

Bone scintigraphy is widely used as a screening tool for bone metastases. However, the 180 to 240 minutes (min) waiting time after the intravenous (i.v.) injection of the tracer is both long and tiresome. To solve this shortcoming, a bone scan with a shorter waiting time is needed. In this study, we applied the Maximum Intensity Projection (MIP) and triple energy window (TEW) scatter correction to a whole body bone SPECT (Merged SPECT) and investigated shortening the waiting time. Methods: In a preliminary phantom study, hot gels of 99mTc-HMDP were inserted into sets of rods with diameters ranging from 4 to 19 mm. Each rod set covered a sector of a cylindrical phantom. The activity concentration of all rods was 2.5 times that of the background in the cylindrical body of the phantom. In the human study, SPECT images were obtained from chest to abdomen at 30 to 180 min after 99mTc- hydroxymethylene diphosphonate (HMDP) injection of healthy volunteers. For both studies, MIP images were reconstructed. Planar whole body images of the patients were also obtained. These were acquired at 200 min. The image quality of the SPECT and the planar images was compared. Additionally, 36 patients with breast cancer were scanned in the same way. The delectability of uptake regions (metastases) was compared visually. Results: In the phantom study, a 4 mm size hot gel was difficult to depict on the conventional SPECT, but MIP images could recognize it clearly. For both the healthy volunteers and the clinical patients, the accumulation of 99mTc-HMDP in the SPECT was good as early as 90 min. All findings of both image sets were in agreement. Conclusion: In phantoms, images from MIP with TEW scatter correction could detect all rods down to those with a diameter of 4 mm. In patients, MIP reconstruction with TEW scatter correction could improve the detectability of hot lesions. In addition, the time between injection and imaging could be shortened from that conventionally used for whole body scans.

Keywords: merged SPECT, MIP, TEW scatter correction, 99mTc-HMDP

Procedia PDF Downloads 412
1105 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 154
1104 Need for Cognition: An Important, Neglected Personality Variable in the Development of Spirituality Within the Context of Twelve Step Recovery from Addictive Disorders

Authors: Paul E. Priester

Abstract:

The Twelve Step approach to recovery from substance use and addictive disorders is considered an evidence-based model that assists many who recover from a chronic, progressive, fatal disease. Two key processes that contribute to the success of obtaining recovery from substance use disorders (SUD) are meeting engagement and the development of spiritual beliefs. Beyond establishing that there is a positive relationship between the development of spiritual beliefs in recovery from SUD’s, there has been a paucity of research exploring individual differences among individuals in this development of spiritual beliefs. One such personality variable that deserves exploration is that of the need for cognition. The need for cognition is a personality variable that explains the cognitive style of individuals. Individuals with a high need for cognition enjoy examining the complexities of a situation before coming to a conclusion. While individuals with a low need for cognition do not value or spend time cognitively dissecting a situation or decision. It is important to point out that a high need for cognition does not necessarily imply a high level of cognitive ability. Indeed, one could make the argument that a low need for cognition individual is not “wasting” cognitive energy in perseverating the multitude of aspects of a particular decision. This paper will present two case studies demonstrating the development of spiritual beliefs that enabled long-term recovery from SUD. The first case study presents an agnostic individual with a low need for cognition cognitive style in his development of spirituality in support of his recovery from alcoholism within the context of Alcoholics Anonymous. The second case study represents an adamant atheist with a high need for cognition cognitive style. This second individual is an intravenous cocaine addict and alcoholic who recovers through the development of spirituality within the contexts of Alcoholics Anonymous and Narcotics Anonymous. The two case studies will be contrasted with each other, noting how the individuals’ cognitive style mediated the development of spirituality that supported their long-term recovery from alcoholism and addiction.

Keywords: spirituality, twelve step recovery, need for cognition, individual differences in recovery from addictions

Procedia PDF Downloads 93
1103 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria

Authors: Khaled Mawardi

Abstract:

Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.

Keywords: microwaves, extraction, Laurel oil, solvent-free

Procedia PDF Downloads 67
1102 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 220
1101 The Impact of Legislation on Waste and Losses in the Food Processing Sector in the UK/EU

Authors: David Lloyd, David Owen, Martin Jardine

Abstract:

Introduction: European weight regulations with respect to food products require a full understanding of regulation guidelines to assure regulatory compliance. It is suggested that the complexity of regulation leads to practices which result to over filling of food packages by food processors. Purpose: To establish current practices by food processors and the financial, sustainable and societal impacts on the food supply chain of ineffective food production practices. Methods: An analysis of food packing controls with 10 companies of varying food categories and quantitative based research of a further 15 food processes on the confidence in weight control analysis of finished food packs within their organisation. Results: A process floor analysis of manufacturing operations focussing on 10 products found over fill of packages ranging from 4.8% to 20.2%. Standard deviation figures for all products showed a potential for reducing average weight of the pack whilst still retain the legal status of the product. In 20% of cases, an automatic weight analysis machine was in situ however weight packs were still significantly overweight. Collateral impacts noted included the effect of overfill on raw material purchase and added food miles often on a global basis with one raw material alone creating 10,000 extra food miles due to the poor weight control of the processing unit. A case study of a meat and bakery product will be discussed with the impact of poor controls resulting from complex legislation. The case studies will highlight extra energy costs in production and the impact of the extra weight on fuel usage. If successful a risk assessment model used primarily on food safety but adapted to identify waste /sustainability risks will be discussed within the presentation.

Keywords: legislation, overfill, profile, waste

Procedia PDF Downloads 406
1100 Impact of Gender Difference on Crop Productivity: The Case of Decha Woreda, Ethiopia

Authors: Getinet Gezahegn Gebre

Abstract:

The study examined the impact of gender differences on Crop productivity in Decha woreda of southwest Kafa zone, located 140 Km from Jimma Town and 460 km southwest of Addis Ababa, between Bonga town and Omo River. The specific objectives were to assess the extent to which the agricultural production system is gender oriented, to examine access and control over productive resources, and to estimate men’s and women’s productivity in agriculture. Cross-sectional data collected from a total of 140 respondents were used in this study, whereby 65 were female-headed and 75 were male-headed households. The data were analyzed by using Statistical Package for Social Science (SPSS). Descriptive statistics such as frequency, mean, percentage, t-test and chi-square were used to summarize and compare the information between the two groups. Moreover, Cobb-Douglas(CD) production function was used to estimate the productivity difference in agriculture between male and female-headed households. Results of the study showed that male-headed households (MHH) own more productive resources such as land, livestock, labor and other agricultural inputs as compared to female-headed households (FHH). Moreover, the estimate of CD production function shows that livestock, herbicide use, land size and male labor were statistically significant for MHH, while livestock, land size, herbicides use and female labor were significant variables for FHH. The crop productivity difference between MHH and FHH was about 68.83% in the study area. However, if FHH had equal access to the inputs as MHH, the gross value of the output would be higher by 23.58% for FHH. This might suggest that FHH would be more productive than MHH if they had equal access to inputs as MHH. Based on the results obtained, the following policy implication can be drawn: accessing FHH to inputs that increase the productivity of agriculture, such as herbicides, livestock and male labor; increasing the productivity of land; and introducing technologies that reduce the time and energy of women, especially for enset processing.

Keywords: gender difference, crop productivity, GDP, efficiency

Procedia PDF Downloads 74
1099 Extraction of Phycocyanin from Spirulina platensis by Isoelectric Point Precipitation and Salting Out for Scale Up Processes

Authors: Velasco-Rendón María Del Carmen, Cuéllar-Bermúdez Sara Paulina, Parra-Saldívar Roberto

Abstract:

Phycocyanin is a blue pigment protein with fluorescent activity produced by cyanobacteria. It has been recently studied to determine its anticancer, antioxidant and antiinflamatory potential. Since 2014 it was approved as a Generally Recognized As Safe (GRAS) proteic pigment for the food industry. Therefore, phycocyanin shows potential for the food, nutraceutical, pharmaceutical and diagnostics industry. Conventional phycocyanin extraction includes buffer solutions and ammonium sulphate followed by chromatography or ATPS for protein separation. Therefore, further purification steps are time-requiring, energy intensive and not suitable for scale-up processing. This work presents an alternative to conventional methods that also allows large scale application with commercially available equipment. The extraction was performed by exposing the dry biomass to mechanical cavitation and salting out with NaCl to use an edible reagent. Also, isoelectric point precipitation was used by addition of HCl and neutralization with NaOH. The results were measured and compared in phycocyanin concentration, purity and extraction yield. Results showed that the best extraction condition was the extraction by salting out with 0.20 M NaCl after 30 minutes cavitation, with a concentration in the supernatant of 2.22 mg/ml, a purity of 3.28 and recovery from crude extract of 81.27%. Mechanical cavitation presumably increased the solvent-biomass contact, making the crude extract visibly dark blue after centrifugation. Compared to other systems, our process has less purification steps, similar concentrations in the phycocyanin-rich fraction and higher purity. The contaminants present in our process edible NaCl or low pHs that can be neutralized. It also can be adapted to a semi-continuous process with commercially available equipment. This characteristics make this process an appealing alternative for phycocyanin extraction as a pigment for the food industry.

Keywords: extraction, phycocyanin, precipitation, scale-up

Procedia PDF Downloads 438
1098 Capacity Oversizing for Infrastructure Sharing Synergies: A Game Theoretic Analysis

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) rely on two basic modes of cooperation between organizations that are infrastructure/service sharing and resource substitution (the use of waste materials, fatal energy and recirculated utilities for production). The former consists in the intensification of use of an asset and thus requires to compare the incremental investment cost to be incurred and the stand-alone cost faced by each potential participant to satisfy its own requirements. In order to investigate the way such a cooperation mode can be implemented we formulate a game theoretic model integrating the grassroot investment decision and the ex-post access pricing problem. In the first period two actors set cooperatively (resp. non-cooperatively) a level of common (resp. individual) infrastructure capacity oversizing to attract ex-post a potential entrant with a plug-and-play offer (available capacity, tariff). The entrant’s requirement is randomly distributed and known only after investments took place. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period under some conditions that we derive. The entrant willingness-to-pay for the access to the infrastructure is driven by both her standalone cost and the complement cost to be incurred in case she chooses to access an infrastructure whose the available capacity is lower than her requirement level. The expected complement cost function is thus derived, and we show that it is decreasing, convex and shaped by the entrant’s requirements distribution function. For both uniform and triangular distributions optimal capacity level is obtained in the cooperative setting and equilibrium levels are determined in the non-cooperative case. Regarding the latter, we show that competition is deterred by the first period investor with the highest requirement level. Using the non-cooperative game outcomes which gives lower bounds for the profit sharing problem in the cooperative one we solve the whole game and describe situations supporting sharing agreements.

Keywords: capacity, cooperation, industrial symbiosis, pricing

Procedia PDF Downloads 440
1097 Effect of Supplementing Ziziphus Spina-Christi Leaf Meal to Natural Pasture Hay on Feed Intake, Body Weight Gain, Digestibility, and Carcass Characteristics of Tigray Highland Sheep

Authors: Abrha Reta, Ajebu Nurfeta, Genet Mengistu, Mohammed Beyan

Abstract:

Fodder trees such as Ziziphus spina-christi have the potential to enhance the utilization of natural grazing resources and also to mitigate seasonal feed shortages. The experiment was conducted with the objective of evaluating the effect of supplementing Ziziphus spina-christi leaf meal (ZSCLM) to natural pasture hay on feed intake, body weight gain, digestibility, and carcass characteristics of Tigray highland sheep. A randomized complete block design was employed with 5 blocks based on initial body weight, and sheep were randomly assigned to five treatments. Treatments were: 100g concentrate mix + ad libtum natural pasture hay (T1), T1+ 100g ZSCLM (T2), T1 + 200g ZSCLM (T3), T1 + 300g ZSCLM (T4), and T1 + 400g ZSCLM (T5) on dry matter (DM) basis. Dry matter intake was greater (P<0.05) in sheep on T5 compared to T3 and T1, while the total DM intake among T2, T4, and T5 were similar. Crude protein and metabolizable energy intake differed (P<0.05) among treatments with highest and lowest values in T5 and T1, respectively. Average daily gain was higher (P<0.05) in sheep kept on T2, T3, and T4 diets than T1. Higher (P<0.05) DM digestibility was found in T4 and T5 than T1. The highest (P<0.05) OM and CP digestibility was observed in sheep fed T3, T4, and T5 diets. Rib eye muscle area was higher (P<0.05) for T4 than T1 and T2. Dressing percentage was similar (P>0.05) among treatments. The current study indicated that supplementation of Tigray highland sheep with 200g air-dried Ziziphus spina-christi leaf meal leaves with 100g of concentrate mixture in their diet significantly increased feed intake and apparent digestibility, body weight gain, hot carcass weight, and rib eye muscle area by improving feed conversion efficiency.

Keywords: body weight, carcass, digestibility, and ziziphus spina-christi leaf meal

Procedia PDF Downloads 111
1096 A Strategy for Reducing Dynamic Disorder in Small Molecule Organic Semiconductors by Suppressing Large Amplitude Thermal Motions

Authors: Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Stephen G. Yeates, John E. Anthony, Henning Sirringhaus

Abstract:

Large-amplitude intermolecular vibrations in combination with complex shaped transfer integrals generate a thermally fluctuating energetic landscape. The resulting dynamic disorder and its intrinsic presence in organic semiconductors is one of the most fundamental differences to their inorganic counterparts. Dynamic disorder is believed to govern many of the unique electrical and optical properties of organic systems. However, the low energy nature of these vibrations makes it difficult to access them experimentally and because of this we still lack clear molecular design rules to control and reduce dynamic disorder. Applying a novel technique based on electron diffraction we encountered strong intermolecular, thermal vibrations in every single organic material we studied (14 up to date), indicating that a large degree of dynamic disorder is a universal phenomenon in organic crystals. In this paper a new molecular design strategy will be presented to avoid dynamic disorder. We found that small molecules that have their side chains attached to the long axis of their conjugated core have been found to be less likely to suffer from dynamic disorder effects. In particular, we demonstrate that 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene (C8-BTBT) and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene (C10DNTT) exhibit strongly reduced thermal vibrations in comparison to other molecules and relate their outstanding performance to their lower dynamic disorder. We rationalize the low degree of dynamic disorder in C8-BTBT and C10-DNTT with a better encapsulation of the conjugated cores in the crystal structure which helps reduce large amplitude thermal motions. The work presented in this paper provides a general strategy for the design of new classes of very high mobility organic semiconductors with low dynamic disorder.

Keywords: charge transport, C8-BTBT, C10-DNTT, dynamic disorder, organic semiconductors, thermal vibrations

Procedia PDF Downloads 399
1095 The Effect of Aerobic Exercises on the Amount of Urea, Uric Acid and Creatine in Blood of Iranian Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The purpose of this research was to study the effect of aerobic exercises with 75% heart beats on the amount of urea, uric acid and creatine in blood of Iranian soccer national U-23 players. 27 players were selected according to the following demographic specifications: age: 21.4±1.60 years old; weight: 68±9.4 kg; height: 174.2±8.6 cm. Urea, uric acid and creatine in blood are considered as dependent variations where as 40 minutes running on a track with maximum 75% heart beats are independent variations. Heart beat and blood pressure in rest time, age, height, and weight are considered as the controlled variations. Maximum heart beats are recorded under maximum exercises (8 minutes and 150-250 watt energy) on ergo meter. Then, in order to determine independent variations, 75% maximum heart beats are considered for each player. Blood is taken twice (before and after determining independence variation). Moreover, the players are given a few instructions to be fulfilled 24 hours before the main exercises. Laboratory analysis method for blood urea sample is deacetyl ammoniom, for uric acid Karvy test and for creatine pyric acid. 'T' formula is applied for analyzing statistical data in dependent groups with degree of freedom 7 (d.f=7) urea and uric acid contain P>0.01 and P>0.05 for creatine. 1. Aerobic exercise can effect on the concentration of urea of blood as well as uric acid and creatine in blood serum and increase the amount of them. 2. Urea of blood serum increases from 26.75±2.59 to 28.9±2.67 (25%) with 40 minutes running and 75% heart beat. 3. Aerobic exercise causes uric acid increase 12.5% from 5.7±0.52 (before exercise) to 6.1±0.71 (after exercise). Creatine of blood serum increases from 1.36±0.27 (before exercise) to 1.85±0.49 (after exercise). We came to this result that during aerobic exercise catabolism of protein substrate increases. Moreover, augmentation of urea, uric acid and creatine in blood serum as metabolic poisons causes disorder in kidney. Also, tendons and joints are affected by these poisons. Appropriate diet and exercise can prevent production of these poisons resulted from heavy exercise.

Keywords: aerobic exercise, urea, uric acid, creatine, blood, soccer national players

Procedia PDF Downloads 534
1094 Synthesis and Characterization of Iron and Aluminum-Containing AFm Phases

Authors: Aurore Lechevallier, Mohend Chaouche, Jerome Soudier, Guillaume Renaudin

Abstract:

The cement industry accounts for 8% of the global CO₂ emissions, and approximately 60% of these emissions are associated with the Portland cement clinker production from the decarbonization of limestone (CaCO3). Their impact on the greenhouse effect results in growing social awareness. Therefore, CO2 footprint becomes a product selection choice, and substituting Portland cement with a lower CO2-footprint alternative binder is sought. In this context, new hydraulic binders have been studied as a potential Ordinary Portland Cement substitute. Many of them are composed of iron oxides and aluminum oxides, present in the Ca₄Al₂-xFe₂+ₓO₁₀-like phase and forming Ca-LDH (i.e. AFM) as a hydration product. It has become essential to study the possible existence of Fe/Al AFM solid solutions to characterize the hydration process properly. Ca₂Al₂-xFex(OH)₆.X.nH₂O layered AFM samples intercalated with either nitrate or chloride X anions were synthesized based on the co-precipitation method under a nitrogen atmosphere to avoid the carbonation effect.AFM samples intercalated with carbonate anions were synthesized based on the anionic exchange process, using AFM-NO₃ as the source material. These three AFM samples were synthesized with varying Fe/Al molar ratios. The experimental conditions were optimized to make possible the formation of Al-AFM and Fe-AFM using the same parameters (namely pH value and salt concentration). Rietveld refinements were performed to demonstrate the existence of a solid solution between the two trivalent metallic end members. Spectroscopic analyses were used to confirm the intercalation of the targeted anion; secondary electron images were taken to analyze the AFM samples’ morphology, and energy dispersive X-ray spectroscopy (EDX) was carried out to determine the elemental composition of the AFM samples. Results of this study make it possible to quantify the Al/Fe ratio of the AFM phases precipitated in our hydraulic binder, thanks to the determined Vegard's law characteristic to the corresponding solid solutions

Keywords: AFm phase, iron-rich binder, low-carbon cement, solid solution

Procedia PDF Downloads 138
1093 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads

Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian

Abstract:

Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.

Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction

Procedia PDF Downloads 49
1092 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: radon, radium, acid mine drainage, coal

Procedia PDF Downloads 432
1091 Comparative Performance of Standing Whole Body Monitor and Shielded Chair Counter for In-vivo Measurements

Authors: M. Manohari, S. Priyadharshini, K. Bajeer Sulthan, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

In-vivo monitoring facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, caters to the monitoring of internal exposure of occupational radiation workers from various radioactive facilities of IGCAR. Internal exposure measurement is done using Na(Tl) based Scintillation detectors. Two types of whole-body counters, namely Shielded Chair Counter (SC) and Standing Whole-Body Monitor (SWBM), are being used. The shielded Chair is based on a NaI detector of 20.3 cm diameter and 10.15 cm thick. The chair of the system is shielded using lead shots of 10 cm lead equivalent and the detector with 8 cm lead bricks. Counting geometry is sitting geometry. Calibration is done using 95 percentile BOMAB phantom. The minimum Detectable Activity (MDA) for 137Cs for the 60s is 1150 Bq. Standing Wholebody monitor (SWBM) has two NaI(Tl) detectors of size 10.16 x 10.16 x 40.64 cm3 positioned serially, one over the other. It has a shielding thickness of 5cm lead equivalent. Counting is done in standup geometry. Calibration is done with the help of Ortec Phantom, having a uniform distribution of mixed radionuclides for the thyroid, thorax and pelvis. The efficiency of SWBM is 2.4 to 3.5 times higher than that of the shielded chair in the energy range of 279 to 1332 keV. MDA of 250 Bq for 137Cs can be achieved with a counting time of 60s. MDA for 131I in the thyroid was estimated as 100 Bq from the MDA of whole-body for one-day post intake. Standing whole body monitor is better in terms of efficiency, MDA and ease of positioning. In case of emergency situations, the optimal MDAs for in-vivo monitoring service are 1000 Bq for 137Cs and 100 Bq for 131I. Hence, SWBM is more suitable for the rapid screening of workers as well as the public in the case of an emergency. While a person reports for counting, there is a potential for external contamination. In SWBM, there is a feasibility to discriminate them as the subject can be counted in anterior or posterior geometry which is not possible in SC.

Keywords: minimum detectable activity, shielded chair, shielding thickness, standing whole body monitor

Procedia PDF Downloads 46
1090 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 266