Search results for: health promoting properties
17842 Use of Focus Group Interviews to Design a Health Impact Measurement Tool: A Volunteering Case Study
Authors: Valentine Seymour
Abstract:
Environmental volunteering organisations use questionnaires to explore the relationship between environmental volunteers and their health. To the author’s best knowledge, no one has explored volunteers’ health perception, which could be considered when designing a health impact measurement tool used to increase effective communication. This paper examines environmental volunteers' perceptions of health, knowledge which can be used to design a health impact measurement tool. This study uses focus group interviews, content analysis, and a general inductive approach to explore the health perceptions of volunteers who engage in environmental volunteering activities from the perspective of UK charity The Conservation Volunteers. Findings showed that volunteer groups presented were relatively similar in how they defined the term health, with their overall conceptual model closely resembling that of the World Health Organization 1948 definition. This suggests that future health impact measurement tools in the environmental volunteering sector could base their design around the World Health Organization’s definition.Keywords: health perception, impact measurement, mental models, tool development
Procedia PDF Downloads 15317841 Mechanical Properties of Recycled Plasticized PVB/PVC Blends
Authors: Michael Tupý, Dagmar Měřínská, Alice Tesaříková-Svobodová, Christian Carrot, Caroline Pillon, Vít Petránek
Abstract:
The mechanical properties of blends consisting of plasticized poly(vinyl butyral) (PVB) and plasticized poly(vinyl chloride) (PVC) are studied, in order to evaluate the possibility of using recycled PVB waste derived from windshields. PVC was plasticized with 38% of diisononyl phthalate (DINP), while PVB was plasticized with 28% of triethylene glycol, bis(2-ethylhexanoate) (3GO). The optimal process conditions for the PVB/PVC blend in 1:1 ratio were determined. Entropy was used in order to theoretically predict the blends miscibility. The PVB content of each blend composition used was ranging from zero to 100%. Tensile strength and strain were tested. In addition, a comparison between recycled and original PVB, used as constituents of the blend, was performed.Keywords: poly(vinyl butyral), poly(vinyl chloride), windshield, polymer waste, mechanical properties
Procedia PDF Downloads 44617840 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production
Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole
Abstract:
Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder
Procedia PDF Downloads 14417839 Strengthening Social and Psychological Resources - Project "Herausforderung" as a (Sports-) Pedagogical Concept in Adolescence
Authors: Kristof Grätz
Abstract:
Background: Coping with crisis situations (e.g., the identity crisis in adolescence) is omnipresent in today's socialization and should be encouraged as a child. For this reason, students should be given the opportunity to create, endure and manage these crisis situations in a sporting context within the project “Herausforderung.” They should prove themselves by working on a self-assigned task, accompanied by ‚coaches’ in a place outside of their hometown. The aim of the project is to observe this process from a resource-oriented perspective. Health promotion, as called for by the WHO in the Ottawa Charter since 1986, includes strengthening psychosocial resources. These include cognitive, emotional, and social potentials that contribute to improving the quality of life, provide favourable conditions for coping with health burdens and enable people to influence their physical performance and well-being self-confidently and actively. A systematic strengthening of psychosocial resources leads to an improvement in mental health and contributes decisively to the regular implementation and long-term maintenance of this health behavior. Previous studies have already shown significant increases in self-concept following experiential educational measures [Fengler, 2007; Eberle & Fengler, 2018] and positive effects of experience-based school trips on the social competence of students [Reuker, 2009]. Method: The research project examines the influence of the project “Herausforderung” on psychosocial resources such as self-efficacy, self-concept, social support, and group cohesion. The students participating in the project will be tested in a pre-post design in the context of the challenge. This test includes specific questions to capture the different psychosocial resources. For the measurement, modifications of existing scales with good item selectivity and reliability are used to a large extent, so that acceptable item and scale values can be expected. If necessary, the scales were adapted or shortened to the specific context in order to ensure a balanced relationship between reliability and test economy. Specifically, these are already tested scales such as FRKJ 8-16, FSKN, GEQ, and F-SozU. The aim is to achieve a sample size of n ≥ 100. Conclusion: The project will be reviewed with regard to its effectiveness, and implications for a resource-enhancing application in sports settings will be given. Conclusions are drawn as to which extent to specific experiential educational content in physical education can have a health-promoting effect on the participants.Keywords: children, education, health promotion, psychosocial resources
Procedia PDF Downloads 14617838 The Quality of Health Services and Patient Satisfaction in Hospital
Authors: Malki Nadia Fatima Zahra, Kellal Chaimaa, Brahimi Houria
Abstract:
Quality is one of the most important modern management patterns that organizations seek to achieve in all areas and sectors in order to meet the needs and desires of customers and to remain continuity, as they constitute a competitive advantage for the organization, and among the most prominent organizations that must be available on the quality factor are health organizations as they relate to the most valuable component of production It is a person and his health, and that any error in it threatens his life and may lead to death, so she must provide health services of high quality to achieve the highest degree of satisfaction for the patient. This research aims to study the quality of health services and the extent of their impact on patient satisfaction, and this is through an applied study that relied on measuring the level of quality of health services in the university hospital center of Algeria and the extent of their impact on patient satisfaction according to the dimensions of the quality of health services, and we reached a conclusion that the determinants of the quality of health services. It affects patient satisfaction, which necessitates developing health services according to patients' requirements and improving their quality to obtain patient satisfaction.Keywords: health service, health quality, quality determinants, patient satisfaction
Procedia PDF Downloads 6617837 Promoting Diversity and Equity through Interdisciplinary Leadership Training
Authors: Sharon Milberger, Jane Turner, Denise White-Perkins
Abstract:
Michigan shares the overall U.S. national need for more highly qualified professionals who have knowledge and experience in the use of evidence-based practices to meet the special health care needs of children, adolescents, and adults with neurodevelopmental disabilities including autism spectrum disorder (DD/ASD). The Michigan Leadership Education in Neurodevelopmental Disabilities (MI-LEND) program is a consortium of six universities that spans the state of Michigan and serves more than 181,800 undergraduate, graduate, and professional students. The purpose of the MI LEND program is to improve the health of infants, children and adolescents with disabilities in Michigan by training individuals from different disciplines to assume leadership roles in their respective fields and work across disciplines. The MI-LEND program integrates “L.I.F.E.” perspectives into all training components. L.I.F.E. is an acronym for Leadership, Interdisciplinary, Family-Centered and Equity perspectives. This paper will describe how L.I.F.E. perspectives are embedded into all aspects of the MI-LEND training program including the application process, didactic training, community and clinical experiences, discussions, journaling and projects. Specific curriculum components will be described including content from a training module dedicated to Equity. Upon completion of the Equity module, trainees are expected to be able to: 1) Use a population health framework to identify key social determinants impacting families and children; 2) Explain how addressing bias and providing culturally appropriate linguistic care/services can influence patient/client health and wellbeing; and 3) Describe the impact of policy and structural/institutional factors influencing care and services for children with DD/ASD and their families. Each trainee completes two self-assessments: the Cultural and Linguistic Competence Health Practitioner Assessment and the other assessing social attitudes/implicit bias. Trainees also conduct interviews with a family with a child with DD/ASD. In addition, interdisciplinary Equity-related group activities are incorporated into face-to-face training sessions. Each MI-LEND trainee has multiple ongoing opportunities for self-reflection through discussion and journaling and completion of a L.I.F.E. project as a culminating component of the program. The poster will also discuss the challenges related to teaching and measuring successful outcomes related to diversity/equity perspectives.Keywords: disability, diversity, equity, training
Procedia PDF Downloads 16517836 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase
Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He
Abstract:
Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification
Procedia PDF Downloads 31117835 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures
Authors: Mostafa Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy
Procedia PDF Downloads 45317834 Properties of Preplaced Aggregate Concrete with Modified Binder
Authors: Kunal Krishna Das, Eddie S. S. Lam
Abstract:
Preplaced Aggregate Concrete (PAC) is produced by first placing the coarse aggregate into the formwork, followed by injection of grout to fill in the voids in between the coarse aggregates. In this study, tests were carried out to determine the effects of supplementary cementitious materials on the properties of PAC. Cement was partially replaced by ground granulated blast furnace slag (GGBS) and silica fume (SF) at different proportions. Grout properties were determined by the flow cone test and compressive strength test. Grout proportion was optimized statistically. It was applied to form PAC. Hardened properties of PAC, comprising compressive strength, splitting tensile strength, chloride-ion penetration and drying shrinkage, were evaluated. GGBS enhanced the flowability of the grout, whereas SF enhanced the strength of PAC. Both GGBS and SF improved the resistance to chloride-ion penetration with the drawback of increased drying shrinkage. Nevertheless, drying shrinkage was within the range to be classified as low shrinkage concrete.Keywords: factorial design, ground granulated blast furnace slag, preplaced aggregate concrete, silica fume
Procedia PDF Downloads 13417833 Effect of Acids with Different Chain Lengths Modified by Methane Sulfonic Acid and Temperature on the Properties of Thermoplastic Starch/Glycerin Blends
Authors: Chi-Yuan Huang, Mei-Chuan Kuo, Ching-Yi Hsiao
Abstract:
In this study, acids with various chain lengths (C6, C8, C10 and C12) modified by methane sulfonic acid (MSA) and temperature were used to modify tapioca starch (TPS), then the glycerol (GA) were added into modified starch, to prepare new blends. The mechanical properties, thermal properties and physical properties of blends were studied. This investigation was divided into two parts. First, the biodegradable materials were used such as starch and glycerol with hexanedioic acid (HA), suberic acid (SBA), sebacic acid (SA), decanedicarboxylic acid (DA) manufacturing with different temperatures (90, 110 and 130 °C). And then, the solution was added into modified starch to prepare the blends by using single-screw extruder. The FT-IR patterns indicated that the characteristic peak of C=O in ester was observed at 1730 cm-1. It is proved that different chain length acids (C6, C8, C10 and C12) reacted with glycerol by esterification and these are used to plasticize blends during extrusion. In addition, the blends would improve the hydrolysis and thermal stability. The water contact angle increased from 43.0° to 64.0°. Second, the HA (110 °C), SBA (110 °C), SA (110 °C), and DA blends (130 °C) were used in study, because they possessed good mechanical properties, water resistances and thermal stability. On the other hand, the various contents (0, 0.005, 0.010, 0.020 g) of MSA were also used to modify the mechanical properties of blends. We observed that the blends were added to MSA, and then the FT-IR patterns indicated that the C=O ester appeared at 1730 cm-1. For this reason, the hydrophobic blends were produced. The water contact angle of the MSA blends increased from 55.0° to 71.0°. Although break elongation of the MSA blends reduced from the original 220% to 128%, the stress increased from 2.5 MPa to 5.1 MPa. Therefore, the optimal composition of blends was the DA blend (130 °C) with adding of MSA (0.005 g).Keywords: chain length acids, methane sulfonic acid, Tapioca starch (TPS), tensile stress
Procedia PDF Downloads 24917832 Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes
Authors: Stephen J. Mitchual, Kwasi Frimpong-Mensah, Nicholas A. Darkwa
Abstract:
The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied include the species density, gross calorific value, volatile matter, ash, organic carbon, N, H, S, Cu, Pb, As and Cd content. Fuel properties were determined using standard laboratory methods. The result indicates that the Gross Calorific Value (GCV) of the species ranged from 20.16 to 22.22 MJ/kg and they slightly varied from each other. Additionally, the GCV of the biomass materials were higher than that of other biomass materials like; wheat straw, rice straw, maize straw and sugar cane. The ash and volatile matter content varied from 0.6075 to 5.0407%, and 75.23% to 83.70% respectively. The overall rating of the properties of the six biomass materials suggest that Piptadenia africana has the best fuel property to be used as briquettes and Aningeria robusta the worse. This study therefore suggests that a holistic assessment of a biomass material needs to be done before selecting it for fuel purpose.Keywords: ash content, briquette, calorific value, elemental composition, species, volatile matter
Procedia PDF Downloads 41917831 Impact of Locally Available Recycled Concrete Aggregate on Concrete’s Mechanical and Durability Properties
Authors: Robert Bušić, Ivana Miličević, Larisa Šargač
Abstract:
The construction industry generates a large amount of waste, which poses a challenge for disposal and often requires significant areas for landfill. Therefore, recycling construction waste has become imperative. This study focuses on investigating the use of locally available recycled concrete as a substitute for traditional aggregates and analyzing the impact of this change on the mechanical and durability properties of concrete. The research begins with the crushing of locally available waste concrete, followed by sieving and sorting the aggregate into different fractions. Four concrete mix designs were created, with one serving as a reference mixture without recycled aggregate, while the remaining three mixes included recycled aggregate in varying proportions. The experimental part includes testing the key properties of concrete in both fresh and hardened states, including slump and flow tests, compressive strength, static modulus of elasticity, and shrinkage of the concrete, with the aim of assessing the impact of locally available recycled aggregate on concrete properties. By using experimental testing methods, the results were compared with conventional concrete, providing deeper insights into the potential advantages and disadvantages of using locally available recycled concrete in various construction projects.Keywords: concrete, durability, recycled aggregate, sustainability
Procedia PDF Downloads 717830 Effects of Spray Dryer Atomizer Speed on Casein Micelle Size in Whole Fat Milk Powder and Physicochemical Properties of White Cheese
Authors: Mohammad Goli, Akram Sharifi, Mohammad Yousefi Jozdani, Seyed Ali Mortazavi
Abstract:
An industrial spray dryer was used, and the effects of atomizer speed on the physicochemical properties of milk powder, the textural and sensory characteristics of white cheese made from this milk powder, were evaluated. For this purpose, whole milk was converted into powder by using three different speeds (10,000, 11,000, and 12,000 rpm). Results showed that with increasing atomizer speed in the spray dryer, the average size of casein micelle is significantly decreased (p < 0.05), whereas no significant effect is observed on the chemical properties of milk powder. White cheese characteristics indicated that with increasing atomizer speed, texture parameters, such as hardness, mastication, and gumminess, were significantly reduced (p < 0.05). Sensory evaluation also revealed that cheese samples prepared with dried milk produced at 12,000 rpm were highly accepted by panelists. Overall, the findings suggested that 12,000 rpm is the optimal atomizer speed for milk powder production.Keywords: spray drying, powder technology, atomizer speed, particle size, white cheese physical properties
Procedia PDF Downloads 46917829 Strength of Gratitude Determining Subjective Well-Being: Evidence for Mediating Role of Problem-Solving Styles
Authors: Sarwat Sultan, Shahzad Gul
Abstract:
This study was carried out to see the mediating role of problem solving styles (sensing, intuitive, feeling, and thinking) in the predictive relationship of gratitude with subjective well-being. A sample of 454 college students aged 20-26 years old participated in this study and provided data on the measures of gratitude, problem solving styles, and subjective well-being. Results indicated the significant relationships of gratitude with subjective well-being and problem solving styles of intuitive and thinking. Results further indicated the positive link of intuitive and thinking styles with subjective well-being. Findings also provided the evidence for the significant mediating role of problem solving styles in the relationship of gratitude with subjective well-being. The implication for this study is likely to enhance the medium to long term effects of gratitude on subjective well-being among students and as well as assessing its value in promoting psychological health and problem solving strategies among students.Keywords: gratitude, subjective well-being, problem solving styles, college students
Procedia PDF Downloads 42517828 Future Trends in Sources of Natural Antioxidants from Indigenous Foods
Authors: Ahmed El-Ghorab
Abstract:
Indigenous foods are promising sources of various chemical bioactive compounds such as vitamins, phenolic compounds and carotenoids. Therefore, the presence o different bioactive compounds in fruits could be used to retard or prevent various diseases such as cardiovascular and cancer. This is an update report on nutritional compositions and health promoting phytochemicals of different indigenous food . This different type of fruits and/ or other sources such as spices, aromatic plants, grains by-products, which containing bioactive compounds might be used as functional foods or for nutraceutical purposes. most common bioactive compounds are vitamin C, polyphenol, β- carotene and lycopene contents. In recent years, there has been a global trend toward the use of natural phytochemical as antioxidants and functional ingredients, which are present in natural resources such as vegetables, fruits, oilseeds and herbs.. Our future trend the Use of Natural antioxidants as a promising alternative to use of synthetic antioxidants and the Production of natural antioxidant on commercial scale to maximize the value addition of indigenous food waste as a good source of bioactive compounds such as antioxidants.Keywords: bioactive compounds, antioxidants, by-product, indigenous foods, phenolic compounds
Procedia PDF Downloads 48417827 Trace Metals in Natural Bottled Water on Montenegrin Market and Comaparison with Tap Water in Podgorica
Authors: Katarina Živković, Ivana Joksimović
Abstract:
Many different chemicals may occur in drinking water and cause significant human health risks after prolonged periods of exposure. In particular concern are contaminants that have cumulative toxic properties, such as heavy metals. This investigation was done to clarify concerns about chemical quality and safety of drinking tap water in Podgorica. For comparison, all available natural bottled water on Montenegrin market were bought. All samples (bottled water and tap water from Podgorica) were analyzed using ICP –OES on contents of Al, Cd, Pb, Cu, Zn,Cr, Fe, As and Mn. All results compared with the maximum concentration levels allowed by international standards and World Health Organization (WHO) guidelines. The results of analysis showed that all trace of heavy metals were very low and in same time below MCL according to WHO and International standard.Keywords: inductively coupled plasma - optical emission spectrometry (ICP-OES), Montenegro (Podgorica), natural bottled water, tap water , trace of heavy metal
Procedia PDF Downloads 45517826 Impacts and Implications: Exploring the Long-Term Health Benefits of Regular Physical Activity
Authors: Muhammad Wahb
Abstract:
Physical activity is increasingly recognized as a significant factor in maintaining optimal health and preventing chronic diseases. This research scrutinizes the long-term health benefits of sustained physical activity, employing a systematic review of epidemiological studies and randomized control trials conducted over the past decade. The study illuminates the protective effects of regular physical activity against cardiovascular disease, obesity, diabetes, and mental health disorders, with a special focus on the mechanisms involved. Furthermore, the paper provides insights into how public health initiatives can effectively promote physical activity among diverse populations, contributing to improved community health outcomes.Keywords: physical activity, long-term health benefits, chronic disease prevention, public health
Procedia PDF Downloads 9617825 Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids
Authors: M. Masłowski, M. Zaborski
Abstract:
Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties.Keywords: magnetorheological elastomers, iron oxides, ionic liquids, dispersion
Procedia PDF Downloads 33117824 The Effect of Metal Transfer Modes on Mechanical Properties of 3CR12 Stainless Steel
Authors: Abdullah Kaymakci, Daniel M. Madyira, Ntokozo Nkwanyana
Abstract:
The effect of metal transfer modes on mechanical properties of welded 3CR12 stainless steel were investigated. This was achieved by butt welding 10 mm thick plates of 3CR12 in different positions while varying the welding positions for different metal transfer modes. The ASME IX: 2010 (Welding and Brazing Qualifications) code was used as a basis for welding variables. The material and the thickness of the base metal were kept constant together with the filler metal, shielding gas and joint types. The effect of the metal transfer modes on the microstructure and the mechanical properties of the 3CR12 steel was then investigated as it was hypothesized that the change in welding positions will affect the transfer modes partly due to the effect of gravity. The microscopic examination revealed that the substrate was characterized by dual phase microstructure, that is, alpha phase and beta phase grain structures. Using the spectroscopic examination results and the ferritic factor calculation had shown that the microstructure was expected to be ferritic-martensitic during air cooling process. The tested tensile strength and Charpy impact energy were measured to be 498 MPa and 102 J which were in line with mechanical properties given in the material certificate. The heat input in the material was observed to be greater than 1 kJ/mm which is the limiting factor for grain growth during the welding process. Grain growths were observed in the heat affected zone of the welded materials. Ferritic-martensitic microstructure was observed in the microstructure during the microscopic examination. The grain growth altered the mechanical properties of the test material. Globular down hand had higher mechanical properties than spray down hand. Globular vertical up had better mechanical properties than globular vertical down.Keywords: welding, metal transfer modes, stainless steel, microstructure, hardness, tensile strength
Procedia PDF Downloads 25217823 Electrochemical Study of Ti-O Modified Electrode towards Tyrosinase Catalytic Activity
Authors: Riya Thomas, Denis Music, Tautgirdas Ruzgas
Abstract:
The detection of tyrosinase holds considerable interest in the domains of food nutrition and human health due to its significant role in causing a detrimental effect on the colour, flavour, and nutritional value of food as well as in the synthesis of melanin causing skin melanoma. Compared to other conventional analytical techniques, electrochemical (EC) sensors are highly promising owing to their quick response, great sensitivity, ease of use, and low cost. Particularly, titania nanoparticle-based electrochemical sensors have drawn special attention in identifying several biomolecules including enzymes, antibodies, and receptors, owing to their enhanced electrocatalytic activity and electron-accepting properties. In this study, Ti-O film-modified electrode is fabricated using reactive magnetron sputtering, and its affinity towards tyrosinase is examined via electrochemical methods. To comprehend the physiochemical and surface properties-governed electrocatalytic activity of modified electrodes, Ti-O films are grown under various compositional ranges and deposition temperature, and their corresponding electrochemical activity towards tyrosinase is studied. Further, to understand the underlying atomistic mechanisms and electronic-scale electrochemical characteristics, density functional theory (DFT) is employed. The main goal of the current work is to determine the correlation between macroscopic measurements and the underlying atomic properties to improve the tyrosinase activity on Ti-O surfaces. Moreover, this work offers an intriguing new perspective on the use of Ti-O-modified electrodes to detect tyrosinase in the areas of clinical diagnosis, skincare, and food science.Keywords: density functional theory, electrochemical sensor, Ti-O film, tyrosinase
Procedia PDF Downloads 2217822 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 8517821 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method
Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum
Abstract:
Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method
Procedia PDF Downloads 9217820 Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking
Authors: Anupam Saxena, Achin Agrawal, Rishabh Shukla, S. Mandal
Abstract:
It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable.Keywords: delamination, elasticity, FEA, flexural strength, modal frequency, RC beam
Procedia PDF Downloads 42617819 In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element
Authors: Huixin Wei, Shibin Wang, Linan Li, Lei Zhou, Xinhao Tu
Abstract:
Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data.Keywords: facial skin, indentation test, finite element, digital image correlation, computed tomography
Procedia PDF Downloads 11217818 Nano Ceramics Materials in Clean Rooms: Properties and Characterization
Authors: HebatAllah Tarek, Zeyad El-Sayad, Ali F. Bakr
Abstract:
Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials.Keywords: nano-ceramic coating, clean rooms, porcelain, surface properties
Procedia PDF Downloads 10917817 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites
Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim
Abstract:
In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite
Procedia PDF Downloads 31817816 Study of Pseudomonas as Biofertiliser in Salt-Affected Soils of the Northwestern Algeria: Solubilisation of Calcium Phosphate and Growth Promoting of Broad Bean (Vcia faba)
Authors: A. Djoudi, R. Djibaou, H. A. Reguieg Yssaad
Abstract:
Our study focuses on the study of a bacteria belonging to Pseudomonas solubilizing tricalcium phosphate. They were isolated from rhizosphere of a variety of broad bean grown in salt-affected soils (electrical conductivity between 4 and 8 mmhos/cm) of the irrigated perimeter of Mina in northwestern Algeria. Isolates which have advantageous results in the calcium phosphate solubilization index test were subjected to identification using API20 then used to re-inoculate the same soil in pots experimentation to assess the effects of inoculation on the growth of the broad bean (Vicia faba). Based on the results obtained from the in-vitro tests, two isolates P5 and P8 showed a significant effect on the solubilization of tricalcium phosphate with an index I estimated at 314% and 283% sequentially. According to the results of in-vivo tests, the inoculation of the soil with P5 and P8 were significantly and positively influencing the growth in biometric parameters of the broad bean. Inoculation with strain P5 has promoted the growth of the broad bean in stem height, stem fresh weight and stem dry weight of 108.59%, 115.28%, 104.33%, respectively. Inoculation with strain P8 has fostered the growth of the broad bean stem fresh weight of 112.47%. The effect of Pseudomonas on the development of Vicia faba is considered as an interesting process by which PGPR can increase biological production and crop protection.Keywords: Pseudomonas, Vicia faba, promoting of plant growth, solubilization tricalcium phosphate
Procedia PDF Downloads 32917815 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film
Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi
Abstract:
In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy
Procedia PDF Downloads 17817814 Characterization of Zn-Ni Alloy Elaborated Under Low and High Magnetic Field Immersed in Corrosive Medium
Authors: Sabiha Chouchane, Azzedine Hani, Jean-Paul Chopart, Alexandra Levesque
Abstract:
The electrodeposition of Zn-Ni alloy is mostly studied for its high degree of corrosion and mechanical properties. In this work, the zinc–nickel alloy coatings elaborated from sulfate bath have been carried out under low and high applied magnetic field. The effect of alloy stuctural parameters upon corrosion behavior is studied. It has been found that the magnetically induced convection changes the phase composition, promoting the zinc phase in spite of the γ-Ni₅Zn₂₁. Low magnetic field acts also on the morphology of the deposits as a levelling agent and a refiner by lowering the deposit roughness Ra and the spot size. For alloy obtained with low magnetic field (up to 1T) superimposition, surface morphology modification has no significant influence on corrosion behavior whereas for low nickel content alloy, the modification of phase composition, induced by applied magnetic field, favours higher polarization resistance. When high magnetic field amplitude is involved (up to12T), the phase composition modifications are the same that for low applied B and the morphology is not largely modified. In this case, the hydrogen reduction current dramatically decreases that leads to a large shift of the corrosion potential. It is suggested that the surface reactivity of electrodeposited alloys depends on the magnetically induced convection that is efficient during the codeposition process.Keywords: magnetic field, Zn-Ni alloy, corrosion, corrosive medium
Procedia PDF Downloads 5017813 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential
Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh
Abstract:
Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties
Procedia PDF Downloads 353