Search results for: time series prediction
20644 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 46220643 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 15620642 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile
Authors: Fikru Fentaw Abera
Abstract:
Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE
Procedia PDF Downloads 36520641 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate
Procedia PDF Downloads 12020640 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 15820639 Sea Surface Temperature and Climatic Variables as Drivers of North Pacific Albacore Tuna Thunnus Alalunga Time Series
Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto, Swastika Roshni, Paras Nath, Alok Kalla
Abstract:
Albacore tuna (Thunnus alalunga) is one of the commercially important species of tuna in the North Pacific region. Despite the long history of albacore fisheries in the Pacific, its ecological characteristics are not sufficiently understood. The effects of changing climate on numerous commercially and ecologically important fish species including albacore tuna have been documented over the past decades. The objective of this study was to explore and elucidate the relationship of environmental variables with the stock parameters of albacore tuna. The relationship of the North Pacific albacore tuna recruitment (R), spawning stock biomass (SSB) and recruits per spawning biomass (RPS) from 1970 to 2012 with the environmental factors of sea surface temperature (SST), Pacific decadal oscillation (PDO), El Niño southern oscillation (ENSO) and Pacific warm pool index (PWI) was construed. SST and PDO were used as independent variables with SSB to construct stock reproduction models for R and RPS as they showed most significant relationship with the dependent variables. ENSO and PWI were excluded due to collinearity effects with SST and PDO. Model selections were based on R2 values, Akaike Information Criterion (AIC) and significant parameter estimates at p<0.05. Models with single independent variables of SST, PDO, ENSO and PWI were also constructed to illuminate their individual effect on albacore R and RPS. From the results it can be said that SST and PDO resulted in the most significant models for reproducing North Pacific albacore tuna R and RPS time series. SST has the highest impact on albacore R and RPS when comparing models with single environmental variables. It is important for fishery managers and decision makers to incorporate the findings into their albacore tuna management plans for the North Pacific Oceanic region.Keywords: Albacore tuna, El Niño southern oscillation, Pacific decadal oscillation, sea surface temperature
Procedia PDF Downloads 23120638 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 9820637 Behind Fuzzy Regression Approach: An Exploration Study
Authors: Lavinia B. Dulla
Abstract:
The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval
Procedia PDF Downloads 30220636 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping
Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco
Abstract:
Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction
Procedia PDF Downloads 22620635 Good Governance Complementary to Corruption Abatement: A Cross-Country Analysis
Authors: Kamal Ray, Tapati Bhattacharya
Abstract:
Private use of public office for private gain could be a tentative definition of corruption and most distasteful event of corruption is that it is not there, nor that it is pervasive, but it is socially acknowledged in the global economy, especially in the developing nations. We attempted to assess the interrelationship between the Corruption perception index (CPI) and the principal components of governance indicators as per World Bank like Control of Corruption (CC), rule of law (RL), regulatory quality (RQ) and government effectiveness (GE). Our empirical investigation concentrates upon the degree of reflection of governance indicators upon the CPI in order to single out the most powerful corruption-generating indicator in the selected countries. We have collected time series data on above governance indicators such as CC, RL, RQ and GE of the selected eleven countries from the year of 1996 to 2012 from World Bank data set. The countries are USA, UK, France, Germany, Greece, China, India, Japan, Thailand, Brazil, and South Africa. Corruption Perception Index (CPI) of the countries mentioned above for the period of 1996 to 2012is also collected. Graphical method of simple line diagram against the time series data on CPI is applied for quick view for the relative positions of different trend lines of different nations. The correlation coefficient is enough to assess primarily the degree and direction of association between the variables as we get the numerical data on governance indicators of the selected countries. The tool of Granger Causality Test (1969) is taken into account for investigating causal relationships between the variables, cause and effect to speak of. We do not need to verify stationary test as length of time series is short. Linear regression is taken as a tool for quantification of a change in explained variables due to change in explanatory variable in respect of governance vis a vis corruption. A bilateral positive causal link between CPI and CC is noticed in UK, index-value of CC increases by 1.59 units as CPI increases by one unit and CPI rises by 0.39 units as CC rises by one unit, and hence it has a multiplier effect so far as reduction in corruption is concerned in UK. GE causes strongly to the reduction of corruption in UK. In France, RQ is observed to be a most powerful indicator in reducing corruption whereas it is second most powerful indicator after GE in reducing of corruption in Japan. Governance-indicator like GE plays an important role to push down the corruption in Japan. In China and India, GE is proactive as well as influencing indicator to curb corruption. The inverse relationship between RL and CPI in Thailand indicates that ongoing machineries related to RL is not complementary to the reduction of corruption. The state machineries of CC in S. Africa are highly relevant to reduce the volume of corruption. In Greece, the variations of CPI positively influence the variations of CC and the indicator like GE is effective in controlling corruption as reflected by CPI. All the governance-indicators selected so far have failed to arrest their state level corruptions in USA, Germany and Brazil.Keywords: corruption perception index, governance indicators, granger causality test, regression
Procedia PDF Downloads 30620634 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 57320633 Stroke Rehabilitation via Electroencephalogram Sensors and an Articulated Robot
Authors: Winncy Du, Jeremy Nguyen, Harpinder Dhillon, Reinardus Justin Halim, Clayton Haske, Trent Hughes, Marissa Ortiz, Rozy Saini
Abstract:
Stroke often causes death or cerebro-vascular (CV) brain damage. Most patients with CV brain damage lost their motor control on their limbs. This paper focuses on developing a reliable, safe, and non-invasive EEG-based robot-assistant stroke rehabilitation system to help stroke survivors to rapidly restore their motor control functions for their limbs. An electroencephalogram (EEG) recording device (EPOC Headset) and was used to detect a patient’s brain activities. The EEG signals were then processed, classified, and interpreted to the motion intentions, and then converted to a series of robot motion commands. A six-axis articulated robot (AdeptSix 300) was employed to provide the intended motions based on these commends. To ensure the EEG device, the computer, and the robot can communicate to each other, an Arduino microcontroller is used to physically execute the programming codes to a series output pins’ status (HIGH or LOW). Then these “hardware” commends were sent to a 24 V relay to trigger the robot’s motion. A lookup table for various motion intensions and the associated EEG signal patterns were created (through training) and installed in the microcontroller. Thus, the motion intention can be direct determined by comparing the EEG patterns obtaibed from the patient with the look-up table’s EEG patterns; and the corresponding motion commends are sent to the robot to provide the intended motion without going through feature extraction and interpretation each time (a time-consuming process). For safety sake, an extender was designed and attached to the robot’s end effector to ensure the patient is beyond the robot’s workspace. The gripper is also designed to hold the patient’s limb. The test results of this rehabilitation system show that it can accurately interpret the patient’s motion intension and move the patient’s arm to the intended position.Keywords: brain waves, EEG sensor, motion control, robot-assistant stroke rehabilitation
Procedia PDF Downloads 38420632 New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles
Authors: Kang Hyun Yi
Abstract:
This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation.Keywords: electric vehicle, LLC DC/DC converter, input voltage balancing, parallel output
Procedia PDF Downloads 105220631 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 10620630 Evaluating the Effectiveness of Plantar Sensory Insoles and Remote Patient Monitoring for Early Intervention in Diabetic Foot Ulcer Prevention in Patients with Peripheral Neuropathy
Authors: Brock Liden, Eric Janowitz
Abstract:
Introduction: Diabetic peripheral neuropathy (DPN) affects 70% of individuals with diabetes1. DPN causes a loss of protective sensation, which can lead to tissue damage and diabetic foot ulcer (DFU) formation2. These ulcers can result in infections and lower-extremity amputations of toes, the entire foot, and the lower leg. Even after a DFU is healed, recurrence is common, with 49% of DFU patients developing another ulcer within a year and 68% within 5 years3. This case series examines the use of sensory insoles and newly available plantar data (pressure, temperature, step count, adherence) and remote patient monitoring in patients at risk of DFU. Methods: Participants were provided with custom-made sensory insoles to monitor plantar pressure, temperature, step count, and daily use and were provided with real-time cues for pressure offloading as they went about their daily activities. The sensory insoles were used to track subject compliance, ulceration, and response to feedback from real-time alerts. Patients were remotely monitored by a qualified healthcare professional and were contacted when areas of concern were seen and provided coaching on reducing risk factors and overall support to improve foot health. Results: Of the 40 participants provided with the sensory insole system, 4 presented with a DFU. Based on flags generated from the available plantar data, patients were contacted by the remote monitor to address potential concerns. A standard clinical escalation protocol detailed when and how concerns should be escalated to the provider by the remote monitor. Upon escalation to the provider, patients were brought into the clinic as needed, allowing for any issues to be addressed before more serious complications might arise. Conclusion: This case series explores the use of innovative sensory technology to collect plantar data (pressure, temperature, step count, and adherence) for DFU detection and early intervention. The results from this case series suggest the importance of sensory technology and remote patient monitoring in providing proactive, preventative care for patients at risk of DFU. This robust plantar data, with the addition of remote patient monitoring, allow for patients to be seen in the clinic when concerns arise, giving providers the opportunity to intervene early and prevent more serious complications, such as wounds, from occurring.Keywords: diabetic foot ulcer, DFU prevention, digital therapeutics, remote patient monitoring
Procedia PDF Downloads 7720629 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test
Procedia PDF Downloads 42020628 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia PDF Downloads 22320627 Economic Analysis of Rainwater Harvesting Systems for Dairy Cattle
Authors: Sandra Cecilia Muhirirwe, Bart Van Der Bruggen, Violet Kisakye
Abstract:
Economic analysis of Rainwater harvesting (RWH) systems is vital in search of a cost-effective solution to water unreliability, especially in low-income countries. There is little literature focusing on the financial aspects of RWH for dairy farmers. The main purpose was to assess the economic viability of rainwater harvesting for diary framers in the Rwenzori region. The study focused on the use of rainwater harvesting systems from the rooftop and collection in above surface tanks. Daily rainfall time series for 12 years was obtained across nine gauging stations. The daily water balance equation was used for optimal sizing of the tank. Economic analysis of the investment was carried out based on the life cycle costs and the accruing benefits for the period of 15 years. Roof areas were varied from 75m2 as the minimum required area to 500m2 while maintaining the same number of cattle and keeping the daily water demand constant. The results show that the required rainwater tank sizes are very large and may be impractical to install due to the strongly varying terrain and the initial cost of investment. In all districts, there is a significant reduction of the volume of the required tank with an increasing collection area. The results further show that increasing the collection area has a minor effect on reducing the required tank size. Generally, for all rainfall areas, the reliability increases with an increase in the roof area. The results indicate that 100% reliability can only be realized with very large collection areas that are impractical to install. The estimated benefits outweigh the cost of investment. The Present Net Value shows that the investment is economically viable and investment with a short payback of a maximum of 3 years for all the time series in the study area.Keywords: dairy cattle, optimisation, rainwater harvesting, economic analysis
Procedia PDF Downloads 20520626 Environmental Impact Assessment in Mining Regions with Remote Sensing
Authors: Carla Palencia-Aguilar
Abstract:
Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.Keywords: carbon dioxide, NPP, MODIS, MINING
Procedia PDF Downloads 10620625 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 42420624 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 10120623 Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple Linear Regression Along Tom Mboya Street in Nairobi City
Authors: Oscar Nekesa, Yoshitaka Kajita, Mio Suzuki
Abstract:
This paper aims to establish and quantify factors affecting pedestrian accidents, with essential factors that have been identified as including time of day, traffic signal time, pedestrian flow rate, pedestrian speed and traffic flux. The average of these variables has been found to be relatively large compared to other similar studies, which indicates a large variability of these factors. Using correlation analysis, it is evident that there is a high correlation between pedestrian and traffic flow rates with accident rates. Traffic signal duration and pedestrian volume are seen as salient indicators of the probability of accidents by linear regression. Green signal touchdown time predictors indicated that longer green signal touchdown times reduce the probability of accidents, whereas pedestrian traffic volume increases accident probability. The study recommends signal timings to be improved, pedestrian infrastructure enhanced, and traffic and pedestrian flows to be regulated to increase safety levels. It is recommended for future research to adopt the nonlinear models and consider other factors that might characterize the nature of pedestrian accidents.Keywords: pedestrian accidents, green signal duration, built environment, correlation and prediction
Procedia PDF Downloads 3120622 Selective Extraction of Couple Nickel(II) / Cobalt(II) by a Series of Schiff Bases in Sulfate Medium, in the Chloroforme-Water
Authors: N. Belhadj, M. Hadj Youcef, T. Benabdallah, Belbachir Ibtissem, N. Boceiri
Abstract:
This work deals with the synthesis, the structural elucidation and the exploration the extracting properties of a series of ortho-hydroxy Schiff base in sulfate medium. After the synthesis and characterization of their structures, the study of their behavior in solution was carried out by pH-metric titration in different media homogeneous and heterogeneous solution. This allowed to explore and to quantify in each of these media, some of their properties in solution such as, their acid-base behavior (determination and comparison of pKa), their distribution powers (determination and comparison of logKd), and their thermodynamic constants (determining ∆H°, ΔS° and ∆G°moy) by optimizing both the temperature and ionic strength. Study of the extraction of nickel (II) and cobalt(II) separately was undertaken in the aqueous-organic system, chloroform-water. Different extraction parameters have been thus optimized such, the pH, the concentration of extractant and the ionic strength, and the extraction constants established in each case. The extracted metal complexes have been isolated and their spatial configurations elucidated. The selective extraction of the couple cobalt (II)/nickel (II) was finally performed by our series of Schiff base in the chloroforme/water.Keywords: selective extraction, Schiff base, distribution, cobalt(II), nickel(II)
Procedia PDF Downloads 46120621 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach
Authors: Ju-Young Hwang, Hyo-Gyoung Kwak
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis
Procedia PDF Downloads 41420620 New Chinese Landscapes in the Works of the Chinese Photographer Yao Lu
Authors: Xiaoling Dai
Abstract:
Many Chinese artists have used digital photography to create works with features of Chinese landscape paintings since the 20th century. The ‘New Mountains and Water’ works created by digital techniques reflect the fusion of photographic techniques and traditional Chinese aesthetic thoughts. Borrowing from Chinese landscape paintings in the Song Dynasty, the Chinese photographer Yao Lu uses digital photography to reflect contemporary environmental construction in his series New Landscapes. By portraying a variety of natural environments brought by urbanization in the contemporary period, Lu deconstructs traditional Chinese paintings and reconstructs contemporary photographic practices. The primary object of this study is to investigate how Chinese photographer Yao Lu redefines and re-interprets the relationship between tradition and contemporaneity. In this study, Yao Lu’s series work New Landscapes is used for photo elicitation, which seeks to broaden understanding of the development of Chinese landscape photography. Furthermore, discourse analysis will be used to evaluate how Chinese social developments influence the creation of photographic practices. Through visual and discourse analysis, this study aims to excavate the relationship between tradition and contemporaneity in Lu’s works. According to New Landscapes, the study argues that in Lu’s interpretations of landscapes, tradition and contemporaneity are seen to establish a new relationship. Traditional approaches to creation do not become obsolete over time. On the contrary, traditional notions and styles of creation can shed new light on contemporary issues or techniques.Keywords: Chinese aesthetics, Yao Lu, new landscapes, tradition, contemporaneity
Procedia PDF Downloads 7920619 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes
Authors: Sang-Woo Kim, Young-Seon Lee
Abstract:
An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test
Procedia PDF Downloads 37520618 Effects of Peakedness of Bimodal Waves on Overtopping of Sloping Seawalls
Authors: Stephen Orimoloye, Jose Horrillo-Caraballo, Harshinie Karunarathna, Dominic E. Reeve
Abstract:
Prediction of wave overtopping is an essential component of coastal seawall designing and management. Not only that excessive overtopping is reported for impermeable seawalls under bimodal waves, but overtopping is also showing a high sensitivity to the peakedness of the random wave propagation patterns. In the present study, we present a comprehensive analysis of the effects of peakedness of bimodal wave patterns of the overtopping of sloping seawalls. An energy-conserved bimodal spectrum with four different spectra peak periods and swell percentages was applied to estimate wave overtopping in both numerical and experimental flumes. Results of incident surface elevations and bimodal spectra were accurately captured across the flume domain using sets of well-positioned resistant-type wave gauges. Peakedness characteristics of the wave patterns were extracted to derive a relationship between the non-dimensional overtopping and the peakedness across the wave groups in the wave series. The full paper will briefly describe the development of the spectrum and present a comprehensive results analysis leading to the derivation of the relationship between dimensionless overtopping and peakedness of bimodal waves.Keywords: wave overtopping, peakedness, bimodal waves, swell percentages
Procedia PDF Downloads 18220617 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 25920616 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 12620615 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites
Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler
Abstract:
Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.Keywords: failure, strength, stress concentration, unidirectional composites
Procedia PDF Downloads 156