Search results for: panel regression techniques
9625 External Business Environment and Sustainability of Micro, Small and Medium Enterprises in Jigawa State, Nigeria
Authors: Shehu Isyaku
Abstract:
The general objective of the study was to investigate ‘the relationship between the external business environment and the sustainability of micro, small and medium enterprises (MSMEs) in Jigawa state’, Nigeria. Specifically, the study was to examine the relationship between 1) the economic environment, 2) the social environment, 3) the technological environment, and 4) the political environment and the sustainability of MSMEs in Jigawa state, Nigeria. The study was drawn on Resource-Based View (RBV) Theory and Knowledge-Based View (KBV). The study employed a descriptive cross-sectional survey design. A researcher-made questionnaire was used to collect data from the 350 managers/owners who were selected using stratified, purposive and simple random sampling techniques. Data analysis was done using means and standard deviations, factor analysis, Correlation Coefficient, and Pearson Linear Regression analysis. The findings of the study revealed that the sustainability potentials of the managers/owners were rated as high potential (economic, environmental, and social sustainability using 5 5-point Likert scale. Mean ratings of effectiveness of the external business environment were; as highly effective. The results from the Pearson Linear Regression Analysis rejected the hypothesized non-significant effect of the external business environment on the sustainability of MSMEs. Specifically, there is a positive significant relationship between 1) economic environment and sustainability; 2) social environment and sustainability; 3) technological environment and sustainability and political environment and sustainability. The researcher concluded that MSME managers/owners have a high potential for economic, social and environmental sustainability and that all the constructs of the external business environment (economic environment, social environment, technological environment and political environment) have a positive significant relationship with the sustainability of MSMEs. Finally, the researcher recommended that 1) MSME managers/owners need to develop marketing strategies and intelligence systems to accumulate information about the competitors and customers' demands, 2) managers/owners should utilize the customers’ cultural and religious beliefs as an opportunity that should be utilized while formulating business strategies.Keywords: business environment, sustainability, small and medium enterprises, external business environment
Procedia PDF Downloads 539624 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1149623 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups
Authors: Naushad Mamode Khan
Abstract:
The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL
Procedia PDF Downloads 3559622 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1349621 The Relationship between Coping Styles and Internet Addiction among High School Students
Authors: Adil Kaval, Digdem Muge Siyez
Abstract:
With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.Keywords: adolescents, coping, internet addiction, regression analysis
Procedia PDF Downloads 1749620 Post-harvest Handling Practices and Technologies Harnessed by Smallholder Fruit Crop Farmers in Vhembe District, Limpopo Province, South Africa
Authors: Vhahangwele Belemu, Isaac Busayo Oluwatayo
Abstract:
Post-harvest losses pose a serious challenge to smallholder fruit crop farmers, especially in the rural communities of South Africa, affecting their economic livelihoods and food security. This study investigated the post-harvest handling practices and technologies harnessed by smallholder fruit crop farmers in the Vhembe district of Limpopo province, South Africa. Data were collected on a random sample of 224 smallholder fruit crop farmers selected from the four municipalities of the district using a multistage sampling technique. Analytical tools employed include descriptive statistics and the tobit regression model. A descriptive analysis of farmers’ socioeconomic characteristics showed that a sizeable number of these farmers are still in their active working age (mean = 52 years) with more males (63.8%) than their female (36.2%) counterparts. Respondents’ distribution by educational status revealed that only a few of these had no formal education (2.2%), with the majority having secondary education (48.7%). Results of data analysis further revealed that the prominent post-harvest technologies and handling practices harnessed by these farmers include using appropriate harvesting techniques (20.5%), selling at a reduced price (19.6%), transportation consideration (18.3%), cleaning and disinfecting (17.9%), sorting and grading (16.5%), manual cleaning (15.6%) and packaging technique (11.6%) among others. The result of the Tobit regression analysis conducted to examine the determinants of post-harvest technologies and handling practices harnessed showed that age, educational status of respondents, awareness of technology/handling practices, farm size, access to credit, extension contact, and membership of association were the significant factors. The study suggests enhanced awareness creation, access to credit facility and improved access to market as important factors to consider by relevant stakeholders to assist smallholder fruit crop farmers in the study area.Keywords: fruit crop farmers, handling practices, post harvest losses, smallholder, Vhembe District, South Africa
Procedia PDF Downloads 579619 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 2869618 The Effect of Artificial Intelligence on Construction Development
Authors: Shady Gamal Aziz Shehata
Abstract:
Difficulty in defining construction quality arises due to perception based on the nature and requirements of the market, the different partners themselves and the results they want. Quantitative research was used in this constructivist research. A case-based study was conducted to assess the structures of positive attitudes and expectations in the context of quality improvement. A survey based on expert opinions was analyzed among construction organizations/companies operating in the construction industry in Pakistan. The financial strength, management structure and construction experience of the construction companies formed the basis of their selection. A good concept is visible at the project level and is seen as the most valuable part of the construction project. Each quality improvement technique was expected to increase the user's profits by improving the efficiency of the construction project. The Survey is useful for construction professionals to evaluate current construction concepts and expectations for the application of quality improvement techniques in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception
Procedia PDF Downloads 599617 The Prediction of Reflection Noise and Its Reduction by Shaped Noise Barriers
Authors: I. L. Kim, J. Y. Lee, A. K. Tekile
Abstract:
In consequence of the very high urbanization rate of Korea, the number of traffic noise damages in areas congested with population and facilities is steadily increasing. The current environmental noise levels data in major cities of the country show that the noise levels exceed the standards set for both day and night times. This research was about comparative analysis in search for optimal soundproof panel shape and design factor that can minimize sound reflection noise. In addition to the normal flat-type panel shape, the reflection noise reduction of swelling-type, combined swelling and curved-type, and screen-type were evaluated. The noise source model Nord 2000, which often provides abundant information compared to models for the similar purpose, was used in the study to determine the overall noise level. Based on vehicle categorization in Korea, the noise levels for varying frequency from different heights of the sound source (directivity heights of Harmonize model) have been calculated for simulation. Each simulation has been made using the ray-tracing method. The noise level has also been calculated using the noise prediction program called SoundPlan 7.2, for comparison. The noise level prediction was made at 15m (R1), 30 m (R2) and at middle of the road, 2m (R3) receiving the point. By designing the noise barriers by shape and running the prediction program by inserting the noise source on the 2nd lane to the noise barrier side, among the 6 lanes considered, the reflection noise slightly decreased or increased in all noise barriers. At R1, especially in the cases of the screen-type noise barriers, there was no reduction effect predicted in all conditions. However, the swelling-type showed a decrease of 0.7~1.2 dB at R1, performing the best reduction effect among the tested noise barriers. Compared to other forms of noise barriers, the swelling-type was thought to be the most suitable for reducing the reflection noise; however, since a slight increase was predicted at R2, further research based on a more sophisticated categorization of related design factors is necessary. Moreover, as swellings are difficult to produce and the size of the modules are smaller than other panels, it is challenging to install swelling-type noise barriers. If these problems are solved, its applicable region will not be limited to other types of noise barriers. Hence, when a swelling-type noise barrier is installed at a downtown region where the amount of traffic is increasing every day, it will both secure visibility through the transparent walls and diminish any noise pollution due to the reflection. Moreover, when decorated with shapes and design, noise barriers will achieve a visual attraction than a flat-type one and thus will alleviate any psychological hardships related to noise, other than the unique physical soundproofing functions of the soundproof panels.Keywords: reflection noise, shaped noise barriers, sound proof panel, traffic noise
Procedia PDF Downloads 5099616 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 679615 Analyzing the Climate Change Impact and Farmer's Adaptability Strategies in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Sonia
Abstract:
The agriculture sector is deemed more vulnerable to climate change as its variation can directly affect the crop’s productivity, but farmers’ adaptation strategies play a vital role in climate change-agriculture relationship. Therefore, this research has been undertaken to assess the Climate Change impact on wheat productivity and farmers’ adaptability strategies in Khyber Pakhtunkhwa province, Pakistan. The panel dataset was analyzed to gauge the impact of changing climate variables (i.e., temperature, rainfall, and humidity) on wheat productivity from 1985 to 2015. Amid the study period, the fixed effect estimates confirmed an inverse relationship of temperature and rainfall on the wheat yield. The impact of temperature is observed to be detrimental as compared to the rainfall, causing 0.07 units reduction in the production of wheat with 1C upsurge in temperature. On the flip side, humidity revealed a positive association with the wheat productivity by confirming that high humidity could be beneficial to the production of the crop over time. Thus, this study ensures significant nexus between agricultural production and climatic parameters. However, the farming community in the underlying study area has limited knowledge about the adaptation strategies to lessen the detrimental impact of changing climate on crop yield. It is recommended that farmers should be well equipped with training and advanced agricultural management practices under the realm of climate change. Moreover, innovative technologies pertinent to the agriculture system should be encouraged to handle the challenges arising due to variations in climate factors.Keywords: climate change, fixed effect model, panel data, wheat productivity
Procedia PDF Downloads 1239614 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour
Procedia PDF Downloads 3509613 Comparing Performance Indicators among Mechanistic, Organic, and Bureaucratic Organizations
Authors: Benchamat Laksaniyanon, Padcharee Phasuk, Rungtawan Boonphanakan
Abstract:
With globalization, organizations had to adjust to an unstable environment in order to survive in a competitive arena. Typically within the field of management, different types of organizations include mechanistic, bureaucratic and organic ones. In fact, bureaucratic and mechanistic organizations have some characteristics in common. Bureaucracy is one type of Thailand organization which adapted from mechanistic concept to develop an organization that is suitable for the characteristic and culture of Thailand. The objective of this study is to compare the adjustment strategies of both organizations in order to find key performance indicators (KPI) suitable for improving organization in Thailand. The methodology employed is binary logistic regression. The results of this study will be valuable for developing future management strategies for both bureaucratic and mechanistic organizations.Keywords: mechanistic, bureaucratic and organic organization, binary logistic regression, key performance indicators (KPI)
Procedia PDF Downloads 3599612 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading
Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui
Abstract:
Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.Keywords: Abaqus, blast loading, finite element modeling, steel honeycomb sandwich panel
Procedia PDF Downloads 3539611 A Simple Model for Solar Panel Efficiency
Authors: Stefano M. Spagocci
Abstract:
The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy
Procedia PDF Downloads 689610 The Financial Impact of Covid 19 on the Hospitality Industry in New Zealand
Authors: Kay Fielden, Eelin Tan, Lan Nguyen
Abstract:
In this research project, data was gathered at a Covid 19 Conference held in June 2021 from industry leaders who discussed the impact of the global pandemic on the status of the New Zealand hospitality industry. Panel discussions on financials, human resources, health and safety, and recovery were conducted. The themes explored for the finance panel were customer demographics, hospitality sectors, financial practices, government impact, and cost of compliance. The aim was to see how the hospitality industry has responded to the global pandemic and the steps that have been taken for the industry to recover or sustain their business. The main research question for this qualitative study is: What are the factors that have impacted on finance for the hospitality industry in New Zealand due to Covid 19? For financials, literature has been gathered to study global effects, and this is being compared with the data gathered from the discussion panel through the lens of resilience theory. Resilience theory applied to the hospitality industry suggests that the challenges imposed by Covid 19 have been the catalyst for government initiatives, technical innovation, engaging local communities, and boosting confidence. Transformation arising from these ground shifts have been a move towards sustainability, wellbeing, more awareness of climate change, and community engagement. Initial findings suggest that there has been a shift in customer base that has prompted regional accommodation providers to realign offers and to become more flexible to attract and maintain this realigned customer base. Dynamic pricing structures have been required to meet changing customer demographics. Flexible staffing arrangements include sharing staff between different accommodation providers, owners with multiple properties adopting different staffing arrangements, maintaining a good working relationship with the bank, and conserving cash. Uncertain times necessitate changing revenue strategies to cope with external factors. Financial support offered by the government has cushioned the financial downturn for many in the hospitality industry, and managed isolation and quarantine (MIQ) arrangements have offered immediate financial relief for those hotels involved. However, there is concern over the long-term effects. Compliance with mandated health and safety requirements has meant that the hospitality industry has streamlined its approach to meeting those requirements and has invested in customer relations to keep paying customers informed of the health measures in place. Initial findings from this study lie within the resilience theory framework and are consistent with findings from the literature.Keywords: global pandemic, hospitality industry, new Zealand, resilience
Procedia PDF Downloads 1019609 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction
Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz
Abstract:
Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.Keywords: image processing, noise, speckle, ultrasound
Procedia PDF Downloads 1109608 Exploring Factors Affecting Electricity Production in Malaysia
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.Keywords: energy policy, energy security, electricity production, Malaysia, the regression model
Procedia PDF Downloads 1649607 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1309606 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia
Authors: The Danh Phan
Abstract:
House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise
Procedia PDF Downloads 2319605 Form of Distribution of Traffic Accident and Environment Factors of Road Affecting of Traffic Accident in Dusit District, Only Area Responsible of Samsen Police Station
Authors: Musthaya Patchanee
Abstract:
This research aimed to study form of traffic distribution and environmental factors of road that affect traffic accidents in Dusit District, only areas responsible of Samsen Police Station. Data used in this analysis is the secondary data of traffic accident case from year 2011. Observed area units are 15 traffic lines that are under responsible of Samsen Police Station. Technique and method used are the Cartographic Method, the Correlation Analysis, and the Multiple Regression Analysis. The results of form of traffic accidents show that, the Samsen Road area had most traffic accidents (24.29%), second was Rachvithi Road (18.10%), third was Sukhothai Road (15.71%), fourth was Rachasrima Road (12.38%), and fifth was Amnuaysongkram Road (7.62%). The result from Dusit District, only areas responsible of Samsen police station, has suggested that the scale of accidents have high positive correlation with statistic significant at level 0.05 and the frequency of travel (r=0.857). Traffic intersection point (r=0.763)and traffic control equipments (r=0.713) are relevant factors respectively. By using the Multiple Regression Analysis, travel frequency is the only one that has considerable influences on traffic accidents in Dusit district only Samsen Police Station area. Also, a factor in frequency of travel can explain the change in traffic accidents scale to 73.40 (R2 = 0.734). By using the Multiple regression summation from analysis was Y ̂=-7.977+0.044X6.Keywords: form of traffic distribution, environmental factors of road, traffic accidents, Dusit district
Procedia PDF Downloads 3919604 Differential Effect of Technique Majors on Isokinetic Strength in Youth Judoka Athletes
Authors: Chungyu Chen, Yi-Cheng Chen, Po-Hsian Hsu, Hsin-Ying Chen, Yen-Po Hsiao
Abstract:
The purpose of this study was to assess the muscular strength performance of upper and lower extremity in isokinetic system for the youth judo players, and also to compare the strength difference between major techniques. Sixteen male and 20 female judo players (age: 16.7 ± 1.6 years old, training age: 4.5 ± 0.8 years) were served as the volunteers for this study. There were 21 players major hand techniques and 15 players major foot techniques. The Biodex S4 Pro was used to assess the strength performance of extensor and flexor of concentric action under the load condition of 30 degree/sec, 60 degree/sec, and 120 degree/sec for elbow joints and knee joints. The strength parameters were included the maximal torque, the normalized maximal torque, the average power, and the average maximal torque. A t test for independent groups was used to evaluate whether hand major and foot major differ significantly with an alpha level of .05. The result showed the maximal torque of left knee extensor in foot major players (243.5 ± 36.3 Nm) was higher significantly than hand major (210.7 ± 21.0 Nm) under the load of 30 degree/sec (p < .05). There were no differences in upper extremity strength between the hand and foot techniques major in three loads (ps < .05). It indicated that the judo player is required to develop the upper extremity strength overall to secure the execution of major techniques.Keywords: knee, elbow, power, judo
Procedia PDF Downloads 4569603 International Trade, Manufacturing and Employment: The First Two Decades of South African Democracy
Authors: Phillip F. Blaauw, Anna M. Pretorius
Abstract:
South Africa re-entered the international economy in the early 1990s, after Apartheid, at a time when globalisation was gathering momentum. Globalisation led to a more open economy, increased export volumes and a changed export mix. Manufacturing goods gained ground relative to mining products. After 21 years of democracy, South African researchers and policymakers need to evaluate the impact of international trade on the level of employment and compensation of employees in the South African manufacturing industry. This is important given the consistent and high levels of unemployment in South Africa. This paper has this evaluation as its aim. Two complimenting approaches are utilised. The 27 sub divisions of the South African manufacturing industry are classified according to capital/labour ratios. Possible trends in employment levels and employee compensation for these categories are then identified when comparing levels in 1995 to those in 2014. The supplementing empirical approach is cross-sectional and panel data regressions for the same period. The aim of the regression analysis is to explain the observed changes in employment and employee compensation levels between 1995 and 2014. The first part of the empirical approach revealed that over the 20-year period the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries all showed massive declines in overall employment. Only three of the 19 industries for these classifications showed marginal overall employment gains. The only meaningful gains were recorded in three of the eight capital intensive manufacturing industries. The overall performance of the South African manufacturing industry is therefore dismal at best. This scenario plays itself out for the skilled section of the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries as well. 18 out of the 19 industries displayed declines even for the skilled section of the labour force. The formal regression analysis supplements the above results. Real production growth is a statistically significant (95 per cent confidence level) explanatory variable of the overall employment level for the period under consideration, albeit with a small positive coefficient. The variables with the most significant negative relationship with changes in overall employment were the dummy variables for intermediate capital intensive and labour intensive manufacturing goods. Disaggregating overall changes in employment further in terms of skill levels revealed that skilled employment in particular responded negatively to increases in the ratio between imported and local inputs for manufacturing. The dummy variable for the labour intensive sectors remained negative and statistically significant, indicating that the labour intensive sectors of South African manufacturing remain vulnerable to the loss of employment opportunities. Whereas the first period (1995 to 2001) after the opening of the South African economy brought positive changes for skilled employment, continued increases in imported inputs displaced some of the skilled labour as well, putting further pressure on the South African economy with already high and persistent unemployment levels. Given the negative for the world commodity cycle and a stagnant local manufacturing sector, the challenge for policymakers is getting even more pronounced after South Africa’s political coming of age.Keywords: capital/labour ratios, employment, employee compensation, manufacturing
Procedia PDF Downloads 2209602 Modeling of Traffic Turning Movement
Authors: Michael Tilahun Mulugeta
Abstract:
Pedestrians are the most vulnerable road users as they are more exposed to the risk of collusion. Pedestrian safety at road intersections still remains the most vital and yet unsolved issue in Addis Ababa, Ethiopia. One of the critical points in pedestrian safety is the occurrence of conflict between turning vehicle and pedestrians at un-signalized intersection. However, a better understanding of the factors that affect the likelihood of the conflicts would help provide direction for countermeasures aimed at reducing the number of crashes. This paper has sorted to explore a model to describe the relation between traffic conflicts and influencing factors using Multiple Linear regression methodology. In this research the main focus is to study the interaction of turning (left & right) vehicle with pedestrian at unsignalized intersections. The specific objectives also to determine factors that affect the number of potential conflicts and develop a model of potential conflict.Keywords: potential, regression analysis, pedestrian, conflicts
Procedia PDF Downloads 669601 Understanding the Linkages of Human Development and Fertility Change in Districts of Uttar Pradesh
Authors: Mamta Rajbhar, Sanjay K. Mohanty
Abstract:
India's progress in achieving replacement level of fertility is largely contingent on fertility reduction in the state of Uttar Pradesh as it accounts 17% of India's population with a low level of development. Though the TFR in the state has declined from 5.1 in 1991 to 3.4 by 2011, it conceals large differences in fertility level across districts. Using data from multiple sources this paper tests the hypothesis that the improvement in human development significantly reduces the fertility levels in districts of Uttar Pradesh. The unit of analyses is district, and fertility estimates are derived using the reverse survival method(RSM) while human development indices(HDI) are are estimated using uniform methodology adopted by UNDP for three period. The correlation and linear regression models are used to examine the relationship of fertility change and human development indices across districts. Result show the large variation and significant change in fertility level among the districts of Uttar Pradesh. During 1991-2011, eight districts had experienced a decline of TFR by 10-20%, 30 districts by 20-30% and 32 districts had experienced decline of more than 30%. On human development aspect, 17 districts recorded increase of more than 0.170 in HDI, 18 districts in the range of 0.150-0.170, 29 districts between 0.125-0.150 and six districts in the range of 0.1-0.125 during 1991-2011. Study shows significant negative relationship between HDI and TFR. HDI alone explains 70% variation in TFR. Also, the regression coefficient of TFR and HDI has become stronger over time; from -0.524 in 1991, -0.7477 by 2001 and -0.7181 by 2010. The regression analyses indicate that 0.1 point increase in HDI value will lead to 0.78 point decline in TFR. The HDI alone explains 70% variation in TFR. Improving the HDI will certainly reduce the fertility level in the districts.Keywords: Fertility, HDI, Uttar Pradesh
Procedia PDF Downloads 2509600 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: neural network, dry relaxation, knitting, linear regression
Procedia PDF Downloads 5859599 Adult Child Labour Migration and Elderly Parent Health: Recent Evidence from Indonesian Panel Data
Authors: Alfiah Hasanah, Silvia Mendolia, Oleg Yerokhin
Abstract:
This paper explores the impacts of adult child migration on the health of elderly parents left behind. The maternal and children health are a priority of health-related policy in most low and middle-income country, and so there is lack of evidence on the health of older population particularly in Indonesia. With increasing life expectancy and limited access to social security and social services for the elderly in this country, the consequences of increasing number of out-migration of adult children to parent health are important to investigate. This study use Indonesia Family Life Survey (IFLS), the only large-scale continuing longitudinal socioeconomic and health survey that based on a sample of households representing about 83 percent of the Indonesian population in its first wave. Using four waves of IFLS including the recent wave of 2014, several indicators of the self-rated health status, interviewer-rated health status and days of illness are used to estimate the impact of labour out-migration of adult children on parent health status. Incorporate both individual fixed effects to control for unobservable factors in migrant and non-migrant households and the ordered response of self-rated health, this study apply the ordered logit of “Blow-up and Cluster” (BUC ) estimator. The result shows that labour out-migration of adult children significantly improves the self-rated health status of the elderly parent left behind. Findings of this study are consistent with the view that migration increases family resources and contribute to better health care and nutrition of the family left behind.Keywords: aging, migration, panel data, self-rated health
Procedia PDF Downloads 3509598 Paraoxonase 1 (PON 1) Arylesterase Activity and Apolipoprotein B: Predictors of Myocardial Infarction
Authors: Mukund Ramchandra Mogarekar, Pankaj Kumar, Shraddha Vilas More
Abstract:
Background: Myocardial infarction (MI) is defined as myocardial cell death due to prolonged ischemia as a consequence of atherosclerosis. TC, low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Apo B, and lipoprotein(a) was found as atherogenic factors while high-density lipoprotein cholesterol (HDL-C) was anti-atherogenic. Methods and Results: The study group consists of 40, MI subjects and 40 healthy individuals in control group. PON 1 Arylesterase activity (ARE) was measured by using phenylacetate. Phenotyping was done by double substrate method, serum AOPP by using chloramine T and Apo B by Turbidimetric immunoassay. PON 1 ARE activities were significantly lower (p< 0.05) and AOPPs & Apo B were higher in MI subjects (p> 0.05). Trimodal distribution of QQ, QR, and RR phenotypes of study population showed no significant difference among cases and controls (p> 0.05). Univariate binary logistic regression analysis showed independent association of TC, HDL, LDL, AOPP, Apo B, and PON 1 ARE activity with MI and multiple forward binary logistic regression showed PON 1 ARE activity and serum Apo B as an independent predictor of MI. Conclusions: Decrease in PON 1 ARE activity in MI subjects than in controls suggests increased oxidative stress in MI which is reflected by significantly increased AOPP and Apo B. PON1 polymorphism of QQ, QR and RR showed no significant difference in protection against MI. Univariate and multiple binary logistic regression showed PON1 ARE activity and serum Apo B as an independent predictor of MI.Keywords: advanced oxidation protein product, apolipoprotein B, PON 1 arylesterase activity, myocardial infarction
Procedia PDF Downloads 2669597 Comparative Analysis of Edge Detection Techniques for Extracting Characters
Authors: Rana Gill, Chandandeep Kaur
Abstract:
Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.Keywords: segmentation, edge detection, text, extracting characters
Procedia PDF Downloads 4269596 Effect of Sustainability Accounting Disclosure on Financial Performance of Listed Brewery Firms in Nigeria
Authors: Patricia Chinyere Oranefo
Abstract:
This study examined the effect of sustainability accounting disclosure on financial performance of listed Brewery firms in Nigeria. The dearth of empirical evidence and literature on “governance disclosure” as one of the explanatory variables of sustainability accounting reporting were the major motivation for this study. The main objective was to ascertain the effect of sustainability accounting disclosure on financial performance of listed Brewery firms in Nigeria. An ex–post facto research design approach was adopted for the study. The population of this study comprises of five (5) Brewery firms quoted on the floor of the Nigeria exchange group (NSX) and the sample size of four (4) listed firms was drawn using purposive sampling method. Secondary data were carefully sourced from the financial statement/annual reports and sustainability reports from 2012 to 2021 of the Brewery firms quoted on the Nigeria exchange group (NSX). Panel regression analysis by aid of E-views 10.0 software was used to test for statistical significance of the effect of sustainability accounting disclosure on financial performance of listed Brewery firms in Nigeria. The results showed that economic sustainability disclosure indexes do not significantly affect return on asset of listed Brewery firms in Nigeria. The findings further revealed that environmental sustainability disclosure indexes do not significantly affect return on equity of listed Brewery firms in Nigeria. More so, results showed that Social Sustainability disclosure indexes significantly affect Net Profit Margin of listed Brewery firms in Nigeria. Finally, the result established also that governance sustainability disclosure indexes do not significantly affect Earnings per share of listed Brewery firms in Nigeria. Consequent upon the findings, this study recommended among others; that managers of Brewers in Nigeria should improve and sustain full disclosure practices on economic, environmental, social and governance disclosures following the guidelines of the Global Reporting Index (GRI) as they are capable of exerting significant effect on financial performance of firms in Nigeria.Keywords: sustainability, accounting, disclosure, financial performance
Procedia PDF Downloads 59