Search results for: more comprehensive and accurate safety data
22483 Investigating a Modern Accident Analysis Model for Textile Building Fires through Numerical Reconstruction
Authors: Mohsin Ali Shaikh, Weiguo Song, Rehmat Karim, Muhammad Kashan Surahio, Muhammad Usman Shahid
Abstract:
Fire investigations face challenges due to the complexity of fire development, and real-world accidents lack repeatability, making it difficult to apply standardized approaches. The unpredictable nature of fires and the unique conditions of each incident contribute to the complexity, requiring innovative methods and tools for effective analysis and reconstruction. This study proposes to provide the modern accident analysis model through numerical reconstruction for fire investigation in textile buildings. This method employs computer simulation to enhance the overall effectiveness of textile-building investigations. The materials and evidence collected from past incidents reconstruct fire occurrences, progressions, and catastrophic processes. The approach is demonstrated through a case study involving a tragic textile factory fire in Karachi, Pakistan, which claimed 257 lives. The reconstruction method proves invaluable for determining fire origins, assessing losses, establishing accountability, and, significantly, providing preventive insights for complex fire incidents.Keywords: fire investigation, numerical simulation, fire safety, fire incident, textile building
Procedia PDF Downloads 6922482 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 17022481 A Concept Analysis of Self-Efficacy for Cancer Pain Management
Authors: Yi-Fung Lin, Yuan-Mei Liao
Abstract:
Background: Pain is common among patients with cancer and is also one of the most disturbing symptoms. As this suffering is subjective, if patients proactively participate in their pain self-management, pain could be alleviated effectively. However, not everyone can carry out self-management very well because human behavior is a product of the cognition process. In this process, we can see that "self-efficacy" plays an essential role in affecting human behaviors. Methods: We used the eight steps of concept analysis proposed by Walker and Avant to clarify the concept of “self-efficacy for cancer pain management.” A comprehensive literature review was conducted for relevant publications that were published during the period of 1977 to 2021. We used several keywords, including self-efficacy, self-management, concept analysis, conceptual framework, and cancer pain, to search the following databases: PubMed, CINAHL, Web of Science, and Embase. Results: We identified three defining attributes for the concept of self-efficacy for cancer pain management, including pain management abilities, confidence, and continuous pain monitoring, and recognized six skills related to pain management abilities: problem-solving, decision-making, resource utilization, forming partnerships between medical professionals and patients, planning actions, and self-regulation. Five antecedents for the concept of self-efficacy for cancer pain management were identified: pain experience, existing cancer pain, pain-related knowledge, a belief in pain management, and physical/mental state. Consequences related to self-efficacy for cancer pain management were achievement of pain self-management, well pain control, satisfying quality of life, and containing motivation. Conclusions: This analysis provides researchers with a clearer understanding of the concept of “self-efficacy for cancer pain management.” The findings presented here provide a foundation for future research and nursing interventions to enhance self-efficacy for cancer pain management.Keywords: cancer pain, concept analysis, self-efficacy, self-management
Procedia PDF Downloads 7522480 Embarrassment as a Trigger Factor of Code Switching From Arabic to English in Egypt: A Case Study in Sociolinguistic
Authors: Samar Mohamed Magdy Abdelrahim
Abstract:
This study is an attempt to investigate the phenomenon of code-switching that takes place between Arabic and English in social discourse among high, well-educated, and young people in Egypt. The study aims at digging deeper to extract the trigger factors of such occurrences, namely when people encounter embarrassing situations in their daily conversations. Nowadays, most young Egyptians tend to use English words in certain situations that might make them feel embarrassed. To disguise their feelings and soften the impact of these words in the context, they code-switch (CS) from Arabic into English. To obtain accurate results, the study utilized a quantitative analysis approach that combines personal observations and a questionnaire to examine the phenomenon appropriately. The questionnaire was designed to categorize different types of embarrassing topics to be evaluated by participants. These topics include certain parts of the human body, types of clothes, taboo words, and specific medical conditions. Many studies have examined the use of CS as a prestigious way of communicating and expressing solidarity between Arabic and English. Other studies have dealt with switches that take place in classrooms. However, not many studies have paid attention to this angle of CS, especially in Egypt. The results conclude that gender and the circumstances that surround the conversation are essential factors of CS since females tend to switch codes more than males in embarrassing situations. According to the study, CS serves the socio-pragmatic function in terms of helping young, well-educated bilinguals express themselves in a second language that would be distressing in the first.Keywords: code-switching, embarrassment, Arabic, English
Procedia PDF Downloads 10522479 Drought Detection and Water Stress Impact on Vegetation Cover Sustainability Using Radar Data
Authors: E. Farg, M. M. El-Sharkawy, M. S. Mostafa, S. M. Arafat
Abstract:
Mapping water stress provides important baseline data for sustainable agriculture. Recent developments in the new Sentinel-1 data which allow the acquisition of high resolution images and varied polarization capabilities. This study was conducted to detect and quantify vegetation water content from canopy backscatter for extracting spatial information to encourage drought mapping activities throughout new reclaimed sandy soils in western Nile delta, Egypt. The performance of radar imagery in agriculture strongly depends on the sensor polarization capability. The dual mode capabilities of Sentinel-1 improve the ability to detect water stress and the backscatter from the structure components improves the identification and separation of vegetation types with various canopy structures from other features. The fieldwork data allowed identifying of water stress zones based on land cover structure; those classes were used for producing harmonious water stress map. The used analysis techniques and results show high capability of active sensors data in water stress mapping and monitoring especially when integrated with multi-spectral medium resolution images. Also sub soil drip irrigation systems cropped areas have lower drought and water stress than center pivot sprinkler irrigation systems. That refers to high level of evaporation from soil surface in initial growth stages. Results show that high relationship between vegetation indices such as Normalized Difference Vegetation Index NDVI the observed radar backscattering. In addition to observational evidence showed that the radar backscatter is highly sensitive to vegetation water stress, and essentially potential to monitor and detect vegetative cover drought.Keywords: canopy backscatter, drought, polarization, NDVI
Procedia PDF Downloads 15022478 Ways to Prevent Increased Wear of the Drive Box Parts and the Central Drive of the Civil Aviation Turbo Engine Based on Tribology
Authors: Liudmila Shabalinskaya, Victor Golovanov, Liudmila Milinis, Sergey Loponos, Alexander Maslov, D. O. Frolov
Abstract:
The work is devoted to the rapid laboratory diagnosis of the condition of aircraft friction units, based on the application of the nondestructive testing method by analyzing the parameters of wear particles, or tribodiagnostics. The most important task of tribodiagnostics is to develop recommendations for the selection of more advanced designs, materials and lubricants based on data on wear processes for increasing the life and ensuring the safety of the operation of machines and mechanisms. The object of tribodiagnostics in this work are the tooth gears of the central drive and the gearboxes of the gas turbine engine of the civil aviation PS-90A type, in which rolling friction and sliding friction with slip occur. The main criterion for evaluating the technical state of lubricated friction units of a gas turbine engine is the intensity and rate of wear of the friction surfaces of the friction unit parts. When the engine is running, oil samples are taken and the state of the friction surfaces is evaluated according to the parameters of the wear particles contained in the oil sample, which carry important and detailed information about the wear processes in the engine transmission units. The parameters carrying this information include the concentration of wear particles and metals in the oil, the dispersion composition, the shape, the size ratio and the number of particles, the state of their surfaces, the presence in the oil of various mechanical impurities of non-metallic origin. Such a morphological analysis of wear particles has been introduced into the order of monitoring the status and diagnostics of various aircraft engines, including a gas turbine engine, since the type of wear characteristic of the central drive and the drive box is surface fatigue wear and the beginning of its development, accompanied by the formation of microcracks, leads to the formation of spherical, up to 10 μm in size, and in the aftermath of flocculent particles measuring 20-200 μm in size. Tribodiagnostics using the morphological analysis of wear particles includes the following techniques: ferrography, filtering, and computer analysis of the classification and counting of wear particles. Based on the analysis of several series of oil samples taken from the drive box of the engine during their operating time, a study was carried out of the processes of wear kinetics. Based on the results of the study and comparing the series of criteria for tribodiagnostics, wear state ratings and statistics of the results of morphological analysis, norms for the normal operating regime were developed. The study allowed to develop levels of wear state for friction surfaces of gearing and a 10-point rating system for estimating the likelihood of the occurrence of an increased wear mode and, accordingly, prevention of engine failures in flight.Keywords: aviation, box of drives, morphological analysis, tribodiagnostics, tribology, ferrography, filtering, wear particle
Procedia PDF Downloads 26822477 Investigating the Impact of Migration Background on Pregnancy Outcomes During the End of Period of COVID-19 Pandemic: A Mixed-Method Study
Authors: Charlotte Bach, Albrecht Jahn, Mahnaz Motamedi, Maryam Karimi-Ghahfarokhi
Abstract:
Background: Maternal and infant deaths are most prevalent in the first month after birth, emphasizing the critical need for quality healthcare services during this period. Immigrant women, who are more susceptible to adverse pregnancy outcomes, often face neglect in accessing proper healthcare. The lack of adequate postpartum care significantly contributes to mortality rates. Therefore, utilizing maternal health care services and implementing postpartum care is crucial in reducing maternal and child mortality. Aims: This study aims to evaluate the assessment of pre- and postnatal care among women with and without migration background. In addition, the study explores the impact of COVID-19 procedures on women's experiences during pregnancy, birth, and the postpartum period. Methods: This research employs a cross-sectional Mixed-Method design. Data collection was facilitated through structured questionnaires administered to participants, alongside the utilization of patient bases, including Maternity and child medical records. Following the assumption that the investigator aimed to gain comprehensive insights, qualitative sampling focused on individuals with substantial experiences related to COVID-19, regarded as rich cases. Results: our study highlighted the influence of educational level, marital status, and consensual partnerships on the likelihood of Cesarean deliveries. Regarding breastfeeding practices, migrant women exhibited higher rates of breastfeeding initiation and continuation. Contraception utilization revealed interesting patterns, with non-migrants displaying higher odds of contraceptive use. The qualitative component of our research adds depth to the exploration of women's experiences during the COVID-19 pandemic, revealing nuanced challenges related to anxiety, hospital restrictions, breastfeeding support, and postnatal ward routines. Conclusion: Dissimilarity among studies toward cesarean rate between migrants and non-migrants underscores the importance of targeted interventions considering the diverse needs of distinct population groups. It also acknowledges potential cultural, contextual, and healthcare system influences on the association between mode of delivery and infant feeding practices. Studies acknowledge the influence of contextual variables on contraceptive preferences among migrants and non-migrants, emphasizing the need for tailored healthcare policies. The findings contribute to existing research, highlighting the need for a nuanced understanding of the impact of birth preparation courses on maternal and infant outcomes. Furthermore, they emphasize the universality of certain maternity care experiences, regardless of pandemic contexts, reinforcing the importance of patient-centred approaches in healthcare delivery.Keywords: migration background, pregnancy outcome, covid-19, postpartum
Procedia PDF Downloads 6022476 New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data
Authors: Dilip K. De, Olukunle C. Olawole, Emmanuel S. Joel, Moses Emetere
Abstract:
A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube.Keywords: charge carrier density, nano materials, new technique, thermionic emission
Procedia PDF Downloads 32922475 Field Environment Sensing and Modeling for Pears towards Precision Agriculture
Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani
Abstract:
The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model
Procedia PDF Downloads 31822474 Multi-Criteria Decision Making Network Optimization for Green Supply Chains
Authors: Bandar A. Alkhayyal
Abstract:
Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains
Procedia PDF Downloads 16222473 Utility of Optical Coherence Tomography (OCT) and Visual Field Assessment in Neurosurgical Patients
Authors: Ana Ferreira, Ines Costa, Patricia Polónia, Josué Pereira, Olinda Faria, Pedro Alberto Silva
Abstract:
Introduction: Optical coherence tomography (OCT) and visual field tools are pivotal in evaluating neurological deficits and predicting potential visual improvement following surgical decompression in neurosurgical patients. Despite their clinical significance, a comprehensive understanding of their utility in this context is lacking in the literature. This study aims to elucidate the applications of OCT and visual field assessment, delineating distinct patterns of visual deficit presentations within the studied cohort. Methods: This retrospective analysis considered all adult patients who underwent a single surgery for pituitary adenoma or anterior skull base meningioma with optic nerve involvement, coupled with neuro-ophthalmology evaluation, between July 2020 and January 2023. A minimum follow-up period of 6 months was deemed essential. Results: A total of 24 patients, with a median age of 61, were included in the analysis. Three primary patterns emerged: 1) Low visual field involvement with compromised OCT, 2) High visual field involvement with relatively unaffected OCT, and 3) Significant compromise observed in both OCT and visual fields. Conclusion: This study delineates various findings in OCT and visual field assessments with illustrative examples. Based on the current findings, a prospective cohort will be systematically collected to further investigate and validate these patterns and their prognostic significance, enhancing our understanding of the utility of OCT and visual fields in neurosurgical patients.Keywords: OCT, neurosurgery, visual field, optic nerve
Procedia PDF Downloads 8922472 Real-Time Generative Architecture for Mesh and Texture
Abstract:
In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics
Procedia PDF Downloads 6822471 Ultrastructural Changes Occur in Mice Lungs After Cessation to Exposure of Incense Smoke
Authors: Samar Rabah
Abstract:
Background: Incense woods are special kind of trees called Agarwood, which characterized by good smelling odors and many medical benefits. Incense smoke is heavily used in Saudi Arabia although comprehensive studies of its effects on health are limited. The present study demonstrated lung ultrastructure changes of mice after exposure and cessation to Incense smoke. Eighty mice are divided equally into four groups, three groups are exposed to different concentrations of Incense smoke (2, 4 and 6 gm) for three months, while the fourth group is control one. At the end of each month, lungs of five animals from each group are gathered, while the last five animals from each group are kept for another 60 days without exposure to the Incense smoke to allow for recovery. Results: Transmission electron microscope investigations of all exposed groups showed hypertrophy and hyperplasia in Clara Cells and some an enlargement of the macrophage to the point that it fills a large part of the alveolar lumen. Scanning electron microscope marks presence of mucus materials attached to the epithelial bronchioles. After prevention of exposure to the Incense smoke for 60 days, necrosis and degeneration in some cells of epithelial bronchioles, fibrosis of peribronchial, thickening in alveolar walls and aggregation of lymphoid cells were demonstrated. Conclusion: Based on the above findings and other related studies (not published), we conclude that exposure to Incense smoke causes harmful effects due to sever changes in pulmonary ultrastructure, such effects do not disappear even when Incense smoke inhalation was stopped. Therefore, we recommend that Incense smoke should use only in open places to reduce its harms.Keywords: Incense smoke, lungs, ultrastructure of lungs, Agarwood
Procedia PDF Downloads 41822470 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 5622469 Review of Comparison of Subgrade Soil Stabilised with Natural, Synthetic, and Waste Fibers
Authors: Jacqueline Michella Anak Nathen
Abstract:
Subgrade soil is an essential component in the design of road structures as it provides lateral support to the pavement. One of the main reasons for the failure of the pavement is the settlement of the subgrade and the high susceptibility to moisture, which leads to a loss of strength of the subgrade. Construction over weak or soft subgrade affects the performance of the pavement and causes instability of the pavement. If the mechanical properties of the subgrade soils are lower than those required, the soil stabilisation method can be an option to improve the soil properties of the weak subgrade. Soil stabilisation is one of the most popular techniques for improving poor subgrade soils, resulting in a significant improvement in the subgrade soil’s tensile strength, shear strength, and bearing capacity. Soil stabilisation encompasses the various methods used to alter the properties of soil to improve its engineering properties. Soil stabilisation can be broadly divided into four types: thermal, electrical, mechanical, and chemical. The most common method of improving the physical and mechanical properties of soils is stabilisation using binders such as cement and lime. However, soil stabilisation with conventional methods using cement and lime has become uneconomical in recent years, so there is a need to look for an alternative, such as fiber. Although not a new technique, adding fiber is a very practical alternative to soil stabilisation. Various types of fibers, such as natural, synthetic, and waste fibers, have been used as stabilising agents to improve the strength and durability of subgrade soils. This review provides a comprehensive comparison of the effectiveness of natural, synthetic, and waste fibers in stabilising subgrade soils.Keywords: subgrade, soil stabilisation, pavement, fiber, stabiliser
Procedia PDF Downloads 10522468 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation
Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj
Abstract:
As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH
Procedia PDF Downloads 15722467 A Study of Student Satisfaction of the University TV Station
Authors: Prapoj Na Bangchang
Abstract:
This research aimed to study the satisfaction of university students on the Suan Sunandha Rajabhat University television station. The sample were 250 undergraduate students from Year 1 to Year 4. The tool used to collect data was a questionnaire. Statistics used in data analysis were percentage, mean and standard deviation. The results showed that student satisfaction on the University's television station location received high score, followed by the number of devices, and the content presented received the lowest score. Most students want the content of the programs to be improved especially entertainment content, followed by sports content.Keywords: student satisfaction, university TV channel, media, broadcasting
Procedia PDF Downloads 39022466 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines
Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka
Abstract:
To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps
Procedia PDF Downloads 15822465 Sustainable Development Goals and Gender Equality: Impact of Unpaid Labor on Women’s Leadership in India
Authors: Swati Vohra
Abstract:
A genuine economic and social transformation requires equal contribution and participation from both men and women; however, achieving this gender parity is a global concern. In the patriarchal societies around the world, women have been silenced, oppressed, and subjugated. Girls and women comprise half of the world’s population. This, however, must not be the lone reason for recognizing and providing equal opportunities to them. Every individual has a right to develop through opportunities without the biases of gender, caste, race, or ethnicity. The world today is confronted by pressing issues of climate change, economic crisis, violence against women and children, escalating conflicts, to name a few. Achieving gender parity is thus an essential component in meeting this wide array of challenges in order to create just, robust and inclusive societies. In 2015, The United Nation enunciated achieving 17 Sustainable Development Goals by 2030, one of which is SGD#5- Gender Equality, that is not merely a stand-alone goal. It is central to the achievement of all 17 SDG’s. Without progress on gender equality, the global community will not only fail to achieve the SDG5, but it will also lose the impetus towards achieving the broad 2030 agenda. This research is based on a hypothesis that aims to connect the targets laid by the UN under SDG#5 - 5.4 (Recognize and value unpaid care and domestic work) and 5.5 (Ensure women participation for leadership at all levels of decision-making). The study evaluates the impact of unpaid household responsibilities on women’s leadership in India. In Indian society, women have experienced a low social status for centuries, which is reflected throughout the Indian history with preference of a male child and common occurrences of female infanticides that are still prevalent in many parts of the country. Insistence on the traditional gender roles builds patriarchal inequalities into the structure of Indian society. It is argued that a burden of unpaid labor on women is placed, which narrows the opportunities and life chances women are given and the choices they are able to make, thereby shutting them from shared participation in public and economic leadership. The study investigates theoretical framework of social construction of gender, unpaid labor, challenges to women leaders and peace theorist perspective as the core components. The methodology used is qualitative research of comprehensive literature, accompanied by the data collected through interviews of representatives of women leaders from various fields within Delhi-National Capital Region (NCR). The women leaders interviewed had the privilege of receiving good education and a conducive family support; however, post marriage and children it was not the case and the social obligations weighed heavy on them. The research concludes by recommending the importance of gender-neutral parenting and education along with government ratified paternal leaves for at least six months and childcare facilities available for both the parents at workplace.Keywords: gender equality, gender roles, peace studies, sustainable development goals, social construction, unpaid labor, women’s leadership
Procedia PDF Downloads 12622464 Assessment of Physical Learning Environments in ECE: Interdisciplinary and Multivocal Innovation for Chilean Kindergartens
Authors: Cynthia Adlerstein
Abstract:
Physical learning environment (PLE) has been considered, after family and educators, as the third teacher. There have been conflicting and converging viewpoints on the role of the physical dimensions of places to learn, in facilitating educational innovation and quality. Despite the different approaches, PLE has been widely recognized as a key factor in the quality of the learning experience , and in the levels of learning achievement in ECE . The conceptual frameworks of the field assume that PLE consists of a complex web of factors that shape the overall conditions for learning, and that much more interdisciplinary and complementary methodologies of research and development are required. Although the relevance of PLE attracts a broad international consensus, in Chile it remains under-researched and weakly regulated by public policy. Gaining deeper contextual understanding and more thoughtfully-designed recommendations require the use of innovative assessment tools that cross cultural and disciplinary boundaries to produce new hybrid approaches and improvements. When considering a PLE-based change process for ECE improvement, a central question is what dimensions, variables and indicators could allow a comprehensive assessment of PLE in Chilean kindergartens? Based on a grounded theory social justice inquiry, we adopted a mixed method design, that enabled a multivocal and interdisciplinary construction of data. By using in-depth interviews, discussion groups, questionnaires, and documental analysis, we elicited the PLE discourses of politicians, early childhood practitioners, experts in architectural design and ergonomics, ECE stakeholders, and 3 to 5 year olds. A constant comparison method enabled the construction of the dimensions, variables and indicators through which PLE assessment is possible. Subsequently, the instrument was applied in a sample of 125 early childhood classrooms, to test reliability (internal consistency) and validity (content and construct). As a result, an interdisciplinary and multivocal tool for assessing physical learning environments was constructed and validated, for Chilean kindergartens. The tool is structured upon 7 dimensions (wellbeing, flexible, empowerment, inclusiveness, symbolically meaningful, pedagogically intentioned, institutional management) 19 variables and 105 indicators that are assessed through observation and registration on a mobile app. The overall reliability of the instrument is .938 while the consistency of each dimension varies between .773 (inclusive) and .946 (symbolically meaningful). The validation process through expert opinion and factorial analysis (chi-square test) has shown that the dimensions of the assessment tool reflect the factors of physical learning environments. The constructed assessment tool for kindergartens highlights the significance of the physical environment in early childhood educational settings. The relevance of the instrument relies in its interdisciplinary approach to PLE and in its capability to guide innovative learning environments, based on educational habitability. Though further analysis are required for concurrent validation and standardization, the tool has been considered by practitioners and ECE stakeholders as an intuitive, accessible and remarkable instrument to arise awareness on PLE and on equitable distribution of learning opportunities.Keywords: Chilean kindergartens, early childhood education, physical learning environment, third teacher
Procedia PDF Downloads 36222463 Problems of Drought and Its Management in Yobe State, Nigeria
Authors: Hassan Gana Abdullahi, Michael A. Fullen, David Oloke
Abstract:
Drought poses an enormous global threat to sustainable development and is expected to increase with global climate change. Drought and desertification are major problems in Yobe State (north-east Nigeria). This investigation aims to develop a workable framework and management tool for drought mitigation in Yobe State. Mixed methods were employed during the study and additional qualitative information was gathered through Focus Group Discussions (FGD). Data on socio-economic impacts of drought were thus collected via both questionnaire surveys and FGD. In all, 1,040 questionnaires were distributed to farmers in the State and 721 were completed, representing a return rate of 69.3%. Data analysis showed that 97.9% of respondents considered themselves to be drought victims, whilst 69.3% of the respondents were unemployed and had no other means of income, except through rain-fed farming. Developing a viable and holistic approach to drought mitigation is crucial, to arrest and hopefully reverse environment degradation. Analysed data will be used to develop an integrated framework for drought mitigation and management in Yobe State. This paper introduces the socio-economic and environmental effects of drought in Yobe State.Keywords: drought, climate change, mitigation, management, Yobe State
Procedia PDF Downloads 37222462 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis
Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone
Abstract:
Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning
Procedia PDF Downloads 2322461 Observations on the Eastern Red Sea Elasmobranchs: Data on Their Distribution and Ecology
Authors: Frappi Sofia, Nicolas Pilcher, Sander DenHaring, Royale Hardenstine, Luis Silva, Collin Williams, Mattie Rodrigue, Vincent Pieriborne, Mohammed Qurban, Carlos M. Duarte
Abstract:
Nowadays, elasmobranch populations are disappearing at a dangerous rate, mainly due to overexploitation, extensive fisheries, as well as climate change. The decline of these species can trigger a cascade effect, which may eventually lead to detrimental impacts on local ecosystems. The Elasmobranch in the Red Sea is facing one of the highest risks of extinction, mainly due to unregulated fisheries activities. Thus, it is of paramount importance to assess their current distribution and unveil their environmental preferences in order to improve conservation measures. Important data have been collected throughout the whole red Sea during the Red Sea Decade Expedition (RSDE) to achieve this goal. Elasmobranch sightings were gathered through the use of submarines, remotely operated underwater vehicles (ROV), scuba diving operations, and helicopter surveys. Over a period of 5 months, we collected 891 sightings, 52 with submarines, 138 with the ROV, 67 with the scuba diving teams, and 634 from helicopters. In total, we observed 657 and 234 individuals from the superorder Batoidea and Selachimorpha, respectively. The most common shark encountered was Iago omanensis, a deep-water shark of the order Carcharhiniformes. To each sighting, data on temperature, salinity density, and dissolved oxygen were integrated to reveal favorable conditions for each species. Additionally, an extensive literature review on elasmobranch research in the Eastern Red Sea has been carried out in order to obtain more data on local populations and to be able to highlight patterns of their distribution.Keywords: distribution, elasmobranchs, habitat, rays, red sea, sharks
Procedia PDF Downloads 9222460 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks
Authors: Khelifa Benahmed, Tarek Benahmed
Abstract:
There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks
Procedia PDF Downloads 35722459 Development of an NIR Sorting Machine, an Experimental Study in Detecting Internal Disorder and Quality of Apple Fruitpple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The quality level for fresh fruits is very important for the fruit industries. In presents study, an automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics, NIR, fruit quality, spectroscopic technology, mechatronic design
Procedia PDF Downloads 39522458 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics
Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah
Abstract:
A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.Keywords: WSN, routing, energy, heuristic
Procedia PDF Downloads 34722457 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data
Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour
Abstract:
Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.Keywords: physical activity, machine learning, under 5s, disability, accelerometer
Procedia PDF Downloads 21622456 Exploring Teacher Verbal Feedback on Postgraduate Students' Performances in Presentations in English
Authors: Nattawadee Sinpattanawong, Yaowaret Tharawoot
Abstract:
This is an analytic and descriptive classroom-centered research, the purpose of which is to explore teacher verbal feedback on postgraduate students’ performances in presentations in English in an English for Specific Purposes (ESP) postgraduate classroom. The participants are a Thai female teacher, two Thai female postgraduate students, and two foreign male postgraduate students. The current study draws on both classroom observation and interview data. The class focused on the students’ presentations and the teacher’s providing verbal feedback on them was observed nine times with audio recording and taking notes. For the interviews, the teacher was interviewed about linkages between her verbal feedback and each student’s presentation skills in English. For the data analysis, the audio files from the observations were transcribed and analyzed both quantitatively and qualitatively. The quantitative approach addressed the frequencies and percentages of content of the teacher’s verbal feedback for each student’s performances based on eight presentation factors (content, structure, grammar, coherence, vocabulary, speaking skills, involving the audience, and self-presentation). Based on the quantitative data including the interview data, a qualitative analysis of the transcripts was made to describe the occurrences of several content of verbal feedback for each student’s presentation performances. The study’s findings may help teachers to reflect on their providing verbal feedback based on various students’ performances in presentation in English. They also help students who have similar characteristics to the students in the present study when giving a presentation in English improve their presentation performances by applying the teacher’s verbal feedback content.Keywords: teacher verbal feedback, presentation factors, presentation in English, presentation performances
Procedia PDF Downloads 15322455 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture
Procedia PDF Downloads 19822454 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 209