Search results for: discrete choice models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8795

Search results for: discrete choice models

7985 Ground State Phases in Two-Mode Quantum Rabi Models

Authors: Suren Chilingaryan

Abstract:

We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited.

Keywords: quantum optics, quantum phase transition, cavity QED, circuit QED

Procedia PDF Downloads 368
7984 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.

Keywords: integral differential equations, jump–diffusion model, American options, rational approximation

Procedia PDF Downloads 120
7983 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 190
7982 Modelling and Optimization of Laser Cutting Operations

Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail

Abstract:

Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.

Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE

Procedia PDF Downloads 620
7981 The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis

Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior

Abstract:

Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyse several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.

Keywords: drying, models, jackfruit, biotechnology

Procedia PDF Downloads 379
7980 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 311
7979 Wet Extraction of Lutein and Lipids from Microalga by Quantitative Determination of Polarity

Authors: Mengyue Gong, Xinyi Li, Amarjeet Bassi

Abstract:

Harvesting by-products while recovering biodiesel is considered a potentially valuable approach to increase the market feasibility of microalgae industry. Lutein is a possible by-product from microalgae that promotes eye health. The extraction efficiency and the expensive drying process of wet algae represent the major challenges for the utilization of microalgae biomass as a feedstock for lipids, proteins, and carotenoids. A wet extraction method was developed to extract lipids and lutein from microalga Chlorella vulgaris. To evaluate different solvent (mixtures) for the extraction, a quantitative analysis was established based on the polarity of solvents using Nile Red as the polarity (ETN) indicator. By the choice of binary solvent system then adding proper amount of water to achieve phase separation, lipids and lutein can be extracted simultaneously. Some other parameters for lipids and lutein production were also studied including saponification time, temperature, choice of alkali, and pre-treatment methods. The extraction efficiency with wet algae was compared with dried algae and shown better pigment recovery. The results indicated that the product pattern in each extracted phase was polarity dependent. Lutein and β-carotene were the main carotenoids extracted with ethanol while lipids come out with hexane.

Keywords: biodiesel, Chlorella vulgaris, extraction, lutein

Procedia PDF Downloads 341
7978 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H. Lin, Y. M. Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: horizontal axis wind turbine, turbulence model, noise, fluid dynamics

Procedia PDF Downloads 265
7977 Climate Change Effects on Agriculture

Authors: Abdellatif Chebboub

Abstract:

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Keywords: climate change, agriculture, weather change, danger of climate change

Procedia PDF Downloads 316
7976 Proposing a Strategic Management Maturity Model for Continues Innovation

Authors: Ferhat Demir

Abstract:

Even if strategic management is highly critical for all types of organizations, only a few maturity models have been proposed in business literature for the area of strategic management activities. This paper updates previous studies and presents a new conceptual model for assessing the maturity of strategic management in any organization. Strategic management maturity model (S-3M) is basically composed of 6 maturity levels with 7 dimensions. The biggest contribution of S-3M is to put innovation into agenda of strategic management. The main objective of this study is to propose a model to align innovation with business strategies. This paper suggests that innovation (breakthrough new products/services and business models) is the only way of creating sustainable growth and strategy studies cannot ignore this aspect. Maturity models should embrace innovation to respond dynamic business environment and rapidly changing customer behaviours.

Keywords: strategic management, innovation, business model, maturity model

Procedia PDF Downloads 194
7975 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
7974 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data

Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu

Abstract:

Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.

Keywords: graph theory, walkability, accessibility, street network

Procedia PDF Downloads 226
7973 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization

Procedia PDF Downloads 329
7972 Exploring the Food Environments and Their Influence on Food Choices of Working Adults

Authors: Deepa Shokeen, Bani Tamber Aeri

Abstract:

Food environments are believed to play a significant role in the obesity epidemic and robust research methods are required to establish which factors or aspects of the food environment are relevant to food choice and to adiposity. The relationship between the food environment and obesity is complex. While there is little research linking food access with obesity as an outcome measure in any age group, with the help of this article we will try to understand the relationship between what we eat and the environmental context in which these food choices are made. Methods: A literature search of studies published between January 2000 and December 2013 was undertaken on computerized medical, social science, health, nutrition and education databases including Google, PubMed etc. Reports of organisations such as World Health Organisation (WHO), Centre for Chronic Disease Control (CCDC) were studied to project the data. Results: Studies show that food environments play a significant role in the obesity epidemic and robust research methods are required to establish which factors or aspects of the food environment are relevant to food choice and to adiposity. Evidence indicates that the food environment may help explain the obesity and cardio-metabolic risk factors among young adults. Conclusion: Cardiovascular disease is the ever growing chronic disease, the incidence of which will increase markedly in the coming decades. Therefore, it is the need of the hour to assess the prevalence of various risk factors that contribute to the incidence of cardiovascular diseases especially in the work environment. Research is required to establish how different environments affect different individuals as individuals interact with the environment on a number of levels. We need to ascertain the impact of selected food and nutrition environments (Information, organization, community, consumer) on food choice and dietary intake of the working adults as it is important to learn how these food environments influence the eating perceptions and health behaviour of the adults.

Keywords: food environment, prevalence, cardiovascular disease, India, worksite, risk factors

Procedia PDF Downloads 401
7971 An Appraisal of the Utilisation of Social Media for Political Communication in the 2015 Nigerian Presidential Election

Authors: Tsegyu Santas

Abstract:

The aim of this study was to examine the utilization of social media for political communication during the 2011 presidential election in Nigeria. The research design adopted for the study was survey; 294 copies of questionnaire were distributed to students of mass communication in three selected universities in North Central Nigeria. Simple random sampling technique was used to select the respondents for the study. The results of the descriptive statistics show that majority of the respondents choice of presidential candidates during the 2011 presidential election was influenced by the use of social media as indicated by high value of mean (1.5805). Similarly, a large number of respondents were of the opinion that the two selected presidential candidates were popular because they used social media in their political campaign (mean value of 1.5575). In addition, the respondents affirmed that their voting pattern during the 2011 presidential elections was influenced by social media usage. This was validated by a high mean value of (1.6667). Similarly, the result of the test of hypothesis indicated that voters’ choice of political candidates was influenced by political communication on social media. In view of the findings of this study, the study, therefore, concludes that social media have redefined the landscape of political communication in Nigeria. Based on the findings of the study, it was recommended that social media should be fully integrated in Nigeria political communication system.

Keywords: communication, election, politics, social media

Procedia PDF Downloads 338
7970 Spatial Interpolation of Intermediate Soil Properties to Enhance Geotechnical Surveying for Foundation Design

Authors: Yelbek B. Utepov, Assel T. Mukhamejanova, Aliya K. Aldungarova, Aida G. Nazarova, Sabit A. Karaulov, Nurgul T. Alibekova, Aigul K. Kozhas, Dias Kazhimkanuly, Akmaral K. Tleubayeva

Abstract:

This research focuses on enhancing geotechnical surveying for foundation design through the spatial interpolation of intermediate soil properties. Traditional geotechnical practices rely on discrete data from borehole drilling, soil sampling, and laboratory analyses, often neglecting the continuous nature of soil properties and disregarding values in intermediate locations. This study challenges these omissions by emphasizing interpolation techniques such as Kriging, Inverse Distance Weighting, and Spline interpolation to capture the nuanced spatial variations in soil properties. The methodology is applied to geotechnical survey data from two construction sites in Astana, Kazakhstan, revealing continuous representations of Young's Modulus, Cohesion, and Friction Angle. The spatial heatmaps generated through interpolation offered valuable insights into the subsurface environment, highlighting heterogeneity and aiding in more informed foundation design decisions for considered cites. Moreover, intriguing patterns of heterogeneity, as well as visual clusters and transitions between soil classes, were explored within seemingly uniform layers. The study bridges the gap between discrete borehole samples and the continuous subsurface, contributing to the evolution of geotechnical engineering practices. The proposed approach, utilizing open-source software geographic information systems, provides a practical tool for visualizing soil characteristics and may pave the way for future advancements in geotechnical surveying and foundation design.

Keywords: soil mechanical properties, spatial interpolation, inverse distance weighting, heatmaps

Procedia PDF Downloads 85
7969 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 74
7968 Assembly Solution for Modular Buildings: Development of a Plug-In Self-Locking Device Designed for Light-Framed Structures

Authors: Laurence Picard, André Bégin-Drolet, Pierre Blanchet

Abstract:

The prefabricated construction industry has been operating in North America for several years now and differs from traditional construction by its much shorter project timelines, lower costs, and increased build quality. Faced with the global housing crisis, prefabrication should be the first choice for erecting buildings quickly and at a low cost. However, the reality is quite different; manufacturers focus their operations mainly on single-home construction. This is explained by the lack of a suitable and efficient assembly solution for erecting large-scale buildings. Indeed, it is difficult to maintain the coveted advantages of prefabrication with a laborious on-site assembly and a colossal load of additional operations such as the installation of fasteners and the internal finishing. In the desire to maximize the benefits of prefabrication and make it a smart choice even for large buildings, an automated connection solution is developed. The plug-in self-locking device was developed accordingly to the product design phases: on-site observations, the definition of the problem and product requirements, solution generation, prototyping, fabricating and testing.

Keywords: assembly solution, automation, construction productivity, modular connection, modular buildings, plug-in device, self-lock mechanism

Procedia PDF Downloads 168
7967 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
7966 “Chasing Hope”: Parents’ Perspectives on Complementary and Alternative Interventions for Autism Spectrum Disorder Children in Kazakhstan

Authors: Sofiya An, Akbota Kanderzhanova, Assel Akhmetova, Faye Foster, Chee K. Chan

Abstract:

Healthcare, education and social support for children with autism in Kazakhstan has been evolving and transforming over the last three decades. There is still limited knowledge of the use of complementary and alternative medicine by families caring for autistic children in this post-Soviet region. An exploratory qualitative focus group study of Kazakhstani families was carried out to capture and understand their experiences of using complementary and alternative (CAM) medicine. A total of six focus groups were conducted in five cities across the country including Nur-Sultan, Almaty, Kyzylorda, Karaganda and Taraz. The perceived factors driving the availability, choice, and use of complementary and alternative medicine by families of autistic children in the country were distilled and evaluated. The data collected was analyzed using a framework analysis and themes and subthemes were developed. Two major themes stood out. The first was the “unmet needs”, which relates to the predisposing factors that motivate parents to CAM uptake, and the second was the “chasing hope”, which relates to the enabling factors that facilitate parents’ uptake of CAM. Fear of missing out (FOMO) is a latent underlying motivation underscoring these two themes as well. Parents of autism spectrum disorder (ASD) children in Kazakhstan have to deal with many challenges when seeking treatment for their children with ASD. They are prepared and resort to try out whatever CAM interventions available. The motivation and rationale of choice of use is driven by the lack of options and the hope of any potential positive outcome rather than from rational decisions based on efficacy or the evidence-based data of CAM. Parents get desperate and are willing to try CAM regardless of and independent of their cultural and belief systems and they do not want to miss out just in case it might work. This study also gives an international and cross-cultural perspective on the motives, choice and practice of parents with ASD children using CAM in Kazakhstan, a Central Asian country.

Keywords: autism spectrum disorder, Central Asia, complementary and alternative medicine, cross-cultural perspective, qualitative research

Procedia PDF Downloads 146
7965 Understanding the Complex Relationship Between Economic Independency and Intimate Partner Violence by Applying a Socio-Ecological Analysis Framework

Authors: Suzanne Bouma

Abstract:

In the Netherlands, the assumed causal relationship between employment, economic independence and individual freedom of choice has been extended to the approach of intimate partner violence (IPV). In the interests of combating IPV, it is crucial to further investigate this relationship. Based on a literature review, this article shows that the relationship between economic independence and IPV is highly complex. To unravel this complex relationship, a socio-ecological analysis framework has been applied. First, it is a layered relation, in where employment does not necessarily lead to economic independence, which can be explained by social inequalities. Second, the relation is bidirectional, where women do not by definition have access to their own financial recourses due to tactics of financial control by the intimate partner. This reveals the coexistence of IPV and economic abuse and the extent to which an intimate relationship affects the scope for individual choice. Third, there is a paradoxical relationship in which employment is both a protective and risk factor for IPV. This, in turn, cannot be separated from traditional norms about masculinity and femininity, where men occupy a position of power and derive status from being the breadwinner. These findings imply that not only the approach to IPV but also the labor market policy requires a gender-sensitive approach.

Keywords: intimate partner violence, economic independence, literature review, socio-ecological analysis framework

Procedia PDF Downloads 228
7964 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: discrete event simulation, emergency medical services, forecast model, hospital selection

Procedia PDF Downloads 91
7963 Jensen's Inequality and M-Convex Functions

Authors: Yamin Sayyari

Abstract:

In this paper, we generalized the Jensen's inequality for m-convex functions and also we present a correction of Jensen's inequality which is a better than the generalization of this inequality for m-convex functions. Finally, we have found new lower and new upper bounds for Jensen's discrete inequality.

Keywords: Jensen's inequality, m-convex function, Convex function, Inequality

Procedia PDF Downloads 145
7962 An Investigation into the Levels of Human Development, Contraceptives’ Usage and Maternal Health in Indian States

Authors: Divyanshi Singh

Abstract:

Women’s right to have choices, sense of self-worth and their right to have access to opportunities have been a subject of serious concern. The health of women and their children in Indian society is adversely affected by the woman’s inferior status within households. The level of human development in society is a reflection of the better status of a woman, which has a clear impact on the usage of contraceptive methods and maternal health. The study is an attempt to assess the performance of Indian states on the parameters of levels of development and to see how the developmental trajectory is influencing the choice for contraception and maternal health. The objective of the paper is to study the relationship between usage of contraception, maternal health and levels of human development in Indian states. Data from NFHS-4th round, AHS (2012-13) and census 2011 is used. Three indicators of human development (effective literacy, infant mortality and gross district domestic product) have been taken. Maternal health for the study has been measured in MMR, IMR and pregnancy resulted in abortions, stillbirths and miscarriage. The multiple regression analysis has been done to analyze the relationship between them. The Developmental factor is found to be greatly influencing the choice of family planning and thus they both show strong relation with maternal health.

Keywords: human development, contraceptive usage, maternal health, effective literacy

Procedia PDF Downloads 200
7961 Mood Choices and Modality Patterns in Donald Trump’s Inaugural Presidential Speech

Authors: Mary Titilayo Olowe

Abstract:

The controversies that trailed the political campaign and eventual choice of Donald Trump as the American president is so great that expectations are high as to what the content of his inaugural speech will portray. Given the fact that language is a dynamic vehicle of expressing intentions, the speech needs to be objectively assessed so as to access its content in the manner intended through the three strands of meaning postulated by the Systemic Functional Grammar (SFG): the ideational, the interpersonal and the textual. The focus of this paper, however, is on the interpersonal meaning which deals with how language exhibits social roles and relationship. This paper, therefore, attempts to analyse President Donald Trump’s inaugural speech to elicit interpersonal meaning in it. The analysis is done from the perspective of mood and modality which are housed in SFG. Results of the mood choice which is basically declarative, reveal an information-centered speech while the high option for the modal verb operator ‘will’ shows president Donald Trump’s ability to establish an equal and reliant relationship with his audience, i.e., the Americans. In conclusion, the appeal of the speech to different levels of Interpersonal meaning is largely responsible for its overall effectiveness. One can, therefore, understand the reason for the massive reaction it generates at the center of global discourse.

Keywords: interpersonal, modality, mood, systemic functional grammar

Procedia PDF Downloads 224
7960 Drying Kinetics of Vacuum Dried Beef Meat Slices

Authors: Elif Aykin Dincer, Mustafa Erbas

Abstract:

The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process.

Keywords: beef slice, drying models, effective diffusivity, vacuum

Procedia PDF Downloads 289
7959 A Cros Sectional Observational Study of Prescription Pattern of Gastro-Protective Drugs with Non-Steroidal Anti-Inflammatory Drugs in Nilgiris, India

Authors: B.S. Roopa

Abstract:

Objectives: To investigate the prevalence of concomitant use of GPDs in patients treated with NSAIDs and GPDs in recommended dose and frequency as prophylaxis. And also to know the association between risk factors and prescription of GPDs in patients treated with NSAIDs. Methods: Study was a prospective, observational, cross-sectional survey. Data from patients with prescription of NSAIDs at the out-patient departments of secondary care Hospital, Nilgiris, India were collected in a specially designed proforma for a period of 45 days. Analysis using χ2 tests for discrete variables. Factors that might be associated with prescription of GPD with NSIADs were assessed in multiple logistic regression models. Results: Three hundred and three patients were included in this study, and the rate of GPD prescription was 89.1%. Most of the patients received H2-receptor antagonist, and, to a lesser degree, antacid and proton pump inhibitor. Patients with history of GI ulcer/bleeding were much more likely to be co-prescribed GPD than those who had no history of GI disorders .Compared with patients who were managed in general outpatient clinic, those managed in Secondary care hospital in Nilgrisis, India were more likely to receive GPD. Conclusions: The prescription rate of GPD with NSAIDs is high. Patients were prescribed with H2RA with dose of 150mg twice daily, which are not effective in reducing the risk of NSAIDs induced gastric ulcer. Only the frequency of NSAIDs prescription was considered significant determinant for the co-prescription with GPAs in patients who are < 65 years and ≥ 65 years old.

Keywords: gastro protective agents, non steridol anti inlfammatory agents

Procedia PDF Downloads 296
7958 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm

Authors: Swati Kishor Zode, Rahul Ambekar

Abstract:

Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.

Keywords: classification, homomorphic encryption, clinical decision support, privacy

Procedia PDF Downloads 330
7957 Rethinking Urban Green Space Quality and Planning Models from Users and Experts’ Perspective for Sustainable Development: The Case of Debre Berhan and Debre Markos Cities, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

This study analyzed the users' and experts' views on the green space quality and planning models in Debre Berhan (DB) and Debre Markos (DM) cities in Ethiopia. A questionnaire survey was conducted on 350 park users (148 from DB and 202 from DM) to rate the accessibility, size, shape, vegetation cover, social and cultural context, conservation and heritage, community participation, attractiveness, comfort, safety, inclusiveness, and maintenance of green spaces using a Likert scale. A key informant interview was held with 13 experts in DB and 12 in DM. Descriptive statistics and tests of independence of variables using the chi-square test were done. A statistically significant association existed between the perception of green space quality attributes and users' occupation (χ² (160, N = 350) = 224.463, p < 0.001), age (χ² (128, N = 350) = 212.812, p < 0.001), gender (χ² (32, N = 350) = 68.443, p < 0.001), and education level (χ² (192, N = 350) = 293.396, p < 0.001). 61.7 % of park users were unsatisfied with the quality of urban green spaces. The users perceived dense vegetation cover as "good," with a mean value of 3.41, while the remaining were perceived as "medium with a mean value of 2.62 – 3.32". Only quantitative space standards are practiced as a green space planning model, while other models are unfamiliar and never used in either city. Therefore, experts need to be aware of and practice urban green models during urban planning to ensure that new developments include green spaces to accommodate the community's and the environment's needs.

Keywords: urban green space, quality, users and experts, green space planning models, Ethiopia

Procedia PDF Downloads 59
7956 Size, Shape, and Compositional Effects on the Order-Disorder Phase Transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) Nanocluster Alloys

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated worldwide by many researchers for their interesting catalytic and nanophase properties. The low-temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. These systems have similar bulk phase diagrams with the L12 (Au3Cu, Pt3M, AuCu3, and PtM3) structurally ordered intermetallics and the L10 structure for the AuCu and PtM intermetallics. We consider three models for low temperature ordering in the phase diagrams of Au–Cu and Pt–M nanocluster alloys. These models are valid for sizes ~ 5 nm and approach bulk values for sizes ~ 20 nm. We study the phase transition in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. Experimentally, it is extremely challenging to determine thermodynamic data on nano–sized alloys. Reasonable agreement is found between these models and recent experimental data on nanometer clusters in the Au–Cu and Pt–M nanophase systems. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Some available evidence indicates that ordered intermetallic nanoclusters have better catalytic properties than disordered ones. We conclude with a discussion of physical mechanisms whereby ordering could improve the catalytic properties of nanocluster alloys.

Keywords: catalytic reactions, gold nanoalloys, phase transitions, platinum nanoalloys

Procedia PDF Downloads 176