Search results for: biochemical parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9338

Search results for: biochemical parameters

8528 Predicting COVID-19 Severity Using a Simple Parameters in Resource-Limited Settings

Authors: Sireethorn Nimitvilai, Ussanee Poolvivatchaikarn, Nuchanart Tomeun

Abstract:

Objective: To determine the simple laboratory parameters to predict disease severity among COVID-19 patients in resource-limited settings. Material and methods: A retrospective cohort study was conducted at Nakhonpathom Hospital, a 722-bed tertiary care hospital, with an average of 50,000 admissions per year, during April 15 and May 15, 2021. Eligible patients were adults aged ≥ 15 years who were hospitalized with COVID-19. Baseline characteristics, comorbid conditions ad laboratory findings at admission were collected. Predictive factors for severe COVID-19 infection were analyzed. Result: There were 207 patients (79 male and 128 female) and the mean age was 46.7 (16.8) years. Of these, 39 cases (18.8%) were severe and 168 (81.2%) cases were non-severe. Factors associated with severe COVID-19 were neutrophil to lymphocyte ratio ≥ 4 (OR 8.1, 95%CI 2.3-20.3, P < 0.001) and C-reactive protein to albumin ratio ≥ 10 (OR 3.49, 95%CI 1.3-9.1, p 0.01). Conclusions: Complete blood counts, C-reactive protein and albumin are simple, inexpensive, widely available tests and can be used to predict severe COVID-19 in resource-limited settings.

Keywords: COVID-19, predictor of severity, resource-limiting settings, simple laboratory parameters

Procedia PDF Downloads 180
8527 Insecticidal Activity of Extracts Essential Oils of Mentha Rotundifolia

Authors: Bouziane Zehaira

Abstract:

Essential oils derived from aromatic or medicinal plants have recently proven useful in a variety of fields including the production of medicines, perfumes and foodstuffs. The purpose of this research is to determine the insecticidal activity of essential oils extracted from Mentha rotundifolia species against Aphis fabae. The bioassay used to determine essential oils toxicity to pest insect Aphis fabae revealed a very high effective repellent. The effect with concentrations of 100% and 30% were found to be statistically significant (F=64.800, P<0.0001) with an average of 7.66 and 7, respectively. According to the findings, the plant under consideration is promising as a source of natural pesticides and lends itself well to research in the field of pest control using biochemical alternatives.

Keywords: pest, mentha, activity, effective

Procedia PDF Downloads 61
8526 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures

Authors: T. Gomes, J. Manzi

Abstract:

The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.

Keywords: stirring systems, entropy, reactive system, optimization

Procedia PDF Downloads 246
8525 Empirical Model for the Estimation of Global Solar Radiation on Horizontal Surface in Algeria

Authors: Malika Fekih, Abdenour Bourabaa, Rafika Hariti, Mohamed Saighi

Abstract:

In Algeria the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Empirical constants for these models have been estimated and the results obtained have been tested statistically. The results show encouraging agreement between estimated and measured values.

Keywords: global solar radiation, empirical model, semi arid areas, climatological parameters

Procedia PDF Downloads 502
8524 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes

Authors: Baghdasaryan Marinka

Abstract:

The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.

Keywords: electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree

Procedia PDF Downloads 270
8523 Study of Parameters Affecting the Electrostatic Attractions Force

Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh

Abstract:

This paper contains two main parts. In the first part of paper we simulated and studied three type of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part, we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode Length and methods of improvement of adhesion force by changing these values.

Keywords: electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, electroadhesive grippers

Procedia PDF Downloads 403
8522 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 474
8521 Comprehensive Experimental Study to Determine Energy Dissipation of Nappe Flows on Stepped Chutes

Authors: Abdollah Ghasempour, Mohammad Reza Kavianpour, Majid Galoie

Abstract:

This study has investigated the fundamental parameters which have effective role on energy dissipation of nappe flows on stepped chutes in order to estimate an empirical relationship using dimensional analysis. To gain this goal, comprehensive experimental study on some large-scale physical models with various step geometries, slopes, discharges, etc. were carried out. For all models, hydraulic parameters such as velocity, pressure, water depth, flow regime and etc. were measured precisely. The effective parameters, then, could be determined by analysis of experimental data. Finally, a dimensional analysis was done in order to estimate an empirical relationship for evaluation of energy dissipation of nappe flows on stepped chutes. Because of using the large-scale physical models in this study, the empirical relationship is in very good agreement with the experimental results.

Keywords: nappe flow, energy dissipation, stepped chute, dimensional analysis

Procedia PDF Downloads 361
8520 Sub-Lethal Effects of Thiamethoxam and Pirimicarb on Life-Table Parameters of Diaeretiella rapae (Hymenoptera: Braconidae), Parasitoid of Lipaphis erysimi (Hemiptera: Aphididae)

Authors: Nastaran Rezaei, Mohammad Saeed Mossadegh, Farhan Kocheyli, Khalil Talebi Jahromi, Aurang Kavousi

Abstract:

Integrated Pest Management (IPM) aims to combine biological and chemical strategies and measures, hence highlighting the study of acute toxicity and sub-lethal effects of pesticides comprehensively. The present research focused on the side effects of thiamethoxam and pirimicarb sub-lethal concentrations on demographic parameters of Diaeretiella rapae (McIntosh Laboratory) (Hymenoptera: Braconidae). Adult parasitoids were exposed to LC25 of insecticides as well as distilled water as the control. The results showed that thiamethoxam adversely affected population parameters (r, λ, R0, T), adults' longevity, females' oviposition period and mean fecundity, and a similar trend was obtained for pirimicarb with the exception of generation time (T), the latter did not significantly change compared to the control. The intrinsic rate of increase (r) in the control and those treated with pirimicarb and thiamethoxam were 0.2801, 0.2064, 0.1525 days-1, respectively, and the sex ratio was biased toward females in all treatments. Furthermore, none of the insecticides influenced total pre-oviposition period (TPOP) and offspring emergence rate. In general, these results indicated that both insecticides potentially distort the demographic parameters of the parasitoid even at sub-lethal concentrations, and then they should not be considered for IPM program in the presence of D. rapae.

Keywords: Diaeretiella rapae, Lipaphis erysimi, life-table study, pirimicarb, thiamethoxam

Procedia PDF Downloads 192
8519 Paramecuim as a Model for the Evaluation of Toxicity (Growth, Total Proteins, Respiratory and GSH Bio Marker Changes) Observed after Treatment with Essential Oils Isolated from Artemisia herba-alba Plant of Algeria

Authors: Bouchiha Hanene, Rouabhi Rachid, Bouchama Khaled, Djebar Berrebbah Houraya, Djebar Mohamed Reda

Abstract:

Recently, some natural products such as essentials oils (EOs) have been used in the fields as alternative to synthetic compounds, to minimize the negative impacts to the environment. This fact has led to questions about the possible impact of EOs on ecosystems. Currently in toxicology, the use of alternative models can help to understand the mechanisms of toxic action, at different levels of organization of ecosystems. Algae, protozoa and bacteria form the base of the food chain and protozoan cells are used as bioindicators often of pollution in environment. Unicellular organisms offer the possibility of direct study of independent cells with specific characteristics of individual cells and whole organisms at the same time. This unicellular facilitates the study of physiological processes, and effects of pollutants at the cellular level, which makes it widely used to assess the toxic effects of various xenobiotics. This study aimed to verify the effects of EOs of one famous plant used tremendously in our folk medicine, namely Artemisia herba alba in causing acute toxicity (24 hours) and chronic (15 days) toxicity for model cellular (Paramecium sp). To this end, cellular’s of paramecium were exposed to various concentrations (Three doses were chosen) of EOs extracted from plant (Artemisia herba alba). In the first experiment, the cellular s cultures were exposed for 48 hours to different concentrations to determine the median lethal concentration (DL50). We followed the evolution of physiological parameters (growth), biochemical (total proteins, respiratory metabolism), as well as the variations of a bio marker the GSH. Our results highlighted a light inhibition of the growth of the protozoa as well as a disturbance of the contents of total proteins and a reduction in the reduced rate of glutathione. The polarographic study revealed a stimulation of the consumption of O2 and this at the treated cells.

Keywords: essential oils, protozoa, bio indicators, toxicity, Growth, bio marker, proteins, polarographic

Procedia PDF Downloads 346
8518 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 513
8517 Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen WIese

Abstract:

The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes.

Keywords: water treatment, membranes, ceramic membranes, hybrid membranes, layer-by-layer modification

Procedia PDF Downloads 180
8516 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology

Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen

Abstract:

Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.

Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient

Procedia PDF Downloads 207
8515 Optimization of Effecting Parameters for the Removal of H₂S Gas in Self Priming Venturi Scrubber Using Response Surface Methodology

Authors: Manisha Bal, B. C. Meikap

Abstract:

Highly toxic and corrosive gas H₂S is recognized as one of the hazardous air pollutants which has significant effect on the human health. Abatement of H₂S gas from the air is very necessary. H₂S gas is mainly released from the industries like paper and leather industry as well as during the production of crude oil, during wastewater treatment, etc. But the emission of H₂S gas in high concentration may cause immediate death while at lower concentrations can cause various respiratory problems. In the present study, self priming venturi scrubber is used to remove the H₂S gas from the air. Response surface methodology with central composite design has been chosen to observe the effect of process parameters on the removal efficiency of H₂S. Experiments were conducted by varying the throat gas velocity, liquid level in outer cylinder, and inlet H₂S concentration. ANOVA test confirmed the significant effect of parameters on the removal efficiency. A quadratic equation has been obtained which predicts the removal efficiency very well. The suitability of the developed model has been judged by the higher R² square value which obtained from the regression analysis. From the investigation, it was found that the throat gas velocity has most significant effect and inlet concentration of H₂S has less effect on H₂S removal efficiency.

Keywords: desulfurization, pollution control, response surface methodology, venturi scrubber

Procedia PDF Downloads 138
8514 Impedance Matching of Axial Mode Helical Antennas

Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco

Abstract:

In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.

Keywords: antenna, helix, helical, axial mode, wireless power transfer, impedance matching

Procedia PDF Downloads 312
8513 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network

Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry

Abstract:

The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.

Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network

Procedia PDF Downloads 293
8512 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 137
8511 Hepatoprotective Effect of Ethyl Acetate Fraction of Ficus carica L. Leaves against Carbon Tetrachloride-Induced Toxicity in vitro and in vivo

Authors: Syeda Hira, Muhammad Gulfraz

Abstract:

Background: Liver diseases cause serious health issues. Plants contain active compounds that significantly help in the treatment of various diseases. Ficus carica is traditionally used for the treatment of liver diseases. The purpose of the present study was the isolation and identification of active components from F.carica leaves which are responsible for hepatoprotective activity. Methods: The study was designed to identify the most active hepatoprotective sub-fraction from ethyl acetate fraction of Ficus carica by in vitro study and evaluation of its in vivo hepatoprotective effect in animal models. Ethyl acetate fraction was subjected to column, and a total of eight sub-fractions were obtained. In vitro, the hepatoprotective effect of all sub-fractions was determined on HepG2 cell lines. Toxicity was induced by CCl₄ (Carbon tetrachloride), and silymarin was used as a positive control. On the basis of the results, the most active sub-fraction was subjected to LC-MS and FT-IR analysis for the identification of bioactive compounds. In vivo, the hepatoprotective effect was determined in mice. Toxicity was induced by CCl₄; at the end of the experiment, biochemical parameters such as ALT, AST, ALP, bilirubin, and total protein were estimated in serum. Histopathology of liver tissues was also done. Results: Sub-fraction FVI exhibited significant (P<0.05) hepatoprotective activity as compared to other sub-fractions, which was almost similar to the standard drug silymarin. Six known bioactive compounds were identified from this sub-fraction after LC-MS analysis. In vivo, the hepatoprotective activity of sub-fraction FVI was evaluated in CCl₄-induced toxicated mice. Administration of CCl₄ significantly increased level of ALT (Alanine transaminase), AST (Aspartate aminotransferase), ALP (Alkaline phosphatase), and bilirubin and decreased the total protein. Treatment with sub-fraction FVI significantly (p<0.05) reversed the level of these biomarkers toward normal at both doses of 25 mg/kg and 50 mg/kg. Conclusion: Our findings confirmed the hepatoprotective effect of ethyl acetate fraction of F.carica. It could be a good candidate for the development of a natural hepatoprotective drug; pre-clinical investigation on ethyl acetate fraction is recommended.

Keywords: Ficus carica, hepatoprotective, CCl₄, bioactive compounds, liver markers

Procedia PDF Downloads 62
8510 Assessment of the Effect of Ethanolic Leaf Extract of Annona squamosa L. on Den Induced Hepatocellular Carcinoma in Experimental Animals

Authors: Vanitha Varadharaj, Vijalakshmi Krishnamurthy

Abstract:

Annona squamosa Linn, commonly known as Sugar apple, belonging to the family Annonaceae, is said to show varied medicinal effects, including insecticide, antiovulatory and abortifacient. The alkaloid and flavonoids present in Annona squamosa leaf has proved to have antioxidant activity. The present work has been planned to investigate the effect of ethanolic leaf extract of Annona squamosa leaf on Den Induced wistar albino rats. The study was carried out to analyze the biochemical Parmeters like Total Proteins, Bilirubin, Enzymatic and Non –Enzymatic enzymes, Marker enzymes and Tumor markers in serum and also the histopathological studies in liver is carried out in control and DEN induced rats. Supplementation of ELAS (Ethanolic Leaf Extract Of Annona squamosa) reduced the liver weight and also reduced the tumour incidence. Chemoprevention group showed near normal values of bilirubin when compared with the control rats. Total protein was decreased in the cancer bearing group and on treatment with the extract the levels of protein were restored. Both in pre and post treatment group, the activities of enzymatic antioxidants such as superoxide dismutase, catalase, and Glutathione peroxidase were increased but in pre treated animals it was more effective than post treated animals. The non- enzymatic antioxidants such as vitamin C and vitamin E were brought back to normal level significantly in post and pre treated animals. Activities of marker enzymes such as SGOT, SGPT, ALP, γ GT were significantly elevated in the serum of cancer animals and the values returned to normal after treatment with the extract suggesting the hepato protective effect of the extract. Lipid peroxide was found to be elevated in the cancer induced group. This condition was brought back to the normal in the pre and post treated animals with ELAS. Histological examination also confirmed the anti- carcinogenic potential of ELAS, Cancer induced groups had a triple fold increase in their AFP values when compared to other groups. DEN treatment increased the level of AFP expression while ELAS partially counteracted the effect of it. So the scientific validation obtained from this study may pave way to many budding scientists to find new drugs from Annona squamosa for various ailments.

Keywords: annona squamosa, biochemical parmeters, cancer, leaf extract

Procedia PDF Downloads 331
8509 Kinematic Hardening Parameters Identification with Respect to Objective Function

Authors: Marina Franulovic, Robert Basan, Bozidar Krizan

Abstract:

Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.

Keywords: genetic algorithm, kinematic hardening, material model, objective function

Procedia PDF Downloads 333
8508 Determination of Direct Solar Radiation Using Atmospheric Physics Models

Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote

Abstract:

This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.

Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition

Procedia PDF Downloads 409
8507 Sensitivity Analysis of Interference of Localised Corrosion on Bending Capacity of a Corroded RC Beam

Authors: Mohammad Mahdi Kioumarsi

Abstract:

In this paper, using the response surface method (RSM), tornado diagram method and non-linear finite element analysis, the effect of four parameters on residual bending capacity of a corroded RC beam was investigated. The parameters considered are amount of localised cross section reduction, ratio of pit distance on adjacent bars to rebar distance, concrete compressive strength, and rebar tensile strength. The focus is on the influence on the bending ultimate limit state. Based on the obtained results, the effects of the ratio of pit distance to rebar distance (Lp⁄Lr) and the ratio of the localised cross section reduction to the original area of the rebar (Apit⁄A0) were found significant. The interference of localised corrosion on adjacent reinforcement bars reduces the bending capacity of under-reinforced concrete beam. Using the sensitivity analysis could lead to recognize uncertainty parameters, which have the most influences on the performance of the structure.

Keywords: localised corrosion, concrete beam, sensitivity analyses, ultimate capacity

Procedia PDF Downloads 251
8506 Impact of Meteorological Factors on Influenza Activity in Pakistan; A Tale of Two Cities

Authors: Nadia Nisar

Abstract:

Background: In the temperate regions Influenza activities occur sporadically all year round with peaks coinciding during cold months. Meteorological and environmental conditions play significant role in the transmission of influenza globally. In this study, we assessed the relationship between meteorological parameters and influenza activity in two geographical areas of Pakistan. Methods: Influenza data were collected from Islamabad (north) and Multan (south) regions of national influenza surveillance system during 2010-2015. Meteorological database was obtained from National Climatic Data Center (Pakistan). Logistic regression model with a stepwise approach was used to explore the relationship between meteorological parameters with influenza peaks. In statistical model, we used the weekly proportion of laboratory-confirmed influenza positive samples to represent Influenza activity with metrological parameters as the covariates (temperature, humidity and precipitation). We also evaluate the link between environmental conditions associated with seasonal influenza epidemics: 'cold-dry' and 'humid-rainy'. Results: We found that temperature and humidity was positively associated with influenza in north and south both locations (OR = 0.927 (0.88-0.97)) & (OR = 0.1.078 (1.027-1.132)) and (OR = 1.023 (1.008-1.037)) & (OR = 0.978 (0.964-0.992)) respectively, whilst precipitation was negatively associated with influenza (OR = 1.054 (1.039-1.070)) & (OR = 0.949 (0.935-0.963)). In both regions, temperature and humidity had the highest contribution to the model as compared to the precipitation. We revealed that the p-value for all of climate parameters is <0.05 by Independent-sample t-test. These results demonstrate that there were significant relationships between climate factors and influenza infection with correlation coefficients: 0.52-0.90. The total contribution of these three climatic variables accounted for 89.04%. The reported number of influenza cases increased sharply during the cold-dry season (i.e., winter) when humidity and temperature are at minimal levels. Conclusion: Our findings showed that measures of temperature, humidity and cold-dry season (winter) can be used as indicators to forecast influenza infections. Therefore integrating meteorological parameters for influenza forecasting in the surveillance system may benefit the public health efforts in reducing the burden of seasonal influenza. More studies are necessary to understand the role of these parameters in the viral transmission and host susceptibility process.

Keywords: influenza, climate, metrological, environmental

Procedia PDF Downloads 200
8505 Investigation on Scattered Dose Rate and Exposure Parameters during Diagnostic Examination Done with an Overcouch X-Ray Tube in Nigerian Teaching Hospital

Authors: Gbenga Martins, Christopher J. Olowookere, Lateef Bamidele, Kehinde O. Olatunji

Abstract:

The aims of this research are to measure the scattered dose rate during an X-ray examination in an X-ray room, compare the scattered dose rate with exposure parameters based on the body region examined, and examine the X-ray examination done with an over couch tube. The research was carried out using Gamma Scout software installation on the computer system (Laptop) to record the radiation counts, pulse rate, and dose rate. The measurement was employed by placing the detector at 900 to the incident X-ray. Proforma was used for the collection of patients’ data such as age, sex, examination type, and initial diagnosis. Data such as focus skin distance (FSD), body mass index (BMI), body thickness of the patients, the beam output (kVp) were collected at Obafemi Awolowo University, Ile-Ife, Western Nigeria. Total number of 136 patients was considered during this research. Dose rate range between 14.21 and 86.78 µSv/h for the plain abdominal region, 85.70 and 2.86 µSv/h for the lumbosacral region,1.3 µSv/yr and 3.6 µSv/yr in the pelvis region, 2.71 µSv/yr and 28.88 µSv/yr for leg region, 3.06 µSv/yr and 29.98 µSv/yr in hand region. The results of this study were compared with those of other studies carried out in other countries. The findings of this study indicated that the number of exposure parameters selected for each diagnostic examination contributed to the dose rate recorded. Therefore, these results call for a quality assurance program (QAP) in diagnostic X-ray units in Nigerian hospitals.

Keywords: X-radiation, exposure parameters, dose rate, pulse rate, number of counts, tube current, tube potential, diagnostic examination, scattered radiation

Procedia PDF Downloads 116
8504 The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis

Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior

Abstract:

Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyse several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.

Keywords: drying, models, jackfruit, biotechnology

Procedia PDF Downloads 379
8503 System Identification and Controller Design for a DC Electrical Motor

Authors: Armel Asongu Nkembi, Ahmad Fawad

Abstract:

The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.

Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols

Procedia PDF Downloads 55
8502 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 90
8501 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 151
8500 Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation

Authors: Junhong Feng, Wenyu Lu, Xinhong Cheng, Li Zheng, Yuehui Yu

Abstract:

The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies.

Keywords: SiC VDMOS, proton radiation, Miller time, gate oxide

Procedia PDF Downloads 91
8499 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel

Authors: N. Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.

Procedia PDF Downloads 184