Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87732
Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple Linear Regression Along Tom Mboya Street in Nairobi City
Authors: Oscar Nekesa, Yoshitaka Kajita, Mio Suzuki
Abstract:
This paper aims to establish and quantify factors affecting pedestrian accidents, with essential factors that have been identified as including time of day, traffic signal time, pedestrian flow rate, pedestrian speed and traffic flux. The average of these variables has been found to be relatively large compared to other similar studies, which indicates a large variability of these factors. Using correlation analysis, it is evident that there is a high correlation between pedestrian and traffic flow rates with accident rates. Traffic signal duration and pedestrian volume are seen as salient indicators of the probability of accidents by linear regression. Green signal touchdown time predictors indicated that longer green signal touchdown times reduce the probability of accidents, whereas pedestrian traffic volume increases accident probability. The study recommends signal timings to be improved, pedestrian infrastructure enhanced, and traffic and pedestrian flows to be regulated to increase safety levels. It is recommended for future research to adopt the nonlinear models and consider other factors that might characterize the nature of pedestrian accidents.Keywords: pedestrian accidents, green signal duration, built environment, correlation and prediction
Procedia PDF Downloads 30