Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3136

Search results for: interval regression

3136 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla


The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 137
3135 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E. Komarov


This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval

Procedia PDF Downloads 234
3134 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh


The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 286
3133 A New Approach to Interval Matrices and Applications

Authors: Obaid Algahtani


An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.

Keywords: interval analysis, interval matrices, state space model, Kalman Filter

Procedia PDF Downloads 346
3132 Genetic and Environmental Variation in Reproductive and Lactational Performance of Holstein Cattle

Authors: Ashraf Ward


Effect of calving interval on 305 day milk yield for first three lactations was studied in order to increase efficiency of selection schemes and to more efficiently manage Holstein cows that have been raised on small farms in Libya. Results obtained by processing data of 1476 cows, managed in 935 small scale farms, pointed out that current calving interval significantly affects on milk production for first three lactations (p<0.05). Preceding calving interval affected 305 day milk yield (p<0.05) in second lactation only. Linear regression model accounted for 20-25 % of the total variance of 305 day milk yield. Extension of calving interval over 420, 430, 450 days for first, second and third lactations respectively, did not increase milk production when converted to 305 day lactation. Stochastic relations between calving interval and calving age and month are moderated. Values of Pierson’s correlation coefficients ranged 0.38 to 0.69. Adjustment of milk production in order to reduce effect of calving interval on total phenotypic variance of milk yield is valid for first lactation only. Adjustment of 305 day milk yield for second and third lactations in order to reduce effects of factors “calving age and month” brings about, at the same time, elimination of calving interval effect.

Keywords: milk yield, Holstien, non genetic, calving

Procedia PDF Downloads 343
3131 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan


A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting

Procedia PDF Downloads 292
3130 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination

Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan


The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.

Keywords: confidence interval, handwriting, kernel density estimator, KDE, logistic regression LoR, repeatability, reproducibility

Procedia PDF Downloads 54
3129 Son Preference in Afghanistan and Its Impact on Fertility Outcomes

Authors: Saha Naseri


Introduction/Objective: Son preference, a preference for sons over daughters, is a practice deeply-rooted in gender inequality that is widespread in many societies and across different religions and cultures. In this study, we are aiming to study the effects of son preference on fertility outcomes (birth interval and current contraceptive use) in Afghanistan, where have been perceived with high rates of son preference. The objectives of the study are to examine the association between the sex of the previous child and the duration of the subsequent birth interval and to evaluate the effect of son preference on current contraceptive use. Methodology: Afghanistan Demographic and Health Survey (DHS) (2015) was used to study the impact of son preference on fertility outcomes among married women. The data collected from 28,661 on currently-married women, aged between 15 and 49 years who have at least one child, have used to conduct this quantitative study. Outcomes of interest are birth interval and current contraceptive use. Simple and multiple regression analysis have been conducted to assess the effect of son preference on these fertility outcomes. Results: The present study has highlighted that son preference somehow exists among married women in Afghanistan. It is indicated that the sex of the first birth is significantly associated with the succeeding birth interval. Having a female child as the first baby was associated with a shorter average succeeding birth interval by 1.8 months compared to a baby boy (p-value = 0.000). For the second model, the results identified that women who desire for more sons have 7% higher odds to be current contraceptive user compared to those who have no preference (p-value = 0.03). The latter results do not indicate the son preference. However, one limitation for this result was the timeliness of the questions asked since contraceptive use in the current time was asked along with a question on ‘future’ desired sex composition. Moreover, women may have just given birth and want to reach a certain time span of birth interval before planning for another child, even if it was a boy, which might have affected the results. Conclusion: Overall, this study has demonstrated that there is a positive relationship between son preference and one main fertility behaviors, birth interval. The second fertility outcome, current contraceptive use, was not a good indicator to measure son preference. Based on the finding, recommendations will be made for appropriate interventions addressing gender norms and related fertility decisions.

Keywords: Afghanistan, birth interval, contraceptive, son preference

Procedia PDF Downloads 47
3128 Effect of Serum Electrolytes on a QTc Interval and Mortality in Patients admitted to Coronary Care Unit

Authors: Thoetchai Peeraphatdit, Peter A. Brady, Suraj Kapa, Samuel J. Asirvatham, Niyada Naksuk


Background: Serum electrolyte abnormalities are a common cause of an acquired prolonged QT syndrome, especially, in the coronary care unit (CCU) setting. Optimal electrolyte ranges among the CCU patients have not been sufficiently investigated. Methods: We identified 8,498 consecutive CCU patients who were admitted to the CCU at Mayo Clinic, Rochester, the USA, from 2004 through 2013. Association between first serum electrolytes and baseline corrected QT intervals (QTc), as well as in-hospital mortality, was tested using multivariate linear regression and logistic regression, respectively. Serum potassium 4.0- < 4.5 mEq/L, ionized calcium (iCa) 4.6-4.8 mg/dL, and magnesium 2.0- < 2.2 mg/dL were used as the reference levels. Results: There was a modest level-dependent relationship between hypokalemia ( < 4.0 mEq/L), hypocalcemia ( < 4.4 mg/dL), and a prolonged QTc interval; serum magnesium did not affect the QTc interval. Association between the serum electrolytes and in-hospital mortality included a U-shaped relationship for serum potassium (adjusted odds ratio (OR) 1.53 and OR 1.91for serum potassium 4.5- < 5.0 and ≥ 5.0 mEq/L, respectively) and an inverted J-shaped relationship for iCa (adjusted OR 2.79 and OR 2.03 for calcium < 4.4 and 4.4- < 4.6 mg/dL, respectively). For serum magnesium, the mortality was greater only among patients with levels ≥ 2.4 mg/dL (adjusted OR 1.40), compared to the reference level. Findings were similar in sensitivity analyses examining the association between mean serum electrolytes and mean QTc intervals, as well as in-hospital mortality. Conclusions: Serum potassium 4.0- < 4.5 mEq/L, iCa ≥ 4.6 mg/dL, and magnesium < 2.4 mg/dL had a neutral effect on QTc intervals and were associated with the lowest in-hospital mortality among the CCU patients.

Keywords: calcium, electrocardiography, long-QT syndrome, magnesium, mortality, potassium

Procedia PDF Downloads 325
3127 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin


The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 286
3126 Asymptotic Confidence Intervals for the Difference of Coefficients of Variation in Gamma Distributions

Authors: Patarawan Sangnawakij, Sa-Aat Niwitpong


In this paper, we proposed two new confidence intervals for the difference of coefficients of variation, CIw and CIs, in two independent gamma distributions. These proposed confidence intervals using the close form method of variance estimation which was presented by Donner and Zou (2010) based on concept of Wald and Score confidence interval, respectively. Monte Carlo simulation study is used to evaluate the performance, coverage probability and expected length, of these confidence intervals. The results indicate that values of coverage probabilities of the new confidence interval based on Wald and Score are satisfied the nominal coverage and close to nominal level 0.95 in various situations, particularly, the former proposed confidence interval is better when sample sizes are small. Moreover, the expected lengths of the proposed confidence intervals are nearly difference when sample sizes are moderate to large. Therefore, in this study, the confidence interval for the difference of coefficients of variation which based on Wald is preferable than the other one confidence interval.

Keywords: confidence interval, score’s interval, wald’s interval, coefficient of variation, gamma distribution, simulation study

Procedia PDF Downloads 332
3125 Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai

Authors: E. Khattab, S. Halla


Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield.

Keywords: interval irrigation, growth and yield characters, oil, jojoba, Sinai

Procedia PDF Downloads 118
3124 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu


Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 108
3123 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo


Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 52
3122 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model

Authors: Autcha Araveeporn


This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.

Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)

Procedia PDF Downloads 323
3121 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis


The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction

Procedia PDF Downloads 89
3120 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah


This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 507
3119 An Integrated Approach of Isolated and Combined Aerobic and Anaerobic Interval Training for Improvement of Stride Length and Stride Frequency of Soccer Players

Authors: K. A. Ramesh


Purpose: The study is to find out the effect of isolated and combined aerobic and anaerobic interval training on stride length and stride frequency of Soccer players. Method(s): To achieve this purpose, 45 women Soccer players who participated in the Anna University, Tamilnadu, India. Intercollegiate Tournament was selected as subjects and were randomly divided into three equal groups of fifteen each, such as an anaerobic interval training group (group-I), anaerobic interval training group (group-II) and combined aerobic-anaerobic interval training group (group-III). The training program was conducted three days per weeks for a period of six weeks. Stride length and Stride frequency was selected as dependent variables. All the subjects of the three groups were tested on selected criterion variables at prior to and immediately after the training program. The concepts of dependent test were employed to find out the significant improvement due to the influence of training programs on all the selected criterion variables. The analysis of covariance (ANCOVA) was also used to analyze the significant difference, if, any among the experimental groups. Result(s): The result of the study revealed that combined group was higher than aerobic interval training and anaerobic interval training groups. Conclusion(s): It was concluded that when experimental groups were compared with each other, the combined aerobic – anaerobic interval training program was found to be greater than the aerobic and the anaerobic interval training programs on the development of stride length and stride frequency. High intensity, combined aerobic – anaerobic interval training program can be carried out in a more soccer specific way than plain running.

Keywords: stride length, stride frequency, interval training, soccer

Procedia PDF Downloads 288
3118 Determinants of Diarrhoea Prevalence Variations in Mountainous Informal Settlements of Kigali City, Rwanda

Authors: Dieudonne Uwizeye


Introduction: Diarrhoea is one of the major causes of morbidity and mortality among communities living in urban informal settlements of developing countries. It is assumed that mountainous environment introduces variations of the burden among residents of the same settlements. Design and Objective: A cross-sectional study was done in Kigali to explore the effect of mountainous informal settlements on diarrhoea risk variations. Data were collected among 1,152 households through household survey and transect walk to observe the status of sanitation. The outcome variable was the incidence of diarrhoea among household members of any age. The study used the most knowledgeable person in the household as the main respondent. Mostly this was the woman of the house as she was more likely to know the health status of every household member as she plays various roles: mother, wife, and head of the household among others. The analysis used cross tabulation and logistic regression analysis. Results: Results suggest that risks for diarrhoea vary depending on home location in the settlements. Diarrhoea risk increased as the distance from the road increased. The results of the logistic regression analysis indicate the adjusted odds ratio of 2.97 with 95% confidence interval being 1.35-6.55 and 3.50 adjusted odds ratio with 95% confidence interval being 1.61-7.60 in level two and three respectively compared with level one. The status of sanitation within and around homes was also significantly associated with the increase of diarrhoea. Equally, it is indicated that stable households were less likely to have diarrhoea. The logistic regression analysis indicated the adjusted odds ratio of 0.45 with 95% confidence interval being 0.25-0.81. However, the study did not find evidence for a significant association between diarrhoea risks and household socioeconomic status in the multivariable model. It is assumed that environmental factors in mountainous settings prevailed. Households using the available public water sources were more likely to have diarrhoea in their households. Recommendation: The study recommends the provision and extension of infrastructure for improved water, drainage, sanitation and wastes management facilities. Equally, studies should be done to identify the level of contamination and potential origin of contaminants for water sources in the valleys to adequately control the risks for diarrhoea in mountainous urban settings.

Keywords: urbanisation, diarrhoea risk, mountainous environment, urban informal settlements in Rwanda

Procedia PDF Downloads 107
3117 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method

Authors: S. Phanyaem


This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.

Keywords: effect size, confidence interval, bootstrap method, resampling

Procedia PDF Downloads 522
3116 Solution of Nonlinear Fractional Programming Problem with Bounded Parameters

Authors: Mrinal Jana, Geetanjali Panda


In this paper a methodology is developed to solve a nonlinear fractional programming problem in which the coefficients of the objective function and constraints are interval parameters. This model is transformed into a general optimization problem and relation between the original problem and the transformed problem is established. Finally the proposed methodology is illustrated through a numerical example.

Keywords: fractional programming, interval valued function, interval inequalities, partial order relation

Procedia PDF Downloads 434
3115 The Prevalence and Associated Factors of Frailty and Its Relationship with Falls in Patients with Schizophrenia

Authors: Bo-Jian Wu, Si-Heng Wu


Objectives: Frailty is a condition of a person who has chronic health problems complicated by a loss of physiological reserve and deteriorating functional abilities. The frailty syndrome was defined by Fried and colleagues, i.e., weight loss, fatigue, decreased grip strength, slow gait speed, and low physical activity. However, to our best knowledge, there have been rare studies exploring the prevalence of frailty and its association with falls in patients with schizophrenia. Methods: A total of 559 hospitalized patients were recruited from a public psychiatric hospital in 2013. The majority of the subjects were males (361, 64.6%). The average age was 53.5 years. All patients received the assessment of frailty status defined by Fried and colleagues. The status of a fall within one year after the assessment of frailty, clinical and demographic data was collected from medical records. Logistic regression was used to calculate the odds ratio of associated factors. Results : A total of 9.2% of the participants met the criteria of frailty. The percentage of patients having a fall was 7.2%. Age were significantly associated with frailty (odds ratio = 1.057, 95% confidence interval = 1.025-1.091); however, sex was not associated with frailty (p = 0.17). After adjustment for age and sex, frailty status was associated with a fall (odds ratio = 3.62, 95% confidence interval = 1.58-8.28). Concerning the components of frailty, decreased grip strength (odds ratio = 2.44, 95% confidence interval = 1.16-5.14), slow gait speed (odds ratio = 2.82, 95% confidence interval = 1.21-6.53), and low physical activity (odds ratio = 2.64, 95% confidence interval = 1.21-5.78) were found to be associated with a fall. Conclusions: Our findings suggest the prevalence of frailty was about 10% in hospitalized patients with chronic patients with schizophrenia, and frailty status was significant with a fall in this group. By using the status of frailty, it may be beneficial to potential target candidates having fallen in the future as early as possible. The effective intervention of prevention of further falls may be given in advance. Our results bridge this gap and open a potential avenue for the prevention of falls in patients with schizophrenia. Frailty is certainly an important factor for maintaining wellbeing among these patients.

Keywords: fall, frailty, schizophrenia, Taiwan

Procedia PDF Downloads 58
3114 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models

Authors: Anastasiia Yu. Timofeeva


Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression

Procedia PDF Downloads 333
3113 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang


The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 426
3112 The Effects of Eight Weeks of Interval Endurance Training on hs-CRP Levels and Anthropometric Parameters in Overweight Men

Authors: S. Khoshemehry, M. J. Pourvaghar


Inflammatory markers are known as the main predictors of cardiovascular diseases. This study aimed at determining the effect of 8 weeks of interval endurance training on hs-CRP level and some anthropometric parameters in overweight men. Following the call for participation in research project in Kashan, 73 volunteers participated in it and constituted the statistical population of the study. Then, 28 overweight young men from the age of 22 to 25 years old were randomly assigned into two groups of experimental and control group (n=14). Anthropometric and the blood sample was collected before and after the termination of the program for measuring hs-CRP. The interval endurance program was performed at 60 to 75% of maximum heart rate in 2 sessions per week for 8 weeks. Kolmogorov-Smirnov test was used to test whether two samples come from the same distribution and T-test was used to assess the difference of two groups which were statistically significant at the level of 0.05. The result indicated that there was a significant difference between the hs-RP, weight, BMI and W/H ratio of overweight men in posttest in the exercise group (P≤0.05) but not in the control group. Interval endurance training program causes decrease in hs-CRP level and anthropometric parameters.

Keywords: interval endurance training program, HS-CRP, overweight, anthropometric

Procedia PDF Downloads 232
3111 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study

Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura


Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.

Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia

Procedia PDF Downloads 66
3110 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote


This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 279
3109 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno


Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 88
3108 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman


Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 430
3107 The Association between C-Reactive Protein and Hypertension with Different US Participants Ethnicity-Findings from National Health and Nutrition Examination Survey 1999-2010

Authors: Ghada Abo-Zaid


The main objective of this study was to examine the association between the elevated level of CRP and incidence of hypertension before and after adjusting by age, BMI, gender, SES, smoking, diabetes, cholesterol LDL and cholesterol HDL and to determine whether the association were differ by race. Method: Cross sectional data for participations from age 17 to age 74 years who included in The National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010 were analysed. CRP level was classified into three categories ( > 3mg/L, between 1mg/LL and 3mg/L, and < 3 mg/L). Blood pressure categorization was done using JNC 7 algorithm Hypertension defined as either systolic blood pressure (SBP) of 140 mmHg or more and disystolic blood pressure (DBP) of 90mmHg or greater, otherwise a self-reported prior diagnosis by a physician. Pre-hypertension was defined as (139 > SBP > 120 or 89 > DPB > 80). Multinominal regression model was undertaken to measure the association between CRP level and hypertension. Results: In univariable models, CRP concentrations > 3 mg/L were associated with a 73% greater risk of incident hypertension compared with CRP concentrations < 1 mg/L (Hypertension: odds ratio [OR] = 1.73; 95% confidence interval [CI], 1.50-1.99). Ethnic comparisons showed that American Mexican had the highest risk of incident hypertension (odds ratio [OR] = 2.39; 95% confidence interval [CI], 2.21-2.58).This risk was statistically insignificant, however, either after controlling by other variables (Hypertension: OR = 0.75; 95% CI, 0.52-1.08,), or categorized by race [American Mexican: odds ratio [OR] = 1.58; 95% confidence interval [CI], 0,58-4.26, Other Hispanic: odds ratio [OR] = 0.87; 95% confidence interval [CI], 0.19-4.42, Non-Hispanic white: odds ratio [OR] = 0.90; 95% confidence interval [CI], 0.50-1.59, Non-Hispanic Black: odds ratio [OR] = 0.44; 95% confidence interval [CI], 0.22-0,87]. The same results were found for pre-hypertension, and the Non-Hispanic black showed the highest significant risk for Pre-Hypertension (odds ratio [OR] = 1.60; 95% confidence interval [CI], 1.26-2.03). When CRP concentrations were between 1.0-3.0 mg/L, in an unadjusted models prehypertension was associated with higher likelihood of elevated CRP (OR = 1.37; 95% CI, 1.15-1.62). The same relationship was maintained in Non-Hispanic white, Non-Hispanic black, and other race (Non-Hispanic white: OR = 1.24; 95% CI, 1.03-1.48, Non-Hispanic black: OR = 1.60; 95% CI, 1.27-2.03, other race: OR = 2.50; 95% CI, 1.32-4.74) while the association was insignificant with American Mexican and other Hispanic. In the adjusted model, the relationship between CRP and prehypertension were no longer available. In contrary, Hypertension was not independently associated with elevated CRP, and the results were the same after grouped by race or adjusted by the confounder variables. The same results were obtained when SBP or DBP were on a continuous measure. Conclusions: This study confirmed the existence of an association between hypertension, prehypertension and elevated level of CRP, however this association was no longer available after adjusting by other variables. Ethic group differences were statistically significant at the univariable models, while it disappeared after controlling by other variables.

Keywords: CRP, hypertension, ethnicity, NHANES, blood pressure

Procedia PDF Downloads 354