Search results for: international energy investments
4096 Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors
Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles.Keywords: sol–gel, silica thin films, anti reflective coatings, optical properties, soaking treatment
Procedia PDF Downloads 4564095 A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt
Authors: H. Hafez, A. Mekkawy, R. Rostom
Abstract:
Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values.Keywords: rammed earth, thermal insulation, indoor air quality, design builder
Procedia PDF Downloads 1464094 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer
Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang
Abstract:
Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network
Procedia PDF Downloads 3234093 Influence of Nutritional and Health Education of Families and Communities on the School-Age Children for the Attainment of Universal Basic Education Goals in the Rural Riverine Areas of Ogun State, Nigeria
Authors: Folasade R. Sulaiman
Abstract:
Pupils’ health and nutrition are basically important to their schooling. The preponderance of avoidable deaths among children in Africa (WHO, 2000) may not be unconnected with the nutritional and health education status of families and communities that have their children as school clients. This study adopted a descriptive survey design focusing on the assessment of the level of nutritional and health education of families and community members in the rural riverine areas of Ogun State. Two research questions were raised. The Nutritional and Health Education of Families and Communities Inventory (NHEFCI) was used to collect data from 250 rural child-bearing aged women, and 0.73 test-retest reliability coefficient was established to determine the strength of the instrument. Data collected were analysed using descriptive statistics of frequency counts, percentages and mean in accordance with research questions raised in the study. The findings revealed amongst others: that 65% of the respondents had low level of nutritional and health education among the families and community members; while 72% had low level of awareness of the possible influence of nutritional and health education on the learning outcomes of the children. Based on the findings, it was recommended among others that government should intensify efforts on sensitization, mass literacy campaign etc.; also improve upon the already existing School Feeding Programme in Nigerian primary schools to provide at least one balanced diet for children while in school; community health workers, social workers, Non-Governmental Organizations (NGO) should collaborate with international Organizations like UNICEF, UNESCO, WHO etc. to organize sensitization programmes for members of the rural riverine communities on the importance of meeting the health and nutritional needs of their children in order to attain their educational potentials.Keywords: nutritional and health education, learning capacities, school-age children, universal basic education, rural riverine areas
Procedia PDF Downloads 814092 Overview of E-government Adoption and Implementation in Ghana
Authors: Isaac Kofi Mensah
Abstract:
E-government has been adopted and used by many governments/countries around the world including Ghana to provide citizens and businesses with more accurate, real-time, and high quality services and information. The objective of this paper is to present an overview of the Government of Ghana’s (GoG) adoption and implement of e-government and its usage by the Ministries, Departments and its agencies (MDAs) as well as other public sector institutions to deliver efficient public service to the general public i.e. citizens, business etc. Government implementation of e-government focused on facilitating effective delivery of government service to the public and ultimately to provide efficient government-wide electronic means of sharing information and knowledge through a network infrastructure developed to connect all major towns and cities, Ministries, Departments and Agencies and other public sector organizations in Ghana. One aim for the Government of Ghana use of ICT in public administration is to improve productivity in government administration and service by facilitating the exchange of information to enable better interaction and coordination of work among MDAs, citizens and private businesses. The study was prepared using secondary sources of data from government policy documents, national and international published reports, journal articles, and web sources. This study indicates that through the e-government initiative, currently citizens and businesses can access and pay for services such as renewal of driving license, business registration, payment of taxes, acquisition of marriage and birth certificates as well as application for passport through the GoG electronic service (eservice) and electronic payment (epay) portal. Further, this study shows that there is an enormous commitment from GoG to adopt and implement e-government as a tool not only to transform the business of government but also to bring efficiency in public services delivered by the MDAs. To ascertain this, a further study need to be carried out to determine if the use of e-government has brought about the anticipated improvements and efficiency in service delivery of MDAs and other state institutions in Ghana.Keywords: electronic government, electronic services, electronic pay, MDAs
Procedia PDF Downloads 5124091 Effects of Dimensional Sizes of Mould on the Volumetric Shrinkage Strain of Lateric Soil
Authors: John E. Sani, Moses George
Abstract:
The paper presents the result of a laboratory study carried out on lateritic soil to determine the effects of dimensional size on the volumetric shrinkage strain (VSS) using three mould sizes i.e. split former mould, proctor mould and California bearing ratio (CBR) mould at three energy levels; British standard light (BSL), West African standard (WAS) and British standard heavy (BSH) respectively. Compactions were done at different molding water content of -2 % to +6 % optimum moisture content (OMC). At -2% to +2% molding water content for the split former mould the volumetric shrinkage strain met the requirement of not more than 4% while at +4% and +6% only the WAS and BSH met the requirement. The proctor mould and the CBR mould on the other hand gave a lower value of volumetric shrinkage strain in all compactive effort and the values are lower than the 4% safe VSS value.Keywords: lateritic soil, volumetric shrinkage strain, molding water content, compactive effort
Procedia PDF Downloads 5334090 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data
Authors: Rugang Tian
Abstract:
In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.Keywords: cattle, whole-genome, population structure, adaptation
Procedia PDF Downloads 744089 Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel
Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho
Abstract:
The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications.Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding
Procedia PDF Downloads 1954088 Development of a Three-Dimensional-Flywheel Robotic System
Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu
Abstract:
In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.Keywords: gyro, gimbal, lagrange equation, spherical robots
Procedia PDF Downloads 3164087 Trace Elements in Yerba Mate from Brazil and Argentina by Inductively Coupled Plasma Mass Spectrometry
Authors: F. V. Matta, C. M. Donnelly, M. B. Jaafar, N. I. Ward
Abstract:
‘Yerba Mate’ (Ilex paraguariensis) is a native plant from South America with the main producers being Argentina and Brazil. ‘Mate’ is widely consumed in Argentina, Brazil, Uruguay and Paraguay. The most popular format is as an infusion made from dried leaves of a traditional cup, roasted material in tea bags or iced tea infusions. There are many alleged health benefits resulted from mate consumption, even though there is a lack of conclusive research published in the international literature. The main objective of this study was to develop and evaluate the sample preparation and instrumental analysis stages involved in the determination of trace elements in yerba mate using inductively coupled plasma mass spectrometry (ICP-MS). Specific details on the methods of sample digestion, validation of the ICP-MS analysis especially for polyatomic ion correction and matrix effects associated with the complex medium of mate will be presented. More importantly, mate produced in Brazil and Argentina, is subject to different soil conditions, methods of cultivation and production, especially for loose leaves and tea bags. The highest concentrations for loose mate leaf were for (mg/kg, dry weight): aluminium (253.6 – 506.9 for Brazil (Bra), 230.0 – 541.8 for Argentina (Arg), respectively), manganese (378.3 – 762.6 Bra; 440.8 – 879.9 Arg), iron (32.5 – 85.7 Bra; 28.2 – 132.9 Arg), zinc (28.2 – 91.1 Bra; 39.1 – 92.3 Arg), nickel (2.2 – 4.3 Bra; 2.9 – 10.8 Arg) and copper (4.8 – 9.1 Bra; 4.3 – 9.2 Arg), with lower levels of chromium, cobalt, selenium, molybdenum, cadmium, lead and arsenic. Elemental levels of mate leaf consumed in tea bags were found to be higher, mainly due to only using leaf material (as opposed to leaf and twig for loose packed product). Further implications of the way of consuming yerba mate will be presented, including different infusion methods in Brazil and Argentina. This research provides for the first time an extensive evaluation of mate products from both countries and the possible implications of specific trace elements, especially Mn, Fe, Se, Cu and Zn and the various health claims of consuming yerba mate.Keywords: beverage analysis, ICP-MS, trace elements, yerba mate
Procedia PDF Downloads 2264086 Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys
Authors: Linlin Wang, Guangdong Bian, Jifeng Shen, Jingzhu Zeng
Abstract:
Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings.Keywords: oxide coating, PEO, tribological properties, ZA27
Procedia PDF Downloads 4954085 Magnetic Study on Ybₐ₂Cu₃O₇₋δ Nanoparticles Doped by Ferromagnetic Nanoparticles of Y₃Fe₅O₁₂
Authors: Samir Khene
Abstract:
Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBₐ₂Cu₃O₇₋δ and La₁.₈₅ Sr₀.₁₅CuO will be presented. It will be given special attention to the study of the YBₐ₂Cu₃O₇₋δ nanoparticles doped by ferromagnetic nanoparticles of Y₃Fe₅O₁₂. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBₐ₂Cu₃O7₇₋δ nanoparticles as a function of applied field H and temperature T will be studied.Keywords: superconductors, high critical temperature, vortices pinning, nanoparticles, ferromagnetism, coexistence
Procedia PDF Downloads 694084 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows
Authors: S. Pradhan, V. Kumaran
Abstract:
Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow
Procedia PDF Downloads 3984083 Proposing a Boundary Coverage Algorithm for Underwater Sensor Network
Authors: Seyed Mohsen Jameii
Abstract:
Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.Keywords: boundary coverage, clustering, divide and conquer, underwater sensor nodes
Procedia PDF Downloads 3414082 Food Waste Management in the Restaurant Industry
Authors: Vijayakumar Karunamoothei, Stephen Wylie, Andy Shaw, Al Shamma'A Ahmed
Abstract:
The main aim of this research is to investigate, analyse and provide solutions for the reduction of food waste in the restaurant industry. The amount of food waste that is sent to landfill by UK restaurants and food chains is considerably high, and also acts as an additional cost to the restaurants, as well as being a significant environmental issue. Food waste, for the most part, is disposed in landfill, but due to rising costs associated with waste disposal, it increases public concerns about the environmental issue. This makes conversion of food waste to energy an economic solution. The relevant properties, such as water content and calorific value, will vary considerably, depending on the particular type of food. This work, therefore, includes the collection and analysis of real data from restaurants on weekly basis. It will also investigate how the waste destined for landfill can be instead reused to produce fuels such as syngas or ethanol, or alternatively as fertilizer. The potential for syngas production will be tested using a microwave plasma reactor.Keywords: fertilizer, microwave, plasma reactor, syngas
Procedia PDF Downloads 3604081 Analysis of High-Velocity Impacts on Concrete
Authors: Conceição, J. F. M., Rebelo H., Corneliu C., Pereira L.
Abstract:
This research analyses the response of two distinct types of concrete blocks, each possessing an approximate unconfined compressive strength of 30MPa, when exposed to high-velocity impacts produced by an Explosively Formed Penetrator (EFP) traveling at an initial velocity of 1200 m/s. Given the scarcity of studies exploring high-velocity impacts on concrete, the primary aim of this research is to scrutinize how concrete behaves under high-speed impacts, ultimately contributing valuable insights to the development of protective structures. To achieve this objective, a comprehensive numerical analysis was carried out in LS-DYNA to delve into the fracture mechanisms inherent in concrete under such extreme conditions. Subsequently, the obtained numerical outcomes were compared and validated through eight experimental field tests. The methodology employed involved a robust combination of numerical simulations and real-world experiments, ensuring a comprehensive understanding of concrete behavior in scenarios involving rapid, high-energy impacts.Keywords: high-velocity, impact, numerical analysis, experimental tests, concrete
Procedia PDF Downloads 874080 Simulation of the Performance of the Reforming of Methane in a Primary Reformer
Authors: A. Alkattib, M. Boumaza
Abstract:
Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.Keywords: reforming, methane, performance, hydrogen, parameters
Procedia PDF Downloads 2264079 Finite Element Analysis of the Ordinary Reinforced Concrete Bridge Piers
Authors: Nabin Raj Chaulagain
Abstract:
Most of the concrete bridges in Nepal constructed during 90's and before are made up of low strength ordinary concrete which might be one of the reasons for damage in higher magnitude earthquake. Those bridges were designed by the outdated bridge codes which might not account the large seismic loads. This research investigates the seismic vulnerability of the existing single column ordinary concrete bridge pier by finite element modeling, using the software Seismostruct. The existing bridge pier capacity has been assessed using nonlinear pushover analysis and performance is compared after retrofitting those pier models with CFRP. Furthermore, the seismic evaluation was made by conducting cyclic loading test at different drift percentage. The performance analysis of bridge pier by nonlinear pushover analysis is further validated by energy dissipation phenomenon measured from the hysteric loop for each model of ordinary concrete piers.Keywords: finite element modeling, ordinary concrete bridge pier, performance analysis, retrofitting
Procedia PDF Downloads 3204078 Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model
Authors: M. J. Uddin, M. M. Rahman
Abstract:
Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited.Keywords: nanofluids, annulus, nonhomogeneous dynamic model, heat transfer
Procedia PDF Downloads 1704077 Unsteady Forced Convection Flow and Heat Transfer Past a Blunt Headed Semi-Circular Cylinder at Low Reynolds Numbers
Authors: Y. El Khchine, M. Sriti
Abstract:
In the present work, the forced convection heat transfer and fluid flow past an unconfined semi-circular cylinder is investigated. The two-dimensional simulation is employed for Reynolds numbers ranging from 10 ≤ Re ≤ 200, employing air (Pr = 0.71) as an operating fluid with Newtonian constant physics property. Continuity, momentum, and energy equations with appropriate boundary conditions are solved using the Computational Fluid Dynamics (CFD) solver Ansys Fluent. Various parameters flow such as lift, drag, pressure, skin friction coefficients, Nusselt number, Strouhal number, and vortex strength are calculated. The transition from steady to time-periodic flow occurs between Re=60 and 80. The effect of the Reynolds number on heat transfer is discussed. Finally, a developed correlation of Nusselt and Strouhal numbers is presented.Keywords: forced convection, semi-circular cylinder, Nusselt number, Prandtl number
Procedia PDF Downloads 1094076 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor
Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung
Abstract:
The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C.Keywords: single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, thin-film transistor (TFT)
Procedia PDF Downloads 5314075 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents
Authors: Rajesh Kumar Gautam, Debabrata Seth
Abstract:
Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant
Procedia PDF Downloads 1624074 [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect
Authors: Maatouk Khoukhi
Abstract:
An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content.Keywords: building insulation material, moisture content, operating temperature, thermal conductivity
Procedia PDF Downloads 3224073 Investigation of Al/Si, Au/Si and Au/GaAs Interfaces by Positron Annihilation Spectroscopy
Authors: Abdulnasser S. Saleh
Abstract:
The importance of metal-semiconductor interfaces comes from the fact that most electronic devices are interconnected using metallic wiring that forms metal–semiconductor contacts. The properties of these contacts can vary considerably depending on the nature of the interface with the semiconductor. Variable-energy positron annihilation spectroscopy has been applied to study interfaces in Al/Si, Au/Si, and Au/GaAs structures. A computational modeling by ROYPROF program is used to analyze Doppler broadening results in order to determine kinds of regions that positrons are likely to sample. In all fittings, the interfaces are found 1 nm thick and act as an absorbing sink for positrons diffusing towards them and may be regarded as highly defective. Internal electric fields were found to influence positrons diffusing to the interfaces and unable to force them cross to the other side. The materials positron affinities are considered in understanding such motion. The results of these theoretical fittings have clearly demonstrated the sensitivity of interfaces in any fitting attempts of analyzing positron spectroscopy data and gave valuable information about metal-semiconductor interfaces.Keywords: interfaces, semiconductor, positron, defects
Procedia PDF Downloads 2614072 Tsunami Disasters Preparedness among the Coastal Residence in Penang, Malaysia
Authors: A. R. Shakura, A. B. Elistina, M. S. Aini, S. Norhasmah, A. Fakhru’l-Razi
Abstract:
Tsunami 2004 was an unforeseeable event that caught Malaysia of guard resulting with 68 losses of lives and with an estimated economic loss of about 55.15billion US dollar. Scientists predict that if the earthquake epicentre originates from the Andaman-Nicobar region, the coastal population of Penang will have about 30 minutes to evacuate to safety. Thus, a study was conducted to enhance resiliency of Penang community as the area was the worst affected region during 2004 tsunami disaster. This paper is intended to examine the factors that influence intention to prepare for future tsunami among the coastal residence in Penang. The differences in the level of intention to prepare were also examined between those who experience and did not experience the 2004 tsunami. This study utilized a cross-sectional research design using a survey method. A total of 503 respondents were chosen systematically and data gathered were analysed using SPSS. Both genders, male and female were equally represented with a mean age of 44 years. Data indicated that the level of intention to prepare for tsunami disaster was moderate (M=3.72) with no significant difference in intention to prepare between those who had experienced or had not experienced the 2004 tsunami. Subsequently, results from a multiple regression analysis found that sense of community to be the most influential factor followed by subjective norm, trust, positive outcome expectancy and risk perception, explaining the 57% variance in intention to prepare. These factors reflect the influence of the collectivistic culture in Malaysia whereby households plus communities have a central role in encouraging each other. Therefore, the findings highlights the potential of adopting a community based disaster risk management as recommended by the United Nations International Strategy Disaster Reduction (UNISDR) which encompasses the cooperation between the local community and relevant stakeholders in preparing for future tsunami disaster.Keywords: disaster management, experience, intention to prepare, tsunami
Procedia PDF Downloads 1704071 Real-World Prevalence of Musculoskeletal Disorders in Nigeria
Authors: F. Fatoye, C. E. Mbada, T. Gebrye, A. O. Ogunsola, C. Fatoye, O. Oyewole
Abstract:
Musculoskeletal disorders (MSDs) are a major cause of pain and disability. It is likely to become a greater economic and public health burden that is unnecessary. Thus, reliable prevalence figures are important for both clinicians and policy-makers to plan health care needs for those affected with the disease. This study estimated hospital based real-world prevalence of MSDs in Nigeria. A review of medical charts for adult patients attending Physiotherapy Outpatient Clinic at the Obafemi Awolowo University Teaching Hospitals Complex, Osun State, Nigeria between 2009 and 2018 was carried out to identify common MSDs including low back pain (LBP), cervical spondylosis (CSD), post immobilization stiffness (PIS), sprain, osteoarthritis (OA), and other conditions. Occupational class of the patients was determined using the International Labour Classification (ILO). Data were analysed using descriptive statistics of frequency and percentages. Overall, medical charts of 3,340 patients were reviewed within the span of ten years (2009 to 2018). Majority of the patients (62.8%) were in the middle class, and the remaining were in low class (25.1%) and high class (10.5%) category. An overall prevalence of 47.35% of MSD was found within the span of ten years. Of this, the prevalence of LBP, CSD, PIS, sprain, OA, and other conditions was 21.6%, 10%, 18.9%, 2%, 6.3%, and 41.3%, respectively. The highest (14.2%) and lowest (10.5%) prevalence of MSDs was recorded in the year of 2012 and 2018, respectively. The prevalence of MSDs is considerably high among Nigerian patients attending outpatient a physiotherapy clinic. The high prevalence of MSDs underscores the need for clinicians and decision makers to put in place appropriate strategies to reduce the prevalence of these conditions. In addition, they should plan and evaluate healthcare services to improve the health outcomes of patients with MSDs. Further studies are required to determine the economic burden of the condition and examine the clinical and cost-effectiveness of physiotherapy interventions for patients with MSDs.Keywords: musculoskeletal disorders, Nigeria, prevalence, real world
Procedia PDF Downloads 1724070 Energy System for Algerian Green Building in Tlemcen, North Africa
Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair
Abstract:
This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.Keywords: green building, heat pump, insulation, climate change
Procedia PDF Downloads 2194069 Gravitational Frequency Shifts for Photons and Particles
Authors: Jing-Gang Xie
Abstract:
The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.Keywords: general relativity theory, particles, photons, Quantum Gravity Model, gravitational frequency shift
Procedia PDF Downloads 3594068 Fabrication of Profile-Coated Rhodium X-Ray Focusing Mirror
Authors: Bing Shi, Raymond A. Conley, Jun Qian, Xianbo Shi, Steve Heald, Lahsen Assoufid
Abstract:
A pair of Kirkpatrick-Baez (KB) mirrors were designed and fabricated for experiments within a hard x-ray energy range lower than 20 kev at beamline 20-ID in a synchrotron radiation facility, Advanced Photon Source (APS). The KB mirrors were deposited with Rhodium thin films using a customized designed and self-built magnetron sputtering system. The purpose of these mirrors is to focus the x-ray beam down to 1 micron. This is the first pair of Rhodium-coated KB mirrors with elliptical shape that was fabricated using the profile coating technique. The profile coating technique is to coat the substrate with designed shape using masks during the deposition. The mirrors were equipped at the beamline and achieved the designed focusing requirement. The details of the mirror design, the fabrication process, and the customized magnetron sputtering deposition system will be discussed.Keywords: magnetron-sputtering deposition, focusing optics, x-ray, rhodium thin film
Procedia PDF Downloads 3744067 Classification of Factors Influencing Buyer-Supplier Relationship: A Case Study from the Cement Industry
Authors: Alberto Piatto, Zaza Nadja Lee Hansen, Peter Jacobsen
Abstract:
This paper examines the quantitative and qualitative factors influencing the buyer-supplier relationship. Understanding and acting on the right factors influencing supplier relationship management is crucial when a company outsource an important part of its business as it can be for engineering to order (ETO) company executing only the designing part in-house. Acting on these factors increase the quality of the relationship obtaining for both parties what they want and expect from an improved relationship. Best practices in supplier relationship management are considered and a case study of a large global company, called Cement A/S, operating in the cement business is carried out. One study is conducted including a large international company and hundreds of its suppliers. Data from the company is collected using semi-structured interviews and data from the suppliers is collected using a survey. Based on these inputs and an extensive literature review a classification of factors influencing the relationship buyer-supplier is presented and discussed. The results show that different managers among the company are assessing supplier from various perspectives, a standard approach to measure the performance of suppliers does not exist. The factors used nowadays in the company to measure performances of the suppliers are mostly related to time and cost. Quality is a key factor, but it has not been addressed properly since no data are available in the system. From a practical perspective, managers can learn from this paper which factors to consider when applying best practices of Supplier Relationship Management. Furthermore, from a theoretical perspective, this paper contributes with new knowledge in the area as limited research in collaboration with the company has been conducted. For this reason, a company, its suppliers and few studies for this type of industry have been conducted. For further research, it is suggested to define the correlation of factors to the profitability of the company and calculate its impact. When conducting this analysis it is important to focus on the efficient and effective use of factors that can be measurable and accepted from the supplier.Keywords: buyer-supplier relationship, cement industry, classification of factors, ETO
Procedia PDF Downloads 282