Search results for: crop disease detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7914

Search results for: crop disease detection

7104 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 438
7103 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: inland waterways, YOLO, sensor fusion, self-attention

Procedia PDF Downloads 124
7102 Crop Losses, Produce Storage and Food Security, the Nexus: Attaining Sustainable Maize Production in Nigeria

Authors: Charles Iledun Oyewole, Harira Shuaib

Abstract:

While fulfilling the food security of an increasing population like Nigeria remains a major global concern, more than one-third of crop harvested is lost or wasted during harvesting or in postharvest operations. Reducing the harvest and postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, eliminate hunger and improve farmers’ livelihoods. Nigeria is one of the countries in sub-Saharan Africa with insufficient food production and high food import bill, which has had debilitating effects on the country’s economy. One of the goals of Nigeria’s agricultural development policy is to ensure that, the nation produces enough food and be less dependent on importation so as to ensure adequate and affordable food for all. Maize could fill the food gap in Nigeria’s effort to beat hunger and food insecurity. Maize is the most important cereal after rice and its production contributes immensely to food availability on the tables of many Nigerians. Maize grains constitute primary source of food for large percentage of the Nigerian populace, thus a considerable waste of this valuable food pre and post-harvest constitutes such a major agricultural bottleneck; that the reduction of pre and post-harvest losses is now a common food security strategy. In surveys conducted, as much as 60% maize outputs can be lost on the field and during the storage stage due to technical inefficiency. Field losses due to rodent damage alone can account for between 10% - 60% grain losses depending on the location. While the use of scientific storage methods can reduce losses below 2% in storage, timely harvesting of crop can check losses on the fields resulting from rodent damage or pest infestation. A push for increased crop production must be complemented by available and affordable post-harvest technologies that will reduce losses on farmers’ fields as well as in storage.

Keywords: government policy, maize, population increase, storage, sustainable food production, yield, yield losses

Procedia PDF Downloads 136
7101 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 194
7100 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter

Procedia PDF Downloads 392
7099 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
7098 Identification of Potential Small Molecule Regulators of PERK Kinase

Authors: Ireneusz Majsterek, Dariusz Pytel, J. Alan Diehl

Abstract:

PKR-like ER kinase (PERK) is serine/threonie endoplasmic reticulum (ER) transmembrane kinase activated during ER-stress. PERK can activate signaling pathways known as unfolded protein response (UPR). Attenuation of translation is mediated by PERK via phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is necessary for translation initiation. PERK activation also directly contributes to activation of Nrf2 which regulates expression of anti-oxidant enzymes. An increased phosphorylation of eIF2α has been reported in Alzheimer disease (AD) patient hippocampus, indicating that PERK is activated in this disease. Recent data have revealed activation of PERK signaling in non-Hodgkins lymphomas. Results also revealed that loss of PERK limits mammary tumor cell growth in vitro and in vivo. Consistent with these observations, activation of UPR in vitro increases levels of the amyloid precursor protein (APP), the peptide from which beta-amyloid plaques (AB) fragments are derived. Finally, proteolytic processing of APP, including the cleavages that produce AB, largely occurs in the ER, and localization coincident with PERK activity. Thus, we expect that PERK-dependent signaling is critical for progression of many types of diseases (human cancer, neurodegenerative disease and other). Therefore, modulation of PERK activity may be a useful therapeutic target in the treatment of different diseases that fail to respond to traditional chemotherapeutic strategies, including Alzheimer’s disease. Our goal will be to developed therapeutic modalities targeting PERK activity.

Keywords: PERK kinase, small molecule inhibitor, neurodegenerative disease, Alzheimer’s disease

Procedia PDF Downloads 482
7097 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI

Procedia PDF Downloads 302
7096 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 80
7095 Prevalence of High Risk Human Papillomavirus in Cervical Dysplasia and Cancer Samples from Twin Cities in Pakistan

Authors: Sana Gul, Sheeba Murad, Aneela Javed

Abstract:

Introduction: Human Papilloma Virus (HPV) is small DNA virus mostly infecting mucosa and cutaneous keratinocytes. So far, more than 200 Human papillomaviruses are known. HPV have been divided into high- and low-risk on the basis of their oncogenic potential. High risk HPV is considered to be the main etiological cause for cervical cancer. Objective: Current study was designed to screen the local cervical cancer patients from the twin cities of Pakistan for the occurance of high risk HPV. Methodology: A total of 67 formalin fixed paraffin-embedded samples of cervical cancer biopsies were obtained from the government hospitals in Islamabad and Rawalpindi. Cervical cancer biopsies were examined for the presence of HPV DNA. Polymerase chain reaction (PCR) was used for the amplification of a region in the HPV-L1 gene for the general detection of the Papilloma virus and for the genotype specific detection of high risk HPV 16 and 18 using the GP5/GP6 primers and genotype specific primers respectively. Results: HPV DNA was detected in 59 out of 67 samples analyzed. 30 samples showed the presence of HPV16 while 22 samples were positive for HPV 18 . HPV subtype could not be determined in 7 samples. Conclusion: Our results show a strong association between HPV infection and cervical cancer among women in twin cities of Pakistan. One way to minimize the disease burden in relation to HPV infection in Pakistani population is the use of prophylactic vaccines and routine screening. An early diagnosis of HPV infection will allow better health management to reduce the risk of developing cervical cancer.

Keywords: cervical cancer, Pakistan, human papillomavirus, HPV 16

Procedia PDF Downloads 341
7094 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 158
7093 Spray-Dried, Biodegradable, Drug-Loaded Microspheres for Use in the Treatment of Lung Diseases

Authors: Mazen AlGharsan

Abstract:

Objective: The Carbopol Microsphere of Linezolid, a drug used to treat lung disease (pulmonary disease), was prepared using Buchi B-90 nano spray-drier. Methods: Production yield, drug content, external morphology, particle size, and in vitro release pattern were performed. Results: The work was 79.35%, and the drug content was 66.84%. The surface of the particles was shriveled in shape, with particle size distribution with a mean diameter of 9.6 µm; the drug was released in a biphasic manner with an initial release of 25.2 ± 5.7% at 60 minutes. It later prolonged the release by 95.5 ± 2.5% up to 12 hours. Differential scanning calorimetry (DSC) revealed no change in the melting point of the formulation. Fourier-transform infrared (FT-IR) studies showed no polymer-drug interaction in the prepared nanoparticles.

Keywords: nanotechnology, drug delivery, Linezolid, lung disease

Procedia PDF Downloads 13
7092 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination

Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa

Abstract:

Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.

Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes

Procedia PDF Downloads 278
7091 Advanced Machine Learning Algorithm for Credit Card Fraud Detection

Authors: Manpreet Kaur

Abstract:

When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.

Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card

Procedia PDF Downloads 114
7090 Crop Productivity, Nutrient Uptake and Apparent Balance for Rice Based Cropping Systems under Improved Crop Varieties and Nutrient Management Practices in Previous Enclaves of Bangladesh

Authors: Md. Samim Hossain Molla, Md. Mazharul Anwar, Md. Akkas Ali, Mian Sayeed Hassan

Abstract:

Being detached about 68 years from the mainland, the previous enclaves’ (Chhitmohal) farmers were engaged only in subsistence farming with low agricultural productivity and restricted access to inputs technology. To increase crop productivity for attaining food security by addressing soil status, the experiments were undertaken in 2017 and 2018 in three previous enclaves of Northern Bangladesh i.e. Dasiarchhara of Kurigram district; Dahalakhagrabari of Panchagarh district and Banskata of Lalmonirhat district under On-Farm Research Division, Bangladesh Agricultural Research Institute, Rangpur. The Mustard (var. BARI Sarisha-14)-Boro rice (var. BRRI dhan58)-T. Aman rice (var. BRRI dhan49) cropping pattern using soil test based (STB) fertilizer with cowdung (T1) or recommended fertilizer dose (T2) were tested against existing cropping pattern Fallow-Boro rice (var. BRRI dhan28)-T. Aman rice (var. Swarna) using farmers’ practices fertilizer dose (T3) in six disperse replications at each location maintaining Randomized Complete Block design. Almost all crops yields were relatively higher in T1 followed by T2. Farmers existing pattern with local varieties and imbalance fertilizer (T3) use may be decreased the crop yield. The rice equivalent yield of T1 was 109, 103 and 95% higher than T3 and the gross margin was 164, 153 and 133% higher in T1 than T3 at Dasiarchhara, Dahalakhagrabari and Banskata, respectively. The Benefit Cost Ratio for T1, T2 and T3 were 1.99, 1.78 and 1.28 in Dasiarchhara; 1.93, 1.81 and 1.27 in Dahalakhagrabari and 1.78, 1.71 and 1.25 in Banskata, respectively. There was a remarkable decrease in mineral N, P and K in the topsoil (0–15 cm) of T3 and T2 treatments at Dasiarchhara and Dahalakhagrabari, and a generally less marked decline under the same treatments at Banskata. The same practices (T1) exhibited the greatest nutrients uptake by the test crops. The apparent balance of N, P and K was negative in most cases, where it was less negative in T1 treatment. However, from the experimentation, it is revealed that balanced fertilization (STB) and inclusion of National Agricultural Research Institutes developed improved crops varieties in cropping pattern may increase the crop productivity, farm efficiency and farmer’s income in a remarkable level.

Keywords: cropping pattern, fertilizer management, nutrient balance, previous enclaves

Procedia PDF Downloads 145
7089 Effects of Intercropping Maize (Zea mays L.) with Jack Beans (Canavalia ensiformis L.) at Different Spacing and Weeding Regimes on Crops Productivity

Authors: Oluseun S. Oyelakin, Olalekan W. Olaniyi

Abstract:

A field experiment was conducted at Ido town in Ido Local Government Area of Oyo state, Nigeria to determine the effects of intercropping maize (Zea mays L.) with Jack bean (Canavalia ensiformis L.) at different spacing and weeding regimes on crops productivity. The treatments were 2 x 2 x 3 factorial arrangement involving two spatial crop arrangements. Spacing of 75 cm x 50 cm and 90 cm x 42 cm (41.667 cm) with two plants per stand resulted in plant population of approximately 53,000 plants/hectare. Also, Randomized Complete Block Design (RCBD) with two cropping patterns (sole and intercrop), three weeding regimes (weedy check, weeds once, and weed twice) with three replicates was used. Data were analyzed with SAS (Statistical Analysis System) and statistical means separated using Least Significant Difference (LSD) (P ≤ 0.05). Intercropping and crop spacing did not have significant influence on the growth parameters and yield parameters. The maize grain yield of 1.11 t/ha obtained under sole maize was comparable to 1.05 t/ha from maize/jack beans. Weeding regime significantly influenced growth and yields of maize in intercropping with Jack beans. Weeding twice resulted in significantly higher growth than that of the other weeding regimes. Plant height at 6 Weeks After Sowing (WAS) under weeding twice regime (3 and 6 WAS) was 83.9 cm which was significantly different from 67.75 cm and 53.47 cm for weeding once (3 WAS) and no weeding regimes respectively. Moreover, maize grain yield of 1.3 t/ha obtained from plots weeded twice was comparable to that of 1.23 t/ha from single weeding and both were significantly higher than 0.71 t/ha maize grain yield obtained from the no weeding control. The dry matter production of Jack beans reduced at some growth stages due to intercropping of maize with Jack beans though with no significance effect on the other growth parameters of the crop. There was no effect on the growth parameters of Jack beans in maize/jack beans intercrop based on cropping spacing while comparable growth and dry matter production in Jack beans were produced in maize/Jack beans mixture with single weeding.

Keywords: crop spacing, intercropping, growth parameter, weeding regime, sole cropping, WAS, week after sowing

Procedia PDF Downloads 144
7088 Prevalence of Autoimmune Thyroid Disease in Recurrent Aphthous Stomatitis

Authors: Arghavan Tonkaboni, Shamsolmolouk Najafi, Mohmmad Taghi Kiani, Mehrzad Gholampour, Touraj Goli

Abstract:

Introduction: Recurrent aphthous stomatitis (RAS) is a multifactorial recurrent oral lesion; which is an autoimmune disease. TH1 cytokines are the most important etiological factors. Autoimmune thyroid disease (ATD) is one of the most common autoimmune diseases and generally coexists with other autoimmune diseases. This study assessed the prevalence of thyroid disease in patients with recurrent aphthous stomatitis. Materials and Methods: This case control study assessed 100 known RAS patients who were diagnosed clinically by oral medicine specialists; venous blood samples were analyzed for thyroid stimulating hormone (TSH), free triiodothyronine (fT3), total thyroxine (fT4), thyroglobulin, anti-thyroid peroxidase antibody (anti-TPO) and anti-thyroglobulin antibody (anti-TG) levels. Results: Fifty patients with RAS aged between 18-42 years (28.5±5.8) and 50 healthy volunteers aged 19-45 years (27.3±5.4) participated. In RAS patients, fT3 and TSH levels were significantly higher (P=0.031, P=0.706); however, fT4 level was lower in the RAS group (P=0.447). Anti TG and anti-TPO levels were significantly higher in the RAS group (P=0.008, P=0.067). Conclusion: Our study showed that ATD prevalence was significantly higher in RAS patients. Based on this study, we recommend assessment of thyroid hormones and antibodies in RAS patients.

Keywords: recurrent aphthous stomatitis, thyroid antibodies, thyroid hormone, thyroid autoimmune disease

Procedia PDF Downloads 342
7087 Conservation Detection Dogs to Protect Europe's Native Biodiversity from Invasive Species

Authors: Helga Heylen

Abstract:

With dogs saving wildlife in New Zealand since 1890 and governments in Africa, Australia and Canada trusting them to give the best results, Conservation Dogs Ireland want to introduce more detection dogs to protect Europe's native wildlife. Conservation detection dogs are fast, portable and endlessly trainable. They are a cost-effective, highly sensitive and non-invasive way to detect protected and invasive species and wildlife disease. Conservation dogs find targets up to 40 times faster than any other method. They give results instantly, with near-perfect accuracy. They can search for multiple targets simultaneously, with no reduction in efficacy The European Red List indicates the decline in biodiversity has been most rapid in the past 50 years, and the risk of extinction never higher. Just two examples of major threats dogs are trained to tackle are: (I)Japanese Knotweed (Fallopia Japonica), not only a serious threat to ecosystems, crops, structures like bridges and roads - it can wipe out the entire value of a house. The property industry and homeowners are only just waking up to the full extent of the nightmare. When those working in construction on the roads move topsoil with a trace of Japanese Knotweed, it suffices to start a new colony. Japanese Knotweed grows up to 7cm a day. It can stay dormant and resprout after 20 years. In the UK, the cost of removing Japanese Knotweed from the London Olympic site in 2012 was around £70m (€83m). UK banks already no longer lend on a house that has Japanese Knotweed on-site. Legally, landowners are now obliged to excavate Japanese Knotweed and have it removed to a landfill. More and more, we see Japanese Knotweed grow where a new house has been constructed, and topsoil has been brought in. Conservation dogs are trained to detect small fragments of any part of the plant on sites and in topsoil. (II)Zebra mussels (Dreissena Polymorpha) are a threat to many waterways in the world. They colonize rivers, canals, docks, lakes, reservoirs, water pipes and cooling systems. They live up to 3 years and will release up to one million eggs each year. Zebra mussels attach to surfaces like rocks, anchors, boat hulls, intake pipes and boat engines. They cause changes in nutrient cycles, reduction of plankton and increased plant growth around lake edges, leading to the decline of Europe's native mussel and fish populations. There is no solution, only costly measures to keep it at bay. With many interconnected networks of waterways, they have spread uncontrollably. Conservation detection dogs detect the Zebra mussel from its early larvae stage, which is still invisible to the human eye. Detection dogs are more thorough and cost-effective than any other conservation method, and will greatly complement and speed up the work of biologists, surveyors, developers, ecologists and researchers.

Keywords: native biodiversity, conservation detection dogs, invasive species, Japanese Knotweed, zebra mussel

Procedia PDF Downloads 196
7086 The Importance of Clinicopathological Features for Differentiation Between Crohn's Disease and Ulcerative Colitis

Authors: Ghada E. Esheba, Ghadeer F. Alharthi, Duaa A. Alhejaili, Rawan E. Hudairy, Wafaa A. Altaezi, Raghad M. Alhejaili

Abstract:

Background: Inflammatory bowel disease (IBD) consists of two specific gastrointestinal disorders: ulcerative colitis (UC) and Crohn's disease (CD). Despite their distinct natures, these two diseases share many similar etiologic, clinical and pathological features, as a result, their accurate differential diagnosis may sometimes be difficult. Correct diagnosis is important because surgical treatment and long-term prognosis differ from UC and CD. Aim: This study aims to study the characteristic clinicopathological features which help in the differential diagnosis between UC and CD, and assess the disease activity in ulcerative colitis. Materials and methods: This study was carried out on 50 selected cases. The cases included 27 cases of UC and 23 cases of CD. All the cases were examined using H& E and immunohistochemically for bcl-2 expression. Results: Characteristic features of UC include: decrease in mucous content, irregular or villous surface, crypt distortion, and cryptitis, whereas the main cardinal histopathological features seen in CD were: epitheloid granuloma, transmural chronic inflammation, absence of mucin depletion, irregular surface, or crypt distortion. 3 cases of UC were found to be associated with dysplasia. UC mucosa contains fewer Bcl-2+ cells compared with CD mucosa. Conclusion: This study using multiple parameters such clinicopathological features and Bcl-2 expression as studied by immunohistochemical stain, helped to gain an accurate differentiation between UC and CD. Furthermore, this work spotted the light on the activity and different grades of UC which could be important for the prediction of relapse.

Keywords: Crohn's disease, dysplasia, inflammatory bowel disease, ulcerative colitis

Procedia PDF Downloads 191
7085 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain

Authors: Jia Zhang, Fengmei Yao, Yanjing Tan

Abstract:

The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.

Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain

Procedia PDF Downloads 375
7084 Cost Analysis of Neglected Tropical Disease in Nigeria: Implication for Programme Control and Elimination

Authors: Lawong Damian Bernsah

Abstract:

Neglected Tropical Diseases (NTDs) are most predominant among the poor and rural populations and are endemic in 149 countries. These diseases are the most prevalent and responsible for infecting 1.4 billion people worldwide. There are 17 neglected tropical diseases recognized by WHO that constitute the fourth largest disease health and economic burden of all communicable diseases. Five of these 17 diseases are considered for the cost analysis of this paper: lymphatic filariasis, onchocerciasis, trachoma, schistosomiasis, and soil transmitted helminth infections. WHO has proposed a roadmap for eradication and elimination by 2020 and treatments have been donated through the London Declaration by pharmaceutical manufacturers. The paper estimates the cost of NTD control programme and elimination for each NTD disease and total in Nigeria. This is necessary as it forms the bases upon which programme budget and expenditure could be based. Again, given the opportunity cost the resources for NTD face it is necessary to estimate the cost so as to provide bases for comparison. Cost of NTDs control and elimination programme is estimated using the population at risk for each NTD diseases and for the total. The population at risk is gotten from the national master plan for the 2015 - 2020, while the cost per person was gotten for similar studies conducted in similar settings and ranges from US$0.1 to US$0.5 for Mass Administration of Medicine (MAM) and between US$1 to US$1.5 for each NTD disease. The combined cost for all the NTDs was estimated to be US$634.88 million for the period 2015-2020 and US$1.9 billion for each NTD disease for the same period. For the purpose of sensitivity analysis and for robustness of the analysis the cost per person was varied and all were still high. Given that health expenditure for Nigeria (% of GDP) averages 3.5% for the period 1995-2014, it is very clear that efforts have to be made to improve allocation to the health sector in general which is hoped could trickle to NTDs control and elimination. Thus, the government and the donor partners would need to step-up budgetary allocation and also to be aware of the costs of NTD control and elimination programme since they have alternative uses. Key Words: Neglected Tropical Disease, Cost Analysis, NTD Programme Control and Elimination, Cost per Person

Keywords: Neglected Tropical Disease, Cost Analysis, Neglected Tropical Disease Programme Control and Elimination, Cost per Person

Procedia PDF Downloads 273
7083 MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)

Authors: Dilip Saikia, Suparna Bhattacharjee, Nirab Adhikary

Abstract:

In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis.

Keywords: photoluminescence, quantum dots, quenching, sensor

Procedia PDF Downloads 266
7082 Enhanced Traffic Light Detection Method Using Geometry Information

Authors: Changhwan Choi, Yongwan Park

Abstract:

In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.

Keywords: traffic light, intelligent vehicle, night, detection, DGPS

Procedia PDF Downloads 325
7081 Quantum Dot Biosensing for Advancing Precision Cancer Detection

Authors: Sourav Sarkar, Manashjit Gogoi

Abstract:

In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.

Keywords: quantum dots, biosensing, cancer, device

Procedia PDF Downloads 56
7080 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 399
7079 Filtering Intrusion Detection Alarms Using Ant Clustering Approach

Authors: Ghodhbani Salah, Jemili Farah

Abstract:

With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.

Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms

Procedia PDF Downloads 404
7078 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 358
7077 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 347
7076 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 105
7075 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies

Authors: Getachew Tilahun, Oluwole Makinde, David Malonza

Abstract:

We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.

Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation

Procedia PDF Downloads 327