Search results for: churn prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2248

Search results for: churn prediction

1438 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 68
1437 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis

Authors: Esra Polat

Abstract:

Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.

Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis

Procedia PDF Downloads 281
1436 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.

Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus

Procedia PDF Downloads 186
1435 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms

Authors: Habtamu Ayenew Asegie

Abstract:

Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.

Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction

Procedia PDF Downloads 43
1434 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: mung bean, near infrared, germinatability, hard seed

Procedia PDF Downloads 305
1433 CFD Modeling of Pollutant Dispersion in a Free Surface Flow

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Said, Hervé Bournot, Georges Le Palec

Abstract:

In this work, we determine the turbulent dynamic structure of pollutant dispersion in two-phase free surface flow. The numerical simulation was performed using ANSYS Fluent. The flow study is three-dimensional, unsteady and isothermal. The study area has been endowed with a rectangular obstacle to analyze its influence on the hydrodynamic variables and progression of the pollutant. The numerical results show that the hydrodynamic model provides prediction of the dispersion of a pollutant in an open channel flow and reproduces the recirculation and trapping the pollutant downstream near the obstacle.

Keywords: CFD, free surface, polluant dispersion, turbulent flows

Procedia PDF Downloads 547
1432 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 133
1431 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 109
1430 Hidden Markov Model for the Simulation Study of Neural States and Intentionality

Authors: R. B. Mishra

Abstract:

Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.

Keywords: hiden markov model, believe desire intention, neural activation, simulation

Procedia PDF Downloads 377
1429 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 410
1428 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning

Procedia PDF Downloads 156
1427 Your First Step to Understanding Research Ethics: Psychoneurolinguistic Approach

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari

Abstract:

Objective: This research aims at investigating the research ethics in the field of science. Method: It is an exploratory research wherein the researchers attempted to cover the phenomenon at hand from all specialists’ viewpoints. Results Discussion is based upon the findings resulted from the analysis the researcher undertook. Concerning the results’ prediction, the researcher needs first to seek highly qualified people in the field of research as well as in the field of statistics who share the philosophy of the research. Then s/he should make sure that s/he is adequately trained in the specific techniques, methods and statically programs that are used at the study. S/he should also believe in continually analysis for the data in the most current methods.

Keywords: research ethics, legal, rights, psychoneurolinguistics

Procedia PDF Downloads 45
1426 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network

Authors: Leila Keshavarz Afshar, Hedieh Sajedi

Abstract:

Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.

Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter

Procedia PDF Downloads 148
1425 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code

Authors: Kadda Boumediene, Mohamed Bouzit

Abstract:

The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.

Keywords: seiun maru propeller, steady, unstead, CFD, HSP

Procedia PDF Downloads 308
1424 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data

Authors: Minjuan Sun

Abstract:

Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.

Keywords: credit score, digital footprint, Fintech, machine learning

Procedia PDF Downloads 165
1423 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 40
1422 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 67
1421 Pres Syndrome in Pregnancy: A Case Series of Five Cases

Authors: Vaibhavi Birle

Abstract:

Posterior reversible encephalopathy syndrome is a rare clinic-radiological syndrome associated with acute changes in blood pressure during pregnancy. It is characterized symptomatically by headache, seizures, altered mental status, and visual blurring with radiological changes of white matter (vasogenic oedema) affecting the posterior occipital and parietal lobes of the brain. It is being increasingly recognized due to increased institutional deliveries and advances in imaging particularly magnetic resonance imaging (MRI). In spite of the increasing diagnosis the prediction of PRES and patient factors affecting susceptibility is still not clear. Hence, we conducted the retrospective study to analyse the factors associated with PRES at our tertiary centre.

Keywords: pres syndrome, eclampsia, maternal outcome, fetal outcome

Procedia PDF Downloads 152
1420 De-convolution Based IVIVC Correlation for Tacrolimus ER Tablet (Narrow Therapeutic Index Drug) With Widening of Dissolution Prediction for Virtual Bioequivalence

Authors: Sajad Khaliq Dar, Dipanjan Goswami, Arshad H. Khuroo, Mohd. Akhtar, Pulak Kumar Metia, Sudershan Kumar

Abstract:

Background: Development of modified-release oral dosage formulations (OSD) like tacrolimus in narrow therapeutic categories, together with high levels of intra-individual variability, impose greater challenges. The risk assessment for bioequivalence studies requires developing a suitable design through pilot studies involving the comparison of multiple formulations of the same product with a marketed product to understand the in-vivo behaviour. These formulations could have varying coating levels and other minor quantitative differences to achieve the desired release rate for the final product. Although small-scale studies are critical before the conduct of full-scale Pharmacokinetic (PK) studies, regulatory agencies evaluate critical bioavailability attributes (CBA) before approving the submitted dossiers. Since Tacrolimus is a BCS Class II drug, therefore developing the extended-release formulation, in addition to associated challenges, provides an opportunity to present the In vitro-in vivo correlations (IVIVC) to regulatory agencies, not only to exhibit product quality but also to reduce the burden of additional human trials and cost involved to them for bringing the product to market. Objective: The objective of this study was to develop a Level-A In vitro - In vivo Correlation (IVIVC) model for Sun Pharma’s test formulation Tacrolimus ER tablet 4mg and extend its application to a widened dissolution window of 25% at 2.5 hours (critical release time) sampling time point. Experimental Procedure: Post the conduct of two in-vivo studies, a pilot study evaluating two test prototypes on 24 subjects (under fasting) and a pivotal study having 50 subjects (under fasting), the observed pharmacokinetic profile was used for IVIVC model development. The dissolution media used was 0.005% HPC + 0.25% SLS in Water 900 mL at pH 4.50 using USP II (Paddle) apparatus with alternative sinkers operated at 100 RPM. The sampling time points were chosen to mimic the drug absorption in vivo. The dissolution best fit to data was obtained using Makoid Banakar kinetics. Then deconvolution, anchoring to concepts of the single compartment by Wagner Nelson method was applied for tacrolimus slow-release formulation batch with film coating weight build-up of 5.4% (used in pilot bio study), medium release with Hypromellose (retard-release exhibit batch used in the pivotal study) and fast release formulation batch with film coating weight build-up of 5.05% (used in pilot bio study). Results and Conclusion: The results were deemed acceptable as prediction errors for internal and external validation were < 3% depicting in-vitro drug release mimics in-vivo absorption. Moreover, the prediction result for the Test/Reference ratio was <15% for all test formulations and widening dissolution (i.e., 39%-64% drug release at 2.5hrs) predictions were well within 80-125% when compared against Envarsus XR (reference drug). This IVIVC-validated model can be used in the futuristic exploration of dose titration with 1mg tacrolimus ER OSD as a surrogate for In-vivo bioequivalence trials.

Keywords: pharmacokinetics, BCS, oral dosage form, Bioavailability, intra-individual variability

Procedia PDF Downloads 6
1419 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 320
1418 Prediction of Fire Growth of the Office by Real-Scale Fire Experiment

Authors: Kweon Oh-Sang, Kim Heung-Youl

Abstract:

Estimating the engineering properties of fires is important to be prepared for the complex and various fire risks of large-scale structures such as super-tall buildings, large stadiums, and multi-purpose structures. In this study, a mock-up of a compartment which was 2.4(L) x 3.6 (W) x 2.4 (H) meter in dimensions was fabricated at the 10MW LSC (Large Scale Calorimeter) and combustible office supplies were placed in the compartment for a real-scale fire test. Maximum heat release rate was 4.1 MW and total energy release obtained through the application of t2 fire growth rate was 6705.9 MJ.

Keywords: fire growth, fire experiment, t2 curve, large scale calorimeter

Procedia PDF Downloads 338
1417 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 401
1416 EGF Serum Level in Diagnosis and Prediction of Mood Disorder in Adolescents and Young Adults

Authors: Monika Dmitrzak-Weglarz, Aleksandra Rajewska-Rager, Maria Skibinska, Natalia Lepczynska, Piotr Sibilski, Joanna Pawlak, Pawel Kapelski, Joanna Hauser

Abstract:

Epidermal growth factor (EGF) is a well-known neurotrophic factor that involves in neuronal growth and synaptic plasticity. The proteomic research provided in order to identify novel candidate biological markers for mood disorders focused on elevated EGF serum level in patients during depression episode. However, the EGF association with mood disorder spectrum among adolescents and young adults has not been studied extensively. In this study, we aim to investigate the serum levels of EGF in adolescents and young adults during hypo/manic, depressive episodes and in remission compared to healthy control group. In our study, we involved 80 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorder spectrum, and 35 healthy volunteers matched by age and gender. Diagnoses were established according to DSM-IV-TR criteria using structured clinical interviews: K-SADS for child and adolescents, and SCID for young adults. Clinical and biological evaluations were made at baseline and euthymic mood (at 3th or 6th month of treatment and after 1 and 2 years). The Young Mania Rating Scale and Hamilton Rating Scale for Depression were used for assessment. The study protocols were approved by the relevant ethics committee. Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human EGF (cat. no DY 236) DuoSet ELISA kit was used (R&D Systems). Serum EGF levels were analysed with following variables: age, age under 18 and above 18 years old, sex, family history of affective disorders, drug-free vs. medicated. Shapiro-Wilk test was used to test the normality of the data. The homogeneity of variance was calculated with Levene’s test. EGF levels showed non-normal distribution and the homogeneity of variance was violated. Non-parametric tests: Mann-Whitney U test, Kruskall-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation coefficient was applied in the analyses The statistical significance level was set at p<0.05. Elevated EGF level at baseline (p=0.001) and at month 24 (p=0.02) was detected in study subjects compared with controls. Increased EGF level in women at month 12 (p=0.02) compared to men in study group have been observed. Using Wilcoxon signed rank test differences in EGF levels were detected: decrease from baseline to month 3 (p=0.014) and increase comparing: month 3 vs. 24 (p=0.013); month 6 vs. 12 (p=0.021) and vs. 24 (p=0.008). EGF level at baseline was negatively correlated with depression and mania occurrence at 24 months. EGF level at 24 months was positively correlated with depression and mania occurrence at 12 months. No other correlations of EGF levels with clinical and demographical variables have been detected. The findings of the present study indicate that EGF serum level is significantly elevated in the study group of patients compared to the controls. We also observed fluctuations in EGF levels during two years of disease observation. EGF seems to be useful as an early marker for prediction of diagnosis, course of illness and treatment response in young patients during first episode od mood disorders, which requires further investigation. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.

Keywords: biological marker, epidermal growth factor, mood disorders, prediction

Procedia PDF Downloads 190
1415 Effect of Downstream Pressure in Tuning the Flow Control Orifices of Pressure Fed Reaction Control System Thrusters

Authors: Prakash M.N, Mahesh G, Muhammed Rafi K.M, Shiju P. Nair

Abstract:

Introduction: In launch vehicle missions, Reaction Control thrusters are being used for the three-axis stabilization of the vehicle during the coasting phases. A pressure-fed propulsion system is used for the operation of these thrusters due to its less complexity. In liquid stages, these thrusters are designed to draw propellant from the same tank used for the main propulsion system. So in order to regulate the propellant flow rates of these thrusters, flow control orifices are used in feed lines. These orifices are calibrated separately as per the flow rate requirement of individual thrusters for the nominal operating conditions. In some missions, it was observed that the thrusters were operated at higher thrust than nominal. This point was addressed through a series of cold flow and hot tests carried out in-ground and this paper elaborates the details of the same. Discussion: In order to find out the exact reason for this phenomenon, two flight configuration thrusters were identified and hot tested in the ground with calibrated orifices and feed lines. During these tests, the chamber pressure, which is directly proportional to the thrust, is measured. In both cases, chamber pressures higher than the nominal by 0.32bar to 0.7bar were recorded. The increase in chamber pressure is due to an increase in the oxidizer flow rate of both the thrusters. Upon further investigation, it is observed that the calibration of the feed line is done with ambient pressure downstream. But in actual flight conditions, the orifices will be subjected to operate with 10 to 11bar pressure downstream. Due to this higher downstream pressure, the flow through the orifices increases and thereby, the thrusters operate with higher chamber pressure values. Conclusion: As part of further investigatory tests, two numbers of fresh thrusters were realized. Orifice tuning of these thrusters was carried out in three different ways. In the first trial, the orifice tuning was done by simulating 1bar pressure downstream. The second trial was done with the injector assembled downstream. In the third trial, the downstream pressure equal to the flight injection pressure was simulated downstream. Using these calibrated orifices, hot tests were carried out in simulated vacuum conditions. Chamber pressure and flow rate values were exactly matching with the prediction for the second and third trials. But for the first trial, the chamber pressure values obtained in the hot test were more than the prediction. This clearly shows that the flow is detached in the 1st trial and attached for the 2nd & 3rd trials. Hence, the error in tuning the flow control orifices is pinpointed as the reason for this higher chamber pressure observed in flight.

Keywords: reaction control thruster, propellent, orifice, chamber pressure

Procedia PDF Downloads 201
1414 Monitoring and Prediction of Intra-Crosstalk in All-Optical Network

Authors: Ahmed Jedidi, Mesfer Mohammed Alshamrani, Alwi Mohammad A. Bamhdi

Abstract:

Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network.

Keywords: all-optical networks, optical crosstalk, optical cross-connect, crosstalk, monitoring crosstalk

Procedia PDF Downloads 465
1413 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 169
1412 Role of von Willebrand Factor and ADAMTS13 In The Prediction of Thrombotic Complications In Patients With COVID-19

Authors: Nataliya V. Dolgushina, Elena A. Gorodnova, Olga S. Beznoshenco, Andrey Yu Romanov, Irina V. Menzhinskaya, Lyubov V. Krechetova, Gennady T. Suchich

Abstract:

In patients with COVID-19, generalized hypercoagulability can lead to the development of severe coagulopathy. This event is accompanied by the development of a pronounced inflammatory reaction. The observational prospective study included 39 patients with mild COVID-19 and 102 patients with moderate and severe COVID-19. Patients were then stratified into groups depending on the risk of venous thromboembolism. vWF to ADAMTS-13 concentrations and activity ratios were significantly higher in patients with a high venous thromboembolism risks in patients with moderate and severe forms COVID-19.

Keywords: ADAMTS-13, COVID-19, hypercoagulation, thrombosis, von Willebrand factor

Procedia PDF Downloads 89
1411 Implementation of Iterative Algorithm for Earthquake Location

Authors: Hussain K. Chaiel

Abstract:

The development in the field of the digital signal processing (DSP) and the microelectronics technology reduces the complexity of the iterative algorithms that need large number of arithmetic operations. Virtex-Field Programmable Gate Arrays (FPGAs) are programmable silicon foundations which offer an important solution for addressing the needs of high performance DSP designer. In this work, Virtex-7 FPGA technology is used to implement an iterative algorithm to estimate the earthquake location. Simulation results show that an implementation based on block RAMB36E1 and DSP48E1 slices of Virtex-7 type reduces the number of cycles of the clock frequency. This enables the algorithm to be used for earthquake prediction.

Keywords: DSP, earthquake, FPGA, iterative algorithm

Procedia PDF Downloads 389
1410 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 286
1409 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu

Abstract:

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.

Keywords: calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks

Procedia PDF Downloads 476