Search results for: molybdic acid process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17891

Search results for: molybdic acid process

17081 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 56
17080 Single Ion Conductors for Lithium-Ion Battery Application

Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt

Abstract:

Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte

Procedia PDF Downloads 167
17079 Solvent-Aided Dispersion of Tannic Acid to Enhance Flame Retardancy of Epoxy

Authors: Matthew Korey, Jeffrey Youngblood, John Howarter

Abstract:

Background and Significance: Tannic acid (TA) is a bio-based high molecular weight organic, aromatic molecule that has been found to increase thermal stability and flame retardancy of many polymer matrices when used as an additive. Although it is biologically sourced, TA is a pollutant in industrial wastewater streams, and there is a desire to find applications in which to downcycle this molecule after extraction from these streams. Additionally, epoxy thermosets have revolutionized many industries, but are too flammable to be used in many applications without additives which augment their flame retardancy (FR). Many flame retardants used in epoxy thermosets are synthesized from petroleum-based monomers leading to significant environmental impacts on the industrial scale. Many of these compounds also have significant impacts on human health. Various bio-based modifiers have been developed to improve the FR of the epoxy resin; however, increasing FR of the system without tradeoffs with other properties has proven challenging, especially for TA. Methodologies: In this work, TA was incorporated into the thermoset by use of solvent-exchange using methyl ethyl ketone, a co-solvent for TA, and epoxy resin. Samples were then characterized optically (UV-vis spectroscopy and optical microscopy), thermally (thermogravimetric analysis and differential scanning calorimetry), and for their flame retardancy (mass loss calorimetry). Major Findings: Compared to control samples, all samples were found to have increased thermal stability. Further, the addition of tannic acid to the polymer matrix by the use of solvent greatly increased the compatibility of the additive in epoxy thermosets. By using solvent-exchange, the highest loading level of TA found in literature was achieved in this work (40 wt%). Conclusions: The use of solvent-exchange shows promises for circumventing the limitations of TA in epoxy.

Keywords: sustainable, flame retardant, epoxy, tannic acid

Procedia PDF Downloads 130
17078 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology

Procedia PDF Downloads 382
17077 Protecting Physicochemical Properties of Black Cumin Seed (Nigella sativa) Oil and Developing Value Added Products

Authors: Zeliha Ustun, Mustafa Ersoz

Abstract:

In the study, a traditional herbal supplement black cumin seed (Nigella sativa) oil properties has been studied to protect the main quality parameters by a new supplement application. Black cumin seed and its oil is used as a dietary supplement and preferred traditional remedy in Africa, Asia and Middle East for centuries. Now it has been consuming by millions of people in America and Europe as natural supplements and/or phytotherapeutic agents to support immune system, asthma, allergic rinnitis etc. by the scientists’ advices. With the study, it is aimed to prove that soft gelatin capsules are a new and more practical way of usage for Nigella sativa oil that has a longer stability. With the study soft gelatin capsules formulation has been developed to protect cold pressed black cumin seed oil physicochemical properties for a longer period. The product design has been developed in laboratory and implemented in pilot scale soft gelatin capsule manufacturing. Physicochemical properties (peroxide value, free fatty acids, fatty acid composition, refractive index, iodine value, saponification value, unsaponifiable matters) of Nigella sativa oil soft gelatin capsules and Nigella sativa oil in liquid form in amber glass bottles have been compared and followed for 8 months. The main parameters for capsules and liquid form found that for free fatty acids 2.29±0.03, 3.92±0.11 % oleic acid, peroxide 23.11±1.18, 27.85±2.50 meqO2/kg, refractive index at 20 0C 1.4738±0.00, 1.4737±0.00, soap 0 ppm, moisture and volatility 0.32±0.01, 0.36±0.01 %, iodine value 123.00±0.00, 122.00±0.00 wijs, saponification value 196.25±0.46, 194.13±0.35 mg KOH/g and unsaponifiable matter 7.72±0.13, 6.88±0.36 g/kg respectively. The main fatty acids are found that linoleic acid 56.17%, oleic acid 24.64%, palmitic acid 11,94 %. As a result, it is found that cold pressed Nigella sativa oil soft gelatin capsules physicochemical properties are more stable than the Nigella sativa oil stored in glass bottles.

Keywords: black cumin seed (Nigella sativa) oil, cold press, nutritional supplements, soft gelatin capsule

Procedia PDF Downloads 377
17076 A Case Study of Conceptual Framework for Process Performance

Authors: Ljubica Milanović Glavan, Vesna Bosilj Vukšić, Dalia Suša

Abstract:

In order to gain a competitive advantage, many companies are focusing on reorganization of their business processes and implementing process-based management. In this context, assessing process performance is essential because it enables individuals and groups to assess where they stand in comparison to their competitors. In this paper, it is argued that process performance measurement is a necessity for a modern process-oriented company and it should be supported by a holistic process performance measurement system. It seems very unlikely that a universal set of performance indicators can be applied successfully to all business processes. Thus, performance indicators must be process-specific and have to be derived from both the strategic enterprise-wide goals and the process goals. Based on the extensive literature review and interviews conducted in Croatian company a conceptual framework for process performance measurement system was developed. The main objective of such system is to help process managers by providing comprehensive and timely information on the performance of business processes. This information can be used to communicate goals and current performance of a business process directly to the process team, to improve resource allocation and process output regarding quantity and quality, to give early warning signals, to make a diagnosis of the weaknesses of a business process, to decide whether corrective actions are needed and to assess the impact of actions taken.

Keywords: Croatia, key performance indicators, performance measurement, process performance

Procedia PDF Downloads 673
17075 Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources

Authors: Chanchal Mewar, Shikha Gangil, Yashwant Parihar, Virendra Dhakar, Bharat Modhera

Abstract:

Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min.

Keywords: biodiesel, three step method, purification, silica sources

Procedia PDF Downloads 503
17074 Recovery the Regeneration Gas from Liquefied Petroleum Gas Dryer to Off Gas Compressors

Authors: Hassan Hussin Zwida

Abstract:

The liquified LPG (Liquefied Petroleum Gas) drying system at the Complex is designed to remove water and mercaptans from the LPG stream. Upon saturation of the desiccant beds, a regeneration cycle becomes necessary. The original design routed the regeneration gas, produced during the LPG dryer heating cycle, to the sulfur recovery unit to the incineration. However, concerns regarding high temperatures and potential unit disruptions led to a modification where the gas is currently vented to the acid flare for the initial hour before being diverted to the LP network fuel gas system. While this addresses the temperature concerns, it generates significant smoke due to the presence of liquid hydrocarbons. This paper proposes an approach to recover the regeneration gas and redirect it back to the gas plant's (off-gas compressors) instead of sending it to the AC (Acid Flare), by utilizing the existing pipe 6” and connected to off gas compressor KO (Knock-Out ) Drums . This option is simple to operate, flexible, environment-friendly solution as long-term solution, lower in capital expenditure and increase the company's profitability. The feasibility of this proposal is supported by dynamic simulations. The simulations suggest the possibility of operating two out of the three off-gas compressors and LPG (Liquefied petroleum gas) as a liquid phase, is foreseen to be carried over and gathered at the bottom level of the KO (Knock-Out) Drum.

Keywords: thermal incinerator, off-gas compressors, environment, knock-out drums, acid flare

Procedia PDF Downloads 50
17073 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits

Authors: Sandeep Das

Abstract:

Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysis

Keywords: ANSYS, functionally graded material, lead-acid battery, terminal post

Procedia PDF Downloads 140
17072 Chemical Profile of Extra Virgin Olive Oil from Frantoio Cultivar Growing in Calabria, Italy

Authors: Monica Rosa Loizzo, Tiziana Falco, Marco Bonesi, Maria Concetta Tenuta, Mariarosaria Leporini, Rosa Tundis

Abstract:

Extra Virgin Olive Oil (EVOO) is a major source of fat in the Mediterranean diet and its nutritional properties are the main reason for the increment of its consumption all over the world in recent years. In terms of olive oil production, Italy ranks the second in the world. EVOO is obtained exclusively by physical methods from the fruit of Olea europea L. Frantoio cv is spread in all the Italian territory. The aim of this work is to identify the phenolic and fatty acids profile of EVOO from Frantoio cv growing in different area of Calabria (Italy). The phenolic profile was obtained by HPLC coupled to a diode array detector and mass spectrometry. Analyses revealed the presence of phenolic alcohols, phenolic acid, several secoiridoids, and two flavones as main components. Hydroxytyrosol and tyrosol are present in reasonable content. Fatty acids were monitored by gas chromatography. Oleic acid was the most abundant compounds. A moderate level of linoleic acid, in accordance with the general observations for oils derived from Mediterranean countries, was also found.

Keywords: extra virgin olive oils, frantoio cv, phenolic compounds, fatty acids

Procedia PDF Downloads 363
17071 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation

Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad

Abstract:

Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.

Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization

Procedia PDF Downloads 249
17070 Evaluation of the Analgesic Activity of Defatted Methanol Extract of Capparis spinosa L. Root Barks

Authors: Asma Meddour, Mouloud Yahia, Afaf Benhouda, Souhila Benbia, Hachani Khadhraoui

Abstract:

Peripheral analgesic activity of defatted methanol extract of root barks of Capparis spinosa was tested orally at the dose of 100 and 200 mg/kg against pain induced by acetic acid in rats. The dose of 200 mg/kg presents significant analgesic effect with a percentage of inhibition of torsions of 88.51% compared to the positive control which is the acetylsalicylic acid which represents a percentage of inhibition of 92.55%. The dose of 100 mg/kg presents a percentage of inhibition of 81.68%.

Keywords: peripheral analgesic activity, Capparis spinosa, percentage of inhibition of torsions, chemical sciences

Procedia PDF Downloads 296
17069 An UHPLC (Ultra High Performance Liquid Chromatography) Method for the Simultaneous Determination of Norfloxacin, Metronidazole, and Tinidazole Using Monolithic Column-Stability Indicating Application

Authors: Asmaa Mandour, Ramzia El-Bagary, Asmaa El-Zaher, Ehab Elkady

Abstract:

Background: An UHPLC (ultra high performance liquid chromatography) method for the simultaneous determination of norfloxacin (NOR), metronidazole (MET) and tinidazole (TNZ) using monolithic column is presented. Purpose: The method is considered an environmentally friendly method with relatively low organic composition of the mobile phase. Methods: The chromatographic separation was performed using Phenomenex® Onyex Monolithic C18 (50mmx 20mm) column. An elution program of mobile phase consisted of 0.5% aqueous phosphoric acid : methanol (85:15, v/v). Where elution of all drugs was completed within 3.5 min with 1µL injection volume. The UHPLC method was applied for the stability indication of NOR in the presence of its acid degradation product ND. Results: Retention times were 0.69, 1.19 and 3.23 min for MET, TNZ and NOR, respectively. While ND retention time was 1.06 min. Linearity, accuracy, and precision were acceptable over the concentration range of 5-50µg mL-1for all drugs. Conclusions: The method is simple, sensitive and suitable for the routine quality control and dosage form assay of the three drugs and can also be used for the stability indication of NOR in the presence of its acid degradation product.

Keywords: antibacterial, monolithic cilumn, simultaneous determination, UHPLC

Procedia PDF Downloads 253
17068 Result of Fatty Acid Content in Meat of Selenge Breed Younger Cattle

Authors: Myagmarsuren Soronzonjav, N. Togtokhbayar, L. Davaahuu, B. Minjigdorj, Seong Gu Hwang

Abstract:

The number of natural or organic product consumers is increased in recent years and this healthy demand pushes to increase usage of healthy meat. At the same time, consumers pay more attention on the healthy fat, especially on unsaturated fatty acids. These long chain carbohydrates reduce heart diseases, improve memory and eye sight and activate the immune system. One of the important issues to be solved for our Mongolia’s food security is to provide healthy, fresh, widely available and cheap meat for the population. Thus, an importance of the Selenge breed meat production is increasing in order to supply the quality meat food security since the Selenge breed cattle are rapidly multiplied, beneficial in term of income, the same quality as Mongolian breed, and well digested for human body. We researched the lipid, unsaturated and saturated fatty acid contents of meat of Selenge breed younger cattle by their muscle types. Result of our research reveals that 11 saturated fatty acids are detected. For the content of palmitic acid among saturated fatty acids, 23.61% was in the sirloin meat, 24.01% was in the round and chuck meat, and 24.83% was in the short loin meat.

Keywords: chromatogram, gas chromatography, organic resolving, saturated and unsaturated fatty acids

Procedia PDF Downloads 269
17067 Ruminal VFA of Beef Fed Different Protein

Authors: P. Paengkoum, S. C. Chen, S. Paengkoum

Abstract:

Six male growing Thai-indigenous beef cattle with body weight (BW) of 154±13.2 kg were randomly assigned in replicated 3×3 Latin square design, and fed with different levels of crude protein (CP) in total mixed ration (TMR) diets. CP levels in diets were 4.3%, 7.3% and 10.3% base on dry matter (DM). Ruminal ammonia nitrogen (NH3-N) and blood urea nitrogen (BUN) concentrations increased (P<0.01) with increasing CP levels. Moreover, there is a positive relationship between BUN and ruminal NH3-N. Rumen pH, total volatile fatty acid (VFA), molar proportions of acetate, propionate and butyrate were not affected by CP levels (P>0.05).

Keywords: Thai-indigenous beef cattle, crude protein, volatile fatty acid (VFA), total mixed ration (TMR) diets

Procedia PDF Downloads 281
17066 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite

Authors: Mohsen Farahat, Tsuyoshi Hirajima

Abstract:

Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.

Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy

Procedia PDF Downloads 244
17065 Protective Effect of Celosia Argentea Leaf Extract on Cadmium Induced Toxicity and Oxidative Stress in Rats

Authors: Sulyman Abdulhakeem Olarewaju, S. O. Malomo, M. T. Yakubu, J. O. Akolade

Abstract:

The ameliorative effect of Celosia argentea var. cristata leaf extract against cadmium (Cd) induced oxidative stress and toxicity in selected tissues of rats was investigated. Toxicity coupled with oxidative stress was induced in rats by oral administration of Cd (8 mg/kg b. wt). Preliminary quantitative phytochemical and in vitro antioxidant analyses showed that the methanolic extract of C. argentea leaves was constituted by polyphenols (5.72%), saponins (3.20%), tannins (0.65%) and cadenolides (0.006%). IC50 of 9800, 7406, and 45.04 μg/ml were recorded for inhibition of linoleic acid oxidation, 2, 2-diphenyl-1-picrylhydrazyl and hydrogen peroxide radicals respectively. Simultaneous administration of C. argentea leaf extract with Cd significantly attenuated Cd-induced elevation of serum enzyme markers such as aspartate and alanine transaminase, alkaline and acid phosphatase as well as γ-glutaryltransferase in a dose-dependent fashion, while their reduced level in the liver were significantly increased. Higher levels of enzymatic antioxidants; superoxide dismutase and catalase activities were observed in the liver, brain, kidney and testes of the Cd-induced rats treated with C. argentea extract, while lipid peroxidation expressed in malondialdehyde concentrations were lower when compared to values in rats administered Cd only. Other Cd-induced toxicity and stress markers in the serum viz. reduced uric acid and albumin levels as well as elevated total and unconjugated bilirubin were attenuated by the extract and their values compared favorably with those animals co-administered cadmium with ascorbic acid. Data from the study showed that oral administration of extract from the leaf C. argentea may ameliorate Cd-induced oxidative stress and toxicity in rats.

Keywords: toxicity, cadmium, celosia, antioxidants, oxidative stress

Procedia PDF Downloads 346
17064 Hydrometallurgical Production of Nickel Ores from Field Bugetkol

Authors: A. T. Zhakiyenova, E. E. Zhatkanbaev, Zh. K. Zhatkanbaeva

Abstract:

Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal.

Keywords: cobalt, degree of extraction, hydrometallurgy, igneous metallurgy, leaching, matte, nickel

Procedia PDF Downloads 386
17063 Micro RNAs (194 and 135a) as Biomarkers and Therapeutic Targets in Type 2 Diabetic Rats

Authors: H. Haseena Banu, D. Karthick, R. Stalin, E. Nandha Kumar, T. P. Sachidanandam, P. Shanthi

Abstract:

Background of the study: Type 2 diabetes is emerging as the predominant metabolic disorder in the world among adults characterized mainly by the resistance of the insulin sensitive tissues towards insulin followed by the decrease in the insulin secretion. The treatment for this disease usually involves treatment with oral synthetic drugs which are known to cause several side effects. Therefore, identification of new biomarkers as therapeutic target is the need of the hour. miRNAs are small, non–protein-coding RNAs that negatively regulate gene expression by promoting degradation and/or inhibit the translation of target mRNAs and have emerged as biomarkers in predicting diabetes mellitus. Objective of the study: To elucidate the therapeutic role of gallic acid in modulating the alterations in glucose metabolism induced by miRNAs 194 and 135a in Type 2 diabetic rats. Materials and Methods: T2D was induced in rats by feeding them with a high fat diet for 2 weeks followed by intraperitoneal injection of 35 mg/kg/body weight (b.wt.) of streptozotocin. Microarrays were used to assess the expression of miRNAs in control, diabetic and gallic acid treated rats. Gene expression studies were carried out by RT PCR analysis. Results: Forty one miRNAs were differentially expressed in Type 2 diabetic rats. Among these, the expression of miRNA 194 was significantly decreased whereas miRNA 135a was significantly increased in Type 2 diabetic rats. The glucose metabolism was also altered significantly in skeletal muscle of Type 2 diabetic rats. Conclusion: T2D is associated with alterations in the expression of miRNAs in skeletal muscle. Both these miRNAs 194 and 135a play an important role in glucose metabolism in skeletal muscle of diabetic rats. Gallic acid effectively ameliorated the alterations in glucose metabolism. Hence, both these miRNAs can serve as biomarkers and therapeutic targets in diabetes mellitus. The study also establishes the role of gallic acid as therapeutic agent. Acknowledgment: The financial assistance provided in the form of ICMR women scientist by ICMR DHR INDIA is gratefully acknowledged here.

Keywords: gallic acid, high fat diet, type 2 diabetes mellitus, miRNAs

Procedia PDF Downloads 349
17062 Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size

Authors: Carola Cappa

Abstract:

Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications.

Keywords: foaming properties, foam stability, foam texture, particle size, acidification, aquafaba

Procedia PDF Downloads 72
17061 Rapid Microwave-Enhanced Process for Synthesis of CdSe Quantum Dots for Large Scale Production and Manipulation of Optical Properties

Authors: Delele Worku Ayele, Bing-Joe Hwang

Abstract:

A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.

Keywords: CdSe QDs, Na2SeSO3, microwave (MW), oleic acid, mass production, average life time

Procedia PDF Downloads 709
17060 Understanding the Mechanisms of Salmonella Typhimurium Resistance to Cannabidiol (CDB)

Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel A. Abugri, Robertson K. Boakai, Olufemi S. Ajayi

Abstract:

The recalcitrance of pathogenic bacteria indicates that millions of people who are at risk of infection arising from chronic diseases, surgery, organ transplant, diabetes, and several other debilitating diseases present an aura of potentially untreatable illness due to resistance development. Antimicrobial resistance has successfully become a global health menace, and resistances are often acquired by bacteria through health-care-related incidence (HRI) orchestrated by multi-drug resistant (MDR) and extended drug-resistant pathogens (EDRP). To understand the mechanisms S. Typhimurium uses to resist CDB, we study the abundance of LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of susceptible and resistant S. Typhimurium. Using qPCR, we also analyzed the expression of selected genes known for enabling resistance in S. Typhimurium. We found high abundance of LPS, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of and high expression of resistant genes in S. Typhimurium compared to the susceptible strain. LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid and genes such as Fims, integrons, blaTEM are important indicators of resistance development of S. typhimurium.

Keywords: antimicrobials, resistance, Cannabidiol, Salmonella, blaTEM, fimA, Lipopolysaccharide, Ergosterols

Procedia PDF Downloads 85
17059 Neuroinflammation in Late-Life Depression: The Role of Glial Cells

Authors: Chaomeng Liu, Li Li, Xiao Wang, Li Ren, Qinge Zhang

Abstract:

Late-life depression (LLD) is a prevalent mental disorder among the elderly, frequently accompanied by significant cognitive decline, and has emerged as a worldwide public health concern. Microglia, astrocytes, and peripheral immune cells play pivotal roles in regulating inflammatory responses within the central nervous system (CNS) across diverse cerebral disorders. This review commences with the clinical research findings and accentuates the recent advancements pertaining to microglia and astrocytes in the neuroinflammation process of LLD. The reciprocal communication network between the CNS and immune system is of paramount importance in the pathogenesis of depression and cognitive decline. Stress-induced downregulation of tight and gap junction proteins in the brain results in increased blood-brain barrier permeability and impaired astrocyte function. Concurrently, activated microglia release inflammatory mediators, initiating the kynurenine metabolic pathway and exacerbating the quinolinic acid/kynurenic acid imbalance. Moreover, the balance between Th17 and Treg cells is implicated in the preservation of immune homeostasis within the cerebral milieu of individuals suffering from LLD. The ultimate objective of this review is to present future strategies for the management and treatment of LLD, informed by the most recent advancements in research, with the aim of averting or postponing the onset of AD.

Keywords: neuroinflammation, late-life depression, microglia, astrocytes, central nervous system, blood-brain barrier, Kynurenine pathway

Procedia PDF Downloads 46
17058 Biosecurity Control Systems in Two Phases for Poultry Farms

Authors: M. Peña Aguilar Juan, E. Nava Galván Claudia, Pastrana Palma Alberto

Abstract:

In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores.

Keywords: innovation, triple helix, poultry farms, biosecurity

Procedia PDF Downloads 284
17057 Characterization of Hyaluronic Acid-Based Injections Used on Rejuvenation Skin Treatments

Authors: Lucas Kurth de Azambuja, Loise Silveira da Silva, Gean Vitor Salmoria, Darlan Dallacosta, Carlos Rodrigo de Mello Roesler

Abstract:

This work provides a physicochemical and thermal characterization assessment of three different hyaluronic acid (HA)-based injections used for rejuvenation skin treatments. The three products analyzed are manufactured by the same manufacturer and commercialized for application on different skin levels. According to the manufacturer, all three HA-based injections are crosslinked and have a concentration of 23 mg/mL of HA, and 0.3% of lidocaine. Samples were characterized by Fourier-transformed infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) techniques. FTIR analysis resulted in a similar spectrum when comparing the different products. DSC analysis demonstrated that the fusion points differ in each product, with a higher fusion temperature observed in specimen A, which is used for subcutaneous applications, when compared with B and C, which are used for the middle dermis and deep dermis, respectively. TGA data demonstrated a considerable mass loss at 100°C, which means that the product has more than 50% of water in its composition. TGA analysis also showed that Specimen A had a lower mass loss at 100°C when compared to Specimen C. A mass loss of around 220°C was observed on all samples, characterizing the presence of hyaluronic acid. SEM images displayed a similar structure on all samples analyzed, with a thicker layer for Specimen A when compared with B and C. This series of analyses demonstrated that, as expected, the physicochemical and thermal properties of the products differ according to their application. Furthermore, to better characterize the crosslinking degree of each product and their mechanical properties, a set of different techniques should be applied in parallel to correlate the results and, thereby, relate injection application with material properties.

Keywords: hyaluronic acid, characterization, soft-tissue fillers, injectable gels

Procedia PDF Downloads 89
17056 Determination of Various Properties of Biodiesel Produced from Different Feedstocks

Authors: Faisal Anwar, Dawar Zaidi, Shubham Dixit, Nafees Ahmedii

Abstract:

This paper analyzes the various properties of biodiesel such as pour point, cloud point, viscosity, calorific value, etc produced from different feedstocks. The aim of the work is to analyze change in these properties after converting feedstocks to biodiesel and then comparring it with ASTM 6751-02 standards to check whether they are suitable for diesel engines or not. The conversion of feedstocks is carried out by a process called transesterification. This conversion is carried out to reduce viscosity, pour point, etc. It has been observed that there is some remarkable change in the properties of oil after conversion.

Keywords: biodiesel, ethyl ester, free fatty acid, production

Procedia PDF Downloads 367
17055 Exploratory Study to Obtain a Biolubricant Base from Transesterified Oils of Animal Fats (Tallow)

Authors: Carlos Alfredo Camargo Vila, Fredy Augusto Avellaneda Vargas, Debora Alcida Nabarlatz

Abstract:

Due to the current need to implement environmentally friendly technologies, the possibility of using renewable raw materials to produce bioproducts such as biofuels, or in this case, to produce biolubricant bases, from residual oils (tallow), originating has been studied of the bovine industry. Therefore, it is hypothesized that through the study and control of the operating variables involved in the reverse transesterification method, a biolubricant base with high performance is obtained on a laboratory scale using animal fats from the bovine industry as raw materials, as an alternative for material recovery and environmental benefit. To implement this process, esterification of the crude tallow oil must be carried out in the first instance, which allows the acidity index to be decreased ( > 1 mg KOH/g oil), this by means of an acid catalysis with sulfuric acid and methanol, molar ratio 7.5:1 methanol: tallow, 1.75% w/w catalyst at 60°C for 150 minutes. Once the conditioning has been completed, the biodiesel is continued to be obtained from the improved sebum, for which an experimental design for the transesterification method is implemented, thus evaluating the effects of the variables involved in the process such as the methanol molar ratio: improved sebum and catalyst percentage (KOH) over methyl ester content (% FAME). Finding that the highest percentage of FAME (92.5%) is given with a 7.5:1 methanol: improved tallow ratio and 0.75% catalyst at 60°C for 120 minutes. And although the% FAME of the biodiesel produced does not make it suitable for commercialization, it does ( > 90%) for its use as a raw material in obtaining biolubricant bases. Finally, once the biodiesel is obtained, an experimental design is carried out to obtain biolubricant bases using the reverse transesterification method, which allows the study of the effects of the biodiesel: TMP (Trimethylolpropane) molar ratio and the percentage of catalyst on viscosity and yield as response variables. As a result, a biolubricant base is obtained that meets the requirements of ISO VG (Classification for industrial lubricants according to ASTM D 2422) 32 (viscosity and viscosity index) for commercial lubricant bases, using a 4:1 biodiesel molar ratio: TMP and 0.51% catalyst at 120°C, at a pressure of 50 mbar for 180 minutes. It is necessary to highlight that the product obtained consists of two phases, a liquid and a solid one, being the first object of study, and leaving the classification and possible application of the second one incognito. Therefore, it is recommended to carry out studies of the greater depth that allows characterizing both phases, as well as improving the method of obtaining by optimizing the variables involved in the process and thus achieving superior results.

Keywords: biolubricant base, bovine tallow, renewable resources, reverse transesterification

Procedia PDF Downloads 117
17054 A Preliminary Randomized Controlled Trial of Pure L-Ascorbic Acid with Using a Needle-Free and Micro-Needle Mesotherapy in Treatment of Anti-Aging Procedure

Authors: M. Zasada, A. Markiewicz, A. Erkiert-Polguj, E. Budzisz

Abstract:

The epidermis is a keratinized stratified squamous epithelium covered by the hydro-lipid barrier. Therefore, active substances should be able to penetrate through this hydro-lipid coating. L-ascorbic acid is one of the vitamins which plays an important role in stimulation fibroblast to produce collagen type I and in hyperpigmentation lightening. Vitamin C is a water-soluble antioxidant, which protects skin from oxidation damage and rejuvenates photoaged skin. No-needle mesotherapy is a non-invasive rejuvenation technique depending on electric pulses, electroporation, and ultrasounds. These physicals factors result in deeper penetration of cosmetics. It is important to increase the penetration of L-ascorbic acid, thereby increasing the spectrum of its activity. The aim of the work was to assess the effectiveness of pure L-ascorbic acid activity in anti-aging therapy using a needle-free and micro-needling mesotherapy. The study was performed on a group of 35 healthy volunteers in accordance with the Declaration of Helsinki of 1964 and agreement of the Ethics Commissions no RNN/281/16/KE 2017. Women were randomized to mesotherapy or control group. Control group applied topically 2,5 ml serum containing 20% L-ascorbic acid with hydrate from strawberries, every 10 days for a period of 9 weeks. No-needle mesotherapy, on the left half of the face and micro-needling on the right with the same serum, was done in mesotherapy group. The pH of serum was 3.5-4, and the serum was prepared directly prior to the facial treatment. The skin parameters were measured at the beginning and before each treatment. The measurement of the forehead skin was done using Cutometer® (measurement of skin elasticity and firmness), Corneometer® (skin hydration measurement), Mexameter® (skin tone measurement). Also, the photographs were taken by Fotomedicus system. Additionally, the volunteers fulfilled the questionnaire. Serum was tested for microbiological purity and stability after the opening of the cosmetic. During the study, all of the volunteers were taken care of a dermatologist. The regular application of the serum has caused improvement of the skin parameters. Respectively, after 4 and 8 weeks improvement in hydration and elasticity has been seen (Corneometer®, Cutometer® results). Moreover, the number of hyper-pigmentated spots has decreased (Mexameter®). After 8 weeks the volunteers has claimed that the tested product has smoothing and moisturizing features. Subjective opinions indicted significant improvement of skin color and elasticity. The product containing the L-ascorbic acid used with intercellular penetration promoters demonstrates higher anti-aging efficiency than control. In vivo studies confirmed the effectiveness of serum and the impact of the active substance on skin firmness and elasticity, the degree of hydration and skin tone. Mesotherapy with pure L-ascorbic acid provides better diffusion of active substances through the skin.

Keywords: anti-aging, l-ascorbic acid, mesotherapy, promoters

Procedia PDF Downloads 265
17053 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 254
17052 Electrical Characteristics of SiON/GaAs MOS Capacitor with Various Passivations

Authors: Ming-Kwei Lee, Chih-Feng Yen

Abstract:

The electrical characteristics of liquid phase deposited silicon oxynitride film on ammonium sulfide treated p-type (100) gallium arsenide substrate were investigated. Hydrofluosilicic acid, ammonia and boric acid aqueous solutions were used as precursors. The electrical characteristics of silicon oxynitride film are much improved on gallium arsenide substrate with ammonium sulfide treatment. With post-metallization annealing, hydrogen ions can further passivate defects in SiON/GaAs film and interface. The leakage currents can reach 7.1 × 10-8 and 1.8 × 10-7 at ± 2 V. The dielectric constant and effective oxide charges are 5.6 and -5.3 × 1010 C/cm2, respectively. The hysteresis offset of hysteresis loop is merely 0.09 V.

Keywords: liquid phase deposition, SiON, GaAs, PMA, (NH4)2S

Procedia PDF Downloads 643