Search results for: anorthite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: anorthite

4 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles

Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova

Abstract:

Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.

Keywords: ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite

Procedia PDF Downloads 227
3 Chemical and Mineralogical Properties of Soils from an Arid Region of Misurata-Libya: Treated Wastewater Irrigation Impacts

Authors: Khalifa Alatresh, Mirac Aydin

Abstract:

This research explores the impacts of irrigation by treated wastewater (TWW) on the mineralogical and chemical attributes of sandy calcareous soils in the Southern region of Misurata. Soil samples obtained from three horizons (A, B, and C) of six TWW-irrigated pedons (29years) and six other pedons from nearby non-irrigated areas (dry-control). The results demonstrated that the TWW-irrigated pedons had significantly higher salinity (EC), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), cation exchange capacity (CEC), available phosphor (AP), total nitrogen (TN), and organic matter (OM) relative to the control pedons. Nonetheless, all the values of interest (EC < 4000 µs/cm < SAR < 13, pH < 8.5 and ESP < 15) remained lower than the thresholds, showing no issues with sodicity or salinity. Irrigated pedons contained significantly higher amounts of total clay and showed an altered distribution of particle sizes and minerals identified (quartz, calcite, microcline, albite, anorthite, and dolomite) within the profile. The observed results included the occurrence of Margarite, Anorthite, Chabazite, and Tridymite minerals after the application of TWW in small quantities that are not enough to influence soil genesis and classification.0,51 cm.

Keywords: treated wastewater, sandy calcareous soils, soil mineralogy, and chemistry

Procedia PDF Downloads 94
2 Geochemical and Mineralogical Characteristics of Soils in Areas Affected by the Fires of August 2021 at the Ilia Prefecture Greece

Authors: Dionisios Panagiotaras, Pavlos Avramidis, Dimitrios Papoulis, Dionysios Koulougliotis, Dionisis C. Christodoulopoulos, Dimitra Lekka, Despoina Nifora, Denisa Drouvari, Alexandra Skalioti

Abstract:

This study delineates the geochemical and mineralogical characteristics of soils collected from woodland and forest areas affected by the fires of August 2021 at the Ilia prefecture, Greece. The mineralogical composition of the samples consists of quartz, calcite, albite, oligoclase, anorthite (feldspars), smectite, kaolinite and illite (clays). Quartz ranges from 38.21% to 57.49% with an average of 48.43%, calcite ranges from 2.55% to 25.09% with an average of 13.92%, feldspars ranges from 7.76% to 25.87% with an average of 17.02% and clays ranges from 4.39% to 43.43% with an average of 20.63%. Geochemical analyses of the soil samples applied for total organic carbon (TOC), total nitrogen (TN), total phosphorous (TP), Cu, Zn, Mn and Fe. Statistical analysis of the data shows a positive correlation between clays and Zn, Mn, Fe. TOC and TN show a strong positive correlation, while Fe shows a strong negative correlation with calcite.

Keywords: soils, geochemistry, mineralogy, woodland, forest

Procedia PDF Downloads 69
1 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 79