Search results for: x-ray crystal structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4751

Search results for: x-ray crystal structures

3941 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method

Procedia PDF Downloads 239
3940 Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

Authors: Merve Küçük, M. Lütfi Öveçoğlu

Abstract:

Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics.

Keywords: dip coating, polyester fabrics, sol gel, zinc oxide

Procedia PDF Downloads 434
3939 Study of Palung Granite in Central Nepal with Special Reference to Field Occurrence, Petrography and Mineralization

Authors: Narayan Bhattarai, Arjun Bhattarai, Kabi Raj Paudyal, Lalu Paudel

Abstract:

Palung granite is leucocratic, alkali feldspar granite, which is one of the six major granite bodies of the Lesser Himalaya of Nepal. The Cambro-Ordovician granite body has intruded on the Palaeozoic metasedimentary rock of the Kathmandu Complex in Central Nepal. The granite crystallized from magma that was mainly generated by anatexis of the Precambrian continental crust. The magma is heterogeneous with respect to the primary ages and/or metamorphic histories of the magma source rocks. This indicates either a derivation from (meta-) sediments or an intense mixing of different crustally derived magmas. The genesis of the Palung granite is possibly related to an orogeny which affected the Indian shield in lower Paleozoic times. The granite body has been mapped into different zones with visual inspection and petrographical study: i. Quartz rich granite: Quartz is smokey to grayish, euhedral to subherdal, 0.2 to 0.7 cm, and constitutes 30 to 40%. Feldspar is white to brownish, subhedral to euhedral, more than 3 cm, and constitutes 20–30%. Tourmaline is black, 0.1 to 0.2 cm in size, and consists of 10 to 20%. Biotite is black flakes up to o.2 cm, representing 5-8%. ii. Feldspar rich granite: white to grayish, medium to coarse-grained, containing feldspar, quartz, biotite, muscovite and tourmaline. Feldspar porphyritic crystals up to 2.5 cm subherdral represent 50–60%, quartz is smokey transparent and represents 30–40%, biotite is dark brown to black, crystals are irregular, 0.5 cm and represent 8–20%, tourmaline is black fractured, small needles represent 5–10%, and muscovite is white to brown and represents 1-4%. iii. Biotite granite: grey to white, medium to coarse-grained, containing quartz, feldspar, biotite and tourmaline. Feldspar crystals up to 2.5 cm represent 40–50%, quartz is smokey, representing 30–40%, biotite is dark brown to black, crystal size 0.5cm, representing 10–20%, tourmaline is black, small needle, 5–10%, and muscovite is white to brown, representing 3-5%. and iv. Muscovite granite: medium-coarse-grained, brown and gray, containing quartz, feldspar, muscovite and tourmaline. Feldspar is white to brown; crystal sizes 0.2–0.4 cm represents 40–50%; quartz is brown and white, transparent, crystals up to 1 cm represent 35–50%; tourmaline is black, opaque, needle shaped; size up to 7–20%; and muscovite is brownish to white, with flakes up to 0.3 cm representing 5–10%. The xenoliths are very common and are not genetically related. Xenoliths are composed mostly of fine-grained, grayish quartz biotite (muscovite) schist and garnetiferous quartz mica schist.

Keywords: leucocratic granite, cambro-ordovician granite, lesser himalayan granite, pegmatite

Procedia PDF Downloads 71
3938 Study of a Fabry-Perot Resonator

Authors: F. Hadjaj, A. Belghachi, A. Halmaoui, M. Belhadj, H. Mazouz

Abstract:

A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air and also has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light, being emitted in unwanted directions from the junction and Sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, Finesse, Linewidth, Transmission and so on that describe the performance of resonator.

Keywords: Fabry-Perot Resonator, laser diod, reflectance, semiconductor

Procedia PDF Downloads 352
3937 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 543
3936 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 292
3935 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification

Procedia PDF Downloads 277
3934 An Approach for Determination of Shotcrete Thickness in Underground Structures

Authors: Mohammad Mohammadi, Mojtaba Askari, Mohammad Farouq Hossaini

Abstract:

An intrinsic property of rock mass known as rock bolt supporting factor (RSF) or rock bolting capability of rock mass was developed and used for explanation of the mechanism of rock bolting practice. Based on the theory of RSF, numeral values can be assigned to each given rock mass to show the capability of that rock mass to be reinforced by rock bolting. For determination of shotcrete thickness, both safety and cost must be taken into account. The present paper introduces a scientific approach for determination of the necessary shotcrete thickness in underground structures for support purposes using the concept of rock bolt supporting factor (RSF). The proposed approach makes the outcome of shotcrete design one step more accurate than before. The actual dataset of 500 meters of Alborz Tunnel length is used as an example of the application of the approach.

Keywords: rock bolt supporting factor (RSF), shotcrete design, underground excavation, Alborz Tunnel

Procedia PDF Downloads 320
3933 Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis

Authors: Jamal Takhchi

Abstract:

The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles.

Keywords: structural intensity, NVH, body in white, irrotatational intensity

Procedia PDF Downloads 155
3932 Physiology of Temporal Lobe and Limbic System

Authors: Khaled A. Abdel-Sater

Abstract:

There are four areas of the temporal lobe. Primary auditory area (areas 41 and 42); it is for the perception of auditory impulse, auditory association area (area 22, 21, and 20): Areas 21 and 20 are for understanding and interpretation of auditory sensation, recognition of language, and long-term memories. Area 22, also called Wernicke’s area, and a sensory speech centre. It is for interpretation of auditory and visual information, formation of thoughts in the mind, and choice of words to be used. Ideas and thoughts originate in it. The limbic system is a part of cortical and subcortical structure forming a ring around the brainstem. Cortical structures are the orbitofrontal area, subcallosal gyrus, cingulate gyrus, parahippocampal gyrus, and uncus. Subcortical structures are the hypothalamus, hippocampus, amygdala, septum, paraolfactory area, anterior nucleus of the thalamus portions of the basal ganglia. There are several physiological functions of the limbic system, including regulation of behavior, motivation, and emotion.

Keywords: limbic system, motivation, emotions, temporal lobe

Procedia PDF Downloads 201
3931 Nondestructive Inspection of Reagents under High Attenuated Cardboard Box Using Injection-Seeded THz-Wave Parametric Generator

Authors: Shin Yoneda, Mikiya Kato, Kosuke Murate, Kodo Kawase

Abstract:

In recent years, there have been numerous attempts to smuggle narcotic drugs and chemicals by concealing them in international mail. Combatting this requires a non-destructive technique that can identify such illicit substances in mail. Terahertz (THz) waves can pass through a wide variety of materials, and many chemicals show specific frequency-dependent absorption, known as a spectral fingerprint, in the THz range. Therefore, it is reasonable to investigate non-destructive mail inspection techniques that use THz waves. For this reason, in this work, we tried to identify reagents under high attenuation shielding materials using injection-seeded THz-wave parametric generator (is-TPG). Our THz spectroscopic imaging system using is-TPG consisted of two non-linear crystals for emission and detection of THz waves. A micro-chip Nd:YAG laser and a continuous wave tunable external cavity diode laser were used as the pump and seed source, respectively. The pump beam and seed beam were injected to the LiNbO₃ crystal satisfying the noncollinear phase matching condition in order to generate high power THz-wave. The emitted THz wave was irradiated to the sample which was raster scanned by the x-z stage while changing the frequencies, and we obtained multispectral images. Then the transmitted THz wave was focused onto another crystal for detection and up-converted to the near infrared detection beam based on nonlinear optical parametric effects, wherein the detection beam intensity was measured using an infrared pyroelectric detector. It was difficult to identify reagents in a cardboard box because of high noise levels. In this work, we introduce improvements for noise reduction and image clarification, and the intensity of the near infrared detection beam was converted correctly to the intensity of the THz wave. A Gaussian spatial filter is also introduced for a clearer THz image. Through these improvements, we succeeded in identification of reagents hidden in a 42-mm thick cardboard box filled with several obstacles, which attenuate 56 dB at 1.3 THz, by improving analysis methods. Using this system, THz spectroscopic imaging was possible for saccharides and may also be applied to cases where illicit drugs are hidden in the box, and multiple reagents are mixed together. Moreover, THz spectroscopic imaging can be achieved through even thicker obstacles by introducing an NIR detector with higher sensitivity.

Keywords: nondestructive inspection, principal component analysis, terahertz parametric source, THz spectroscopic imaging

Procedia PDF Downloads 177
3930 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 419
3929 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement

Authors: Issam Lakdhar, Akram Alhussein, Juan Creus

Abstract:

With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.

Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties

Procedia PDF Downloads 185
3928 A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures

Authors: Filippo Ranalli, Forest Flager, Martin Fischer

Abstract:

This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency.

Keywords: cost-based structural optimization, cost-based topology and sizing, optimization, steel frame ground structure optimization, multidisciplinary optimization of steel structures

Procedia PDF Downloads 341
3927 A Quick Method for Seismic Vulnerability Evaluation of Offshore Structures by Static and Dynamic Nonlinear Analyses

Authors: Somayyeh Karimiyan

Abstract:

To evaluate the seismic vulnerability of vital offshore structures with the highest possible precision, Nonlinear Time History Analyses (NLTHA), is the most reliable method. However, since it is very time-consuming, a quick procedure is greatly desired. This paper presents a quick method by combining the Push Over Analysis (POA) and the NLTHA. The POA is preformed first to recognize the more critical members, and then the NLTHA is performed to evaluate more precisely the critical members’ vulnerability. The proposed method has been applied to jacket type structure. Results show that combining POA and NLTHA is a reliable seismic evaluation method, and also that none of the earthquake characteristics alone, can be a dominant factor in vulnerability evaluation.

Keywords: jacket structure, seismic evaluation, push-over and nonlinear time history analyses, critical members

Procedia PDF Downloads 281
3926 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 316
3925 Rediscovery of Important Elements Contributing to Cultural Interchange Values Made during Restoration of Khanpur Gate

Authors: Poonam A. Trambadia, Ashish V. Trambadia

Abstract:

The architecture of sultanate period of Ahmedabad had evolved just before the establishment of Mughal rule in North India. After shifting the capital of the kingdom from Patan to Ahmedabad, when the buildings and structures were being built, an interesting cultural blend happened in architecture. Many sultanate buildings in Ahmedabad historic city have resemblance with Patan including the names. Outer fortification walls and Gates were built during the rule of the third ruler in the late 15th century. All the gates had sandstone slabs supported by three arched entrance in sandstone with wooden shutter. A restoration project of Khanpur Gate was initiated in 2016. The paper identifies some evidences and some hidden layers of structures as important elements of cultural interchange while some were just forgotten in the process. The recycling of pre-existing elements of structures are examined and compared. There were layers uncovered that were hidden behind later repairs using traditional brick arch, which was taken out in the process. As the gate had partially collapsed, the restoration included piece by piece dismantling and restoring in the same sequence wherever required. The recycled materials found in the process were recorded and provided the basis for this study. The gate after this discovery sets a new example of fortification Gate built in Sultanate era. The comparison excludes Maratha and British Period Gates to avoid further confusion and focuses on 15th – 16th century sultanate architecture of Ahmedabad.

Keywords: Ahmedabad World Heritage, fortification, Indo-Islamic style, Sultanate architecture, cultural interchange

Procedia PDF Downloads 117
3924 Hydrothermal Synthesis of ZIF-7 Crystals and Their Composite ZIF-7/CS Membranes for Water/Ethanol Separation

Authors: Kai-Sheng Ji, Yi-Feng Lin

Abstract:

The pervaporation process for solvent and water separation has attracted research attention due to its lower energy consumption compared with conventional distillation processes. The membranes used for the pervaporation approach should exhibit high flux and separation factors. In this study, the ZIF-7 crystal particles were successfully incorporated into chitosan (CS) membranes to form ZIF-7/CS mixed-matrix membranes. The as-prepared ZIF-7/CS mixed-matrix membranes were used to separate mixtures of water/ethanol at 25℃ in the pervaporation process. The mixed-matrix membranes with different ZIF-7 wt% incorporation showed better separation efficiency than the pristine CS membranes because of the smaller pore size of the mixed-matrix membranes. The separation factor and the flux of the ZIF-7/CS membranes clearly exceed the upper limit of the previously reported CS-based and mixed-matrix membranes.

Keywords: pervaporation, chitosan, ZIF-7, memberane separation

Procedia PDF Downloads 430
3923 The Development of Micro Patterns Using Benchtop Lithography for Marine Antifouling Applications

Authors: Felicia Wong Yen Myan, James Walker

Abstract:

Development of micro topographies usually begins with the fabrication of a master stamp. Fabrication of such small structures can be technically challenging and expensive. These techniques are often used for applications where patterns only cover a small surface area (e.g. semiconductors, microfluidic channels). This research investigated the use of benchtop lithography to fabricate patterns with average widths of 50 and 100 microns on silicon wafer substrates. Further development of this method will attempt to layer patterns to create hierarchical structures. Photomasks consisted of patterns printed onto transparency films with a high resolution printer and a fully patterned 10cm by 10cm area has been successfully developed. UV exposure was carried out with a self-made array of ultraviolet LEDs that was positioned a distance above a glass diffuser. Observations under a light microscope and SEM showed that developed patterns exhibit an adequate degree of fidelity with patterns from the master stamp.

Keywords: lithography, antifouling, marine, microtopography

Procedia PDF Downloads 289
3922 Weaknesses and Performance Defects of Steel Structures According to the Executive Criteria

Authors: Ehsan Sadie

Abstract:

Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provide appropriate and possible solutions to improve the construction.

Keywords: bracing member, concentrated load, diaphragm system, earthquake engineering, load-bearing system, shear force, seismic retrofitting, steel building, strip foundation, supervising engineer, vulnerability of building

Procedia PDF Downloads 146
3921 Methods Employed to Mitigate Wind Damage on Ancient Egyptian Architecture

Authors: Hossam Mohamed Abdelfattah Helal Hegazi

Abstract:

Winds and storms are considered crucial weathering factors, representing primary causes of destruction and erosion for all materials on the Earth's surface. This naturally includes historical structures, with the impact of winds and storms intensifying their deterioration, particularly when carrying high-hardness sand particles during their passage across the ground. Ancient Egyptians utilized various methods to prevent wind damage to their ancient architecture throughout the ancient Egyptian periods . One of the techniques employed by ancient Egyptians was the use of clay or compacted earth as a filling material between opposing walls made of stone, bricks, or mud bricks. The walls made of reeds or woven tree branches were covered with clay to prevent the infiltration of winds and rain, enhancing structural integrity, this method was commonly used in hollow layers . Additionally, Egyptian engineers innovated a type of adobe brick with uniformly leveled sides, manufactured from dried clay. They utilized stone barriers, constructed wind traps, and planted trees in rows parallel to the prevailing wind direction. Moreover, they employed receptacles to drain rainwater resulting from wind-loaded rain and used mortar to fill gaps in roofs and structures. Furthermore, proactive measures such as the removal of sand from around historical and archaeological buildings were taken to prevent adverse effects

Keywords: winds, storms, weathering, destruction, erosion, materials, Earth's surface, historical structures, impact

Procedia PDF Downloads 62
3920 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring

Authors: Younghoon Kim, Seoung Bum Kim

Abstract:

One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.

Keywords: control chart, mixed integer programming, one-class classification, support vector data description

Procedia PDF Downloads 174
3919 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies

Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel

Abstract:

To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.

Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots

Procedia PDF Downloads 526
3918 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication

Procedia PDF Downloads 487
3917 Prosocial Behavior and Satisfaction with School Life in Elementary Children: From the Perspective of Classroom Environment

Authors: Takuma Yamamoto

Abstract:

Present study investigated the relationship between elementary school children’s prosocial behavior in classroom and satisfaction with school life (approval and victimization from other children) with considering from the perspective of classroom social goal structures (prosocial and compliance goal structures). Participants were 755 elementary school children (393 boys, 362 girls, mean range= 10-12, 5th grader and 6th grader) who were living in Chugoku District, Japan. They filled up questionnaire which was consisted of Murakami, Nishimura and Sakurai’s (2016) prosocial behavior toward friend scale, Kawamura and Tagami’s (1997) satisfaction in classroom scale and Ohtani, Okada, Nakaya and Ito’s (2016) classroom social goal structures scale. Regression lines that satisfaction in classroom is dependent variable and prosocial behavior is independent variable for each class were drawn. There were two types of classroom which children’s prosocial behavior correlated with satisfaction positively and did not. Then one-way MANOVA was conducted to further describe two types of classroom which prosocial behavior increased satisfaction in classroom (type 1) and prosocial behavior decreased satisfaction (type 2). MANOVA for Prosocial goal structure was significant, type 1 > type 2. There were two key findings from this study. First, MANOVA for prosocial goal structure was significant. Second, high score of prosocial goal structure was not necessary condition for the classroom type which children’s prosocial behavior correlated with satisfaction. The implications from these key findings were: (1) in the low prosocial goal structure classroom, children will not behave prosocially because of their negative expectation for the effect of prosocial behavior, (2) this study can be a contribution for classroom management that teachers need to consider about the negative possibilities of prosocial behavior when they try to increase the amount of children’s positive behavior.

Keywords: elementary school children, classroom social goal structure, satisfaction with school life, prosocial behavior

Procedia PDF Downloads 245
3916 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 136
3915 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje

Authors: Ozden Saygili, Eser Cakti

Abstract:

The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.

Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry

Procedia PDF Downloads 426
3914 Increase the Ductility of Tall Buildings Using Green Material Bamboo for Earthquake Zone

Authors: Shef Amir Arasy

Abstract:

In 2023, the world's population will be 7.8 billion, which has increased significantly in the last 20 years. Every country in the world is experiencing the impacts of climate change directly and indirectly. However, the community still needs to build massive infrastructure and buildings. The massive CO2 emissions which lead to climate change come from cement usage in construction activity. Bamboo is one of the most sustainable materials for reducing carbon emissions and releasing more than 30% oxygen compared to the mass of trees. Besides, bamboo harvest time is faster than other sustainable materials, around 3-4 years. Furthermore, Bamboo has a high tensile strength, which can provide ductility effectively to prevent damage to buildings during an earthquake. By the finite element method, this research analyzes bamboo configuration and connection for tall building structures under different earthquake frequencies and fire. The aim of this research is to provide proper design and connection of bamboo buildings that can be more reliable than concrete structures.

Keywords: bamboo, concrete, ductility, earthquake.

Procedia PDF Downloads 72
3913 Review and Evaluation of Viscose Damper on Structural Responses

Authors: Ehsan Sadie

Abstract:

Developments in the field of damping technology and advances in the area of dampers in equipping many structures have been the result of efforts and testing by researchers in this field. In this paper, a sample of a two-story building is simulated with the help of SAP2000 software, and the effect of a viscous damper on the performance of the structure is explained. The effect of dampers on the response of the structure is investigated. This response involves the horizontal displacement of floors. In this case, the structure is modeled once without a damper and again with a damper. In this regard, the results are presented in the form of tables and graphs. Since the seismic behavior of the structure is studied, the responses show the appropriate effect of viscous dampers in reducing the displacement of floors, and also the energy dissipation in the structure with dampers compared to structures without dampers is significant. Therefore, it is economical to use viscous dampers in areas that have a higher relative earthquake risk.

Keywords: bending frame, displacement criterion, dynamic response spectra, earthquake, non-linear history spectrum, SAP2000 software, structural response, viscous damper

Procedia PDF Downloads 115
3912 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 88