Search results for: finite element model/COMSOL multiphysics
10938 Adsorptive Desulfurization of Using Cu(I) – Y Zeolite via π-Complexation
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng, Itumeleng Kohitlhetse
Abstract:
The accelerating requirement to reach 0% sulfur content in liquid fuels demand researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for the removal of organosulfur compounds (OSC) present in tire pyrolytic oil (TPO). The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion exchange between Na-Y zeolite with a Cu(NO₃)₂ aqueous solution of 0.5M for 48 hours followed by reduction of Cu²⁺ to Cu+. Fixed-bed breakthrough studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene, benzothiophenes (BT), and dibenzothiophenes (DBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of operating conditions such as adsorbent dosage and reaction time were studied to optimize the adsorptive desulfurization process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order DBT> BT> Thiophene. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.Keywords: adsorption, desulfurization, TPO, zeolite
Procedia PDF Downloads 11610937 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group
Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb
Abstract:
Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.Keywords: broadband services, customer experience quality, loyalty, net promoters score
Procedia PDF Downloads 26810936 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles
Authors: Ismail Rahama Adam Hamid
Abstract:
This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation
Procedia PDF Downloads 5810935 Hate Speech Detection in Tunisian Dialect
Authors: Helmi Baazaoui, Mounir Zrigui
Abstract:
This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation
Procedia PDF Downloads 1710934 Nursing Experience in Improving Physical and Mental Well-Being of a Patient with Premature Menopause Osteoporosis and Sarcopenia in Nursing-Led Multi-Discipline Care
Authors: Huang Chiung Chiu
Abstract:
This article is about the nursing experience of assisting an outpatient with premature menopause, osteoporosis and sarcopenia through a multi-discipline care model. The nursing period is from September 22nd, 2020, to December 7th, 2020, collecting data through interviews with the patient, observation, and physical assessment. It was found that the main health problems were insufficient nutrition, less physical need, insomnia, and potentially dangerous falls. As an outpatient nurse, the author observed that in recent years, the age group of women with premature menopause, osteoporosis and sarcopenia had shifted downward. Integrated multi-disciplinary interventions were provided upon the initial diagnosis of osteoporosis and sarcopenia. Under the outpatient care setting, the collaborative team works between the doctors, nutritionists, osteoporosis educators, rehabilitates, physical therapists and other specialized teams were applied to provide individualized, integrated multi-disciplinary care. Through empathy and the establishment of attentive care, companionship and trust, we discussed care plans and treatment guidelines with the case, providing accurate, complete disease information and feedback education to strengthen the patient’s knowledge and motivation for exercise. Nursing guidance regarding the dietary nutrition and adjustment of daily routine was provided to increase the self-care ability, improve the health problems of muscle weakness and insomnia, and prevent falls. For patients with postmenopausal osteoporosis and sarcopenia, it is recommended that the nurses coordinate the multi-discipline integrated care model, adjust patients’ lifestyle and diet, and establish a regular exercise plan so that the cases can be evaluated holistically to improve the quality of care and physical and mental comfort.Keywords: multi-discipline care model, premature menopause, osteoporosis, sarcopenia, insomnia
Procedia PDF Downloads 11910933 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition
Authors: Arūnas Burinskas
Abstract:
Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.Keywords: Bertrand and Cournot Competition, competition model, industry 4.0, industrial organisation, monopolistic competition
Procedia PDF Downloads 14010932 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles
Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi
Abstract:
This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles
Procedia PDF Downloads 28110931 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes
Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse
Abstract:
Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools. Procedia PDF Downloads 1210930 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 19410929 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 18510928 Local Government Digital Attention and Green Technology Innovation: Analysis Based on Spatial Durbin Model
Authors: Xin Wang, Chaoqun Ma, Zheng Yao
Abstract:
Although green technology innovation faces new opportunities and challenges in the digital era, its theoretical research remains limited. Drawing on the attention-based view, this study employs the spatial Durbin model to investigate the impact of local government digital attention and digital industrial agglomeration on green technology innovation across 30 Chinese provinces from 2011 to 2021, as well as the spatial spillover effects present. The results suggest that both government digital attention and digital industrial agglomeration positively influence green technology innovation in local and neighboring provinces, with digital industrial agglomeration exhibiting a positive moderating effect on this direct local and indirect spatial spillover relationship. The findings of this study provide a new theoretical perspective for green technology innovation research and hold valuable implications for the advancement of the attention-based view and green technology innovation.Keywords: local government digital attention, digital industrial agglomeration, green technology innovation, attention-based view
Procedia PDF Downloads 7010927 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering
Procedia PDF Downloads 39810926 Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia
Authors: Bekalu Melis Alehegn, Dagnenet Sultan Alemu
Abstract:
The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹).Keywords: aqua crop, barley, deficit irrigation, irrigation regimes, water productivity
Procedia PDF Downloads 3010925 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC
Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi
Abstract:
Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model
Procedia PDF Downloads 36310924 Sequence Component-Based Adaptive Protection for Microgrids Connected Power Systems
Authors: Isabelle Snyder
Abstract:
Microgrid protection presents challenges to conventional protection techniques due to the low induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected mode. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid connected or microgrid connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are the following: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR). The first two methods focus on identifying the islanded mode without communication by monitoring the current sequence component generated by the system (ACPS) or induced with inverter control during islanded mode (IUCPC) to identify the islanding condition without communication at the relay to adjust the settings. These two methods are used as a backup to the APSCC, which relies on a communication network to communicate the islanded configuration to the system components. The fourth method relies on a short circuit model inside the relay that is used in conjunction with communication to adjust the system configuration and computes the fault current and adjusts the settings accordingly.Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection, communication controlled protection, integrated short circuit model
Procedia PDF Downloads 9510923 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory
Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang
Abstract:
To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume
Procedia PDF Downloads 14210922 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence
Procedia PDF Downloads 7910921 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 33310920 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 21610919 Selection of Social and Sustainability Criteria for Public Investment Project Evaluation in Developing Countries
Authors: Pintip Vajarothai, Saad Al-Jibouri, Johannes I. M. Halman
Abstract:
Public investment projects are primarily aimed at achieving development strategies to increase national economies of scale and overall improvement in a country. However, experience shows that public projects, particularly in developing countries, struggle or fail to fulfill the immediate needs of local communities. In many cases, the reason for that is that projects are selected in a subjective manner and that a major part of the problem is related to the evaluation criteria and techniques used. The evaluation process is often based on a broad strategic economic effects rather than real benefits of projects to society or on the various needs from different levels (e.g. national, regional, local) and conditions (e.g. long-term and short-term requirements). In this paper, an extensive literature review of the types of criteria used in the past by various researchers in project evaluation and selection process is carried out and the effectiveness of such criteria and techniques is discussed. The paper proposes substitute social and project sustainability criteria to improve the conditions of local people and in particular the disadvantaged groups of the communities. Furthermore, it puts forward a way for modelling the interaction between the selected criteria and the achievement of the social goals of the affected community groups. The described work is part of developing a broader decision model for public investment project selection by integrating various aspects and techniques into a practical methodology. The paper uses Thailand as a case to review what and how the various evaluation techniques are currently used and how to improve the project evaluation and selection process related to social and sustainability issues in the country. The paper also uses an example to demonstrates how to test the feasibility of various criteria and how to model the interaction between projects and communities. The proposed model could be applied to other developing and developed countries in the project evaluation and selection process to improve its effectiveness in the long run.Keywords: evaluation criteria, developing countries, public investment, project selection methodology
Procedia PDF Downloads 27710918 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 29410917 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine
Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar
Abstract:
In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine
Procedia PDF Downloads 53410916 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach
Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.Keywords: air conditioned coaches, fire propagation, flame contour, soot flow, train fire
Procedia PDF Downloads 28510915 Mineral Deposits in Spatial Planning Systems – Review of European Practices
Authors: Alicja Kot-Niewiadomska
Abstract:
Securing sustainable access to raw materials is vital for the growth of the European economy and for the goals laid down in Strategy Europe 2020. One of the most important sources of mineral raw materials are primary deposits. The efficient management of them, including extraction, will ensure competitiveness of the European economy. A critical element of this approach is mineral deposits safeguarding and the most important tool - spatial planning. The safeguarding of deposits should be understood as safeguarding of land access, and safeguarding of area against development, which may (potential) prevent the use of the deposit and the necessary mining activities. Many European Union countries successfully integrated their mineral policy and spatial policy, which has ensured the proper place of mineral deposits in their spatial planning systems. These, in turn, are widely recognized as the most important mineral deposit safeguarding tool, the essence of which is to ensure long-term access to its resources. The examples of Austria, Portugal, Slovakia, Czech Republic, Sweden, and the United Kingdom, discussed in the paper, are often mentioned as examples of good practices in this area. Although none of these countries managed to avoid cases of social and environmental conflicts related to mining activities, the solutions they implement certainly deserve special attention. And for many countries, including Poland, they can be a potential source of solutions aimed at improving the protection of mineral deposits.Keywords: mineral deposits, land use planning, mineral deposit safeguarding, European practices
Procedia PDF Downloads 17310914 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration
Authors: M. G. Shilina
Abstract:
The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt
Procedia PDF Downloads 15210913 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).Keywords: chemometrics, chromatography, pesticides, sum of ranking differences
Procedia PDF Downloads 37510912 Thermomechanical Behaviour of Various Pressurized Installations Subjected to Thermal Load Due to the Combustion of Metal Particles
Authors: Khaled Ayfi, Morgan Dal, Frederic Coste, Nicolas Gallienne, Martina Ridlova, Philippe Lorong
Abstract:
In the gas industry, contamination of equipment by metal particles is one of the feared phenomena. Indeed, particles inside equipment can be driven by the gas flow and accumulate in places where the velocity is low. As they constitute a potential ignition hazard, particular attention is paid to the presence of particles in the oxygen industry. Indeed, the heat release from ignited particles may damage the equipment and even result in a loss of integrity. The objective of this work is to support the development of new design criteria. Studying the thermomechanical behavior of this equipment, thanks to numerical simulations, allows us to test the influence of various operating parameters (oxygen pressure, wall thickness, initial operating temperature, nature of the metal, etc.). Therefore, in this study, we propose a numerical model that describes the thermomechanical behavior of various pressurized installations heated locally by the combustion of small particles. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements obtained by a new device developed in this work.Keywords: ignition, oxygen, numerical simulation, thermomechanical behaviour
Procedia PDF Downloads 15510911 Simulation of 'Net' Nutrients Removal by Green Mussel (Perna viridis) in Estuarine and Coastal Areas
Authors: Chayarat Tantanasarit, Sandhya Babel
Abstract:
Green mussels (Perna viridis) can effectively remove nutrients from seawater through their filtration process. This study aims to estimate 'net' nutrient removal rate by green mussel through calculation of nutrient uptake and release. Nutrients (carbon, nitrogen, and phosphorus) uptake was calculated based on the mussel filtration rate. Nutrient release was evaluated from carbon, nitrogen, and phosphorus released as mussel feces. By subtracting nutrient release from nutrient uptake, net nutrient removal by green mussel can be found as 3302, 380 and 124 mg/year/indv. Mass balance model was employed to simulate nutrient removal in actual green mussel farming conditions. Mussels farm area, seawater flow rate and amount of mussels were considered in the model. Results show that although larger quantity of green mussel farms lead to higher nutrient removal rate, the maximum green mussel cultivation should be taken into consideration as nutrients released through mussel excretion can strongly affect marine ecosystem.Keywords: carbon, ecretion, filtration, nitrogen, phosphorus
Procedia PDF Downloads 40010910 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger
Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans
Abstract:
Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model
Procedia PDF Downloads 55010909 A Mathematical Model to Select Shipbrokers
Authors: Y. Smirlis, G. Koronakos, S. Plitsos
Abstract:
Shipbrokers assist the ship companies in chartering or selling and buying vessels, acting as intermediates between them and the market. They facilitate deals, providing their expertise, negotiating skills, and knowledge about ship market bargains. Their role is very important as it affects the profitability and market position of a shipping company. Due to their significant contribution, the shipping companies have to employ systematic procedures to evaluate the shipbrokers’ services in order to select the best and, consequently, to achieve the best deals. Towards this, in this paper, we consider shipbrokers as financial service providers, and we formulate the problem of evaluating and selecting shipbrokers’ services as a multi-criteria decision making (MCDM) procedure. The proposed methodology comprises a first normalization step to adjust different scales and orientations of the criteria and a second step that includes the mathematical model to evaluate the performance of the shipbrokers’ services involved in the assessment. The criteria along which the shipbrokers are assessed may refer to their size and reputation, the potential efficiency of the services, the terms and conditions imposed, the expenses (e.g., commission – brokerage), the expected time to accomplish a chartering or selling/buying task, etc. and according to our modelling approach these criteria may be assigned different importance. The mathematical programming model performs a comparative assessment and estimates for the shipbrokers involved in the evaluation, a relative score that ranks the shipbrokers in terms of their potential performance. To illustrate the proposed methodology, we present a case study in which a shipping company evaluates and selects the most suitable among a number of sale and purchase (S&P) brokers. Acknowledgment: This study is supported by the OptiShip project, implemented within the framework of the National Recovery Plan and Resilience “Greece 2.0” and funded by the European Union – NextGenerationEU programme.Keywords: shipbrokers, multi-criteria decision making, mathematical programming, service-provider selection
Procedia PDF Downloads 89