Search results for: gas metal arc weld (GMAW)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2560

Search results for: gas metal arc weld (GMAW)

1780 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor

Authors: K.Narasimhulu, Y. Pydi Setty

Abstract:

The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.

Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water

Procedia PDF Downloads 453
1779 Chemical Speciation and Bioavailability of Some Essential Metal Ions In Different Fish Organs at Lake Chamo, Ethiopia

Authors: Adane Gebresilassie Hailemariam, Belete Yilma Hirpaye

Abstract:

The enhanced concentrations of heavy metals, especially in sediments, may indicate human-induced perturbations rather than natural enrichment through geological weathering. Heavy metals are non-biodegradable, persist in the environment, and are concentrated up to the food chain, leading to enhanced levels in the liver and muscle tissues of fishes, aquatic bryophytes, and aquatic biota. Marine organisms, in general fish in particular, accumulate metals to concentrations many times higher than present in water or sediment as they can take up metals in their organs and concentrate at different levels. Thus, metals acquired through the food chain due to pollution are potential chemical hazards, threatening consumers. The Nile tilapia (oreochromic niloticus), catfish (clarius garpinus), and water samples were collected from five sampling sites, namely, inlet-1, inlet-2, center, outlet-1 and outlet-2 of Lake Chamo. The concentration of major and trace metals Na, K, Mg, Ca, Cr, Co, Ni, Mn and Cu in the two fish muscles, gill and liver, was determined using an atomic absorption spectrometer (AAS) and flame photometer (FP). Metal concentrations in the water have also been evaluated within the two consecutive seasons, winter (dry) and spring (wet). The results revealed that the concentration of those metals in Tilapia’s (O. niloticus) muscle, gill, and liver were Na 44.5, 35.1, 28, Mg 2.8, 8.41, 4.61, K 43, 32, 30, Ca 1.5, 6.0, 5.5, Cr 0.91, 1.2, 3.5, Co 3.0, 2.89, 2.62, Ni 0.94, 1.99, 2.2, Mn 1.23, 1.51, 1.6 and Cu 1.1, 1.99, 3.5 mg kg-1 respectively and in catfish’s muscle, gill and liver Na 25, 39, 41.5, Mg 4.8, 2.87, 6, K 29, 38, 40, Ca 2.5, 8.10, 3.0, Cr 0.65, 3.5, 5.0, Co 2.62, 1.86, 1.73, Ni 1.10, 2.3, 3.1, Mn 1.54, 1.57, 1.59 and Cu 1.01, 1.10, 3.70 mg kg-1 respectively. The highest accumulation of Na and K were observed for tilapia muscle and catfish gill, Mg and Ca got higher in tilapia gill and catfish liver, while Co is higher in muscle of the two fish. The Cr, Ni, Mn and Cu levels were higher in the livers of the two fish species. In conculusion, metal toxicity through food chain is the current dangerous issue for human and othe animals. This needs deep focus to promot the health of living animals. The Details of the work are going to be discussed at the conference.

Keywords: bioaccumulation, catfish, essential metals, nile tilapia

Procedia PDF Downloads 79
1778 High Gain Broadband Plasmonic Slot Nano-Antenna

Authors: H. S. Haroyan, V. R. Tadevosyan

Abstract:

High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.

Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.

Procedia PDF Downloads 371
1777 Bearing Capacity of Sheet Hanger Connection to the Trapezoidal Metal Sheet

Authors: Kateřina Jurdová

Abstract:

Hanging to the trapezoidal sheet by decking hanger is a very widespread solution used in civil engineering to lead the distribution of energy, sanitary, air distribution system etc. under the roof or floor structure. The trapezoidal decking hanger is usually a part of the whole installation system for specific distribution medium. The leading companies offer installation systems for each specific distribution e.g. pipe rings, sprinkler systems, installation channels etc. Every specific part is connected to the base connector which is decking hanger. The own connection has three main components: decking hanger, threaded bar with nuts and web of trapezoidal sheet. The aim of this contribution is determinate the failure mechanism of each component in connection. Load bearing capacity of most components in connection could be calculated by formulas in European codes. This contribution is focused on problematic of bearing resistance of threaded bar in web of trapezoidal sheet. This issue is studied by experimental research and numerical modelling. This contribution presented the initial results of experiment which is compared with numerical model of specimen.

Keywords: decking hanger, concentrated load, connection, load bearing capacity, trapezoidal metal sheet

Procedia PDF Downloads 392
1776 Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging

Authors: S. H. Bae, D. W. Cho, W. B. Jeong, J. R. Cho

Abstract:

Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method.

Keywords: modal testing, natural frequency, vibration aging, welded structure

Procedia PDF Downloads 483
1775 Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube

Authors: Bum Yean Cho, Heung-Youl Kim, Ki-Seok Kwon, Kang-Su Kim

Abstract:

In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour.

Keywords: CFT (concrete-filled tube) column, fire resistance performance, slot, weld

Procedia PDF Downloads 186
1774 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water

Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli

Abstract:

Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.

Keywords: drinking water, health risk assessment, heavy metals, pollution index

Procedia PDF Downloads 131
1773 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding(FSW), micro-hardness, underwater

Procedia PDF Downloads 424
1772 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution

Authors: Hasan Türe, Kader Terzioglu, Evren Tunca

Abstract:

Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).

Keywords: alginate, adsorption, beads, perlite

Procedia PDF Downloads 290
1771 Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems

Authors: Vladimir Veremey

Abstract:

The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.

Keywords: antenna, antenna arrays, Multiple-Input-Multiple-Output (MIMO), millimeter wave bands, slot antenna, flush installation, directivity, open waveguide, conformal antennas

Procedia PDF Downloads 170
1770 The Importance of a Coating and Architecture of the Surface Metal on the Survival of Uncemented Total Knee Arthroplasty

Authors: Raymond Puijk, Rachid Rassir, Inger N. Sierevelt, Anneke Spekenbrink-Sporen, Bart G. C. W. Pijls, Rob G. H. H. Nelissen, Peter A. Nolte

Abstract:

Background: Among uncemented total knee arthroplasty (TKA), a wide variety of metal surface structures (MSS) and coatings exist to enhance implants' biological properties (i.e., bone ingrowth). This study explores the variety of MSS-coating combinations and compares their mid-long-term survivorships with cemented TKAs, by using data from the Dutch Arthroplasty Register. Methods: A total of 235,500 cemented and 11,132 uncemented primary TKAs with a median follow-up of 5.1 years were included. MSS-coating combinations were (1) Porous-uncoated (n=8986), (2) Beaded-hydroxyapatite (HA)(n=1093), (3) Matte-uncoated (n=846), (4) Matte-Titanium-nitride (TiN) (n=207). Five- and 10-year revision-free survival for all-cause revisions, and aseptic loosening of the tibial component, were calculated and compared by using Kaplan-Meier, Log-rank tests, and multivariable Cox proportional hazard regression analyses. Results: Ten-year survival rates with all-cause revisions as an endpoint, were 94.2% for cement, and 94.7%, 96.3%, 92.1%, and 79.0% for porous-uncoated, beaded-HA, matte-uncoated, and Matte-TiN, respectively (p<0.01). Rates for aseptic loosening were 98.8% for cemented, and 98.7%, 99.8%, 97.2%, and 94.9% for the uncemented, respectively (p<0.01).The beaded-HA implants were half the risk for an all-cause revision compared to cemented implants (p<0.01). Matte-uncoated and matte-TiN implants were at more risk of an all-cause revision than cemented implants (p=0.01, p<0.01). Proportions of revisions for aseptic loosening were comparable among most groups. Conclusion: Based on Dutch registry data, four main MSS-coating combinations among uncemented TKAs were found. survivorships for all-cause revisions and aseptic release differed widely between groups. Beaded-HA and porous-uncoated implants had the best survival rates among the uncemented TKAs and were non-inferior to the cemented TKAs.

Keywords: total knee arthroplasty, cement, uncemented, cementless;, metal surface structure, coating

Procedia PDF Downloads 152
1769 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate

Authors: S. Zhuiykov, M. Karbalaei Akbari

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.

Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization

Procedia PDF Downloads 91
1768 Secondary True to Life Polyethylene Terephthalate Nanoplastics: Obtention, Characterization, and Hazard Evaluation

Authors: Aliro Villacorta, Laura Rubio, Mohamed Alaraby, Montserrat López Mesas, Victor Fuentes-Cebrian, Oscar H. Moriones, Ricard Marcos, Alba Hernández.

Abstract:

Micro and nano plastics (MNPLs) are emergent environmental pollutants requiring urgent information on their potential risks to human health. One of the problems associated with the evaluation of their undesirable effects is the lack of real samples matching those resulting from the environmental degradation of plastic wastes. To such end, we propose an easy method to obtain polyethylene terephthalate nano plastics from water plastic bottles (PET-NPLs) but, in principle, applicable to any other plastic goods sources. An extensive characterization indicates that the proposed process produces uniform samples of PET-NPLs of around 100 nm, as determined by using a multi-angle and dynamic light scattering methodology. An important point to be highlighted is that to avoid the metal contamination resulting from methods using metal blades/burrs for milling, trituration, or sanding, we propose to use diamond burrs to produce metal-free samples. To visualize the toxicological profile of the produced PET-NPLs, we have evaluated their ability to be internalized by cells, their cytotoxicity, and their ability to induce oxidative stress and induce DNA damage. In this preliminary approach, we have detected their cellular uptake, but without the induction of significant biological effects. Thus, no relevant increases in toxicity, reactive oxygen species (ROS) induction, or DNA damage -as detected with the comet assay- have been observed. The use of real samples, as produced in this study, will generate relevant data in the discussion about the potential health risks associated with MNPLs exposures.

Keywords: nanoplastics, polyethylene terephthalate, physicochemical characterization, cell uptake, cytotoxicity

Procedia PDF Downloads 99
1767 Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636

Authors: Andrea M. Rivas-Castillo, Marlenne Gómez-Ramirez, Isela Rodríguez-Pozos, Norma G. Rojas-Avelizapa

Abstract:

Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely Acidithiobacillus thiooxidans and Acidithiobacillus ferroxidans, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 °C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by A. thiooxidans DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 ± 2.2 to 439 ± 3.9 mg/kg for Al, and from 7.13 ± 0.31 to 368.4 ± 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 ± 2.2, 6.2±0.07, and 100±2.4, respectively. Hence, the data presented here exhibit the potential of A. thiooxidans DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance.

Keywords: bioleaching, metal removal, spent catalysts, Acidithiobacillus thiooxidans

Procedia PDF Downloads 141
1766 Solvent Dependent Triazole-Appended Glucofuranose-Based Fluorometric Sensor for Detection of Au³⁺ Ions

Authors: Samiul Islam Hazarika, Domngam Boje, Ananta Kumar Atta

Abstract:

It is well familiar that solvents play a significant role in modern chemistry. Solvents can change the reactivity and physicochemical properties of molecules in a solution. Keeping this in mind, we have designed and synthesized a mono-triazolyl-linked pyrenyl-appended xylofuranose derivative for the detection of metal ions with changing solvent systems. The incorporation of a sugar backbone in the sensor increases the water solubility and biocompatibility. The experimental study revealed that the xylofuranose-based fluorescence probe did not exhibit any specific selectivity towards metal ions in acetonitrile (CH₃CN) solvent. Whereas, we revealed that triazole-linked pyrenyl-appended xylofuranose-based fluorescent sensor would exhibit high selectivity and sensitivity towards Au³⁺ ions in CH₃CN-H₂O (1/1, v/v) system. This observation might be explained by the viscosity and polarity differences of CH₃CN and CH₃CN-H₂O solvent systems. The formation of the sensor-Au³⁺ complex was also established by high-resolution mass spectrometry (HRMS) data of the complex.

Keywords: triazole, furanose, fluorometric, solvent dependent

Procedia PDF Downloads 116
1765 Synthesis of a Serie of Metallic Complexes Derived from bis(4-Amino-5-Mercapto-1,2,4-Triazol-3-yl)butane with First Raw Transition Metals

Authors: I. Belbachir, T. Benabdallah, N. Belhadj

Abstract:

The present research work describes the synthesis, through a multi-step strategy, as well as the structural characterization of a polydentate organic ligand, namely the bis(4-amino-5-mercapto-1,2,4-triazole-3-yl)butane (BAMT). The bis-triazolic ligand was characterized by different spectroscopic studies, in order to enlighten its coordination mode, in the neutral and deprotonated forms, towards cobalt(II), nickel(II) and copper(II) sulfates, in both solution and solid state. The stoichiometry of the complexes [neutral BAMT-metal] and [deprotonated BAMT-metal] was first established in a solution of DMF with each of the three metallic cations and their complexation constants calculated, allowing us to compare the stability of the various prepared complexes. The various complexes were finally isolated in the solid state and the coordination mode of neutral and deprotonated BAMT explored towards each of the three metallic sulfates. The establishment of some ligand field parameters (Dq, B, β…) by electronic spectroscopy finally allowed to compare the coordination modes of BAMT towards each of the three metals and to highlight the influence of the deprotonation on the complexing properties of the bis-triazolic ligand.

Keywords: 1, 2, 4-triazol, bis-1, 2, 4-triazol, metallic complexes, coordination in solution and solid state

Procedia PDF Downloads 180
1764 Modelling Magnetohydrodynamics to Investigate Variation of Shielding Gases on Arc Characteristics in the GTAW Process

Authors: Stuart W. Campbell, Alexander M. Galloway, Norman A. McPherson, Duncan Camilleri, Daniel Micallef

Abstract:

Gas tungsten arc welding requires a gas shield to be present in order to protect the arc area from contamination by atmospheric gases. As a result of each gas having its own unique thermophysical properties, the shielding gas selected can have a major influence on the arc stability, welding speed, weld appearance and geometry, mechanical properties and fume generation. Alternating shielding gases is a relatively new method of discreetly supplying two different shielding gases to the welding region in order to take advantage of the beneficial properties of each gas, as well as the inherent pulsing effects generated. As part of an ongoing process to fully evaluate the effects of this novel supply method, a computational fluid dynamics model has been generated to include the gas dependent thermodynamic and transport properties in order to evaluate the effects that an alternating gas supply has on the arc plasma. Experimental trials have also been conducted to validate the model arc profile predictions.

Keywords: Alternating shielding gases, ANSYS CFX, Gas tungsten arc welding(GTAW), magnetohydrodynamics(MHD)

Procedia PDF Downloads 437
1763 NiFe-Type Catalysts for Anion Exchange Membrane (AEM) Electrolyzers

Authors: Boldin Roman, Liliana Analía Diaz

Abstract:

As the hydrogen economy continues to expand, reducing energy consumption and emissions while stimulating economic growth, the development of efficient and cost-effective hydrogen production technologies is critical. Among various methods, anion exchange membrane (AEM) water electrolysis stands out due to its potential for using non-noble metal catalysts. The exploration and enhancement of non-noble metal catalysts, such as NiFe-type catalysts, are pivotal for the advancement of AEM technology, ensuring its commercial viability and environmental sustainability. NiFe-type catalysts were synthesized through electrodeposition and characterized both electrochemically and physico-chemically. Various supports, including Ni foam and Ni mesh, were used as porous transport layers (PTLs) to evaluate the effective catalyst thickness and the influence of the PTL in a 5 cm² AEM electrolyzer. This methodological approach allows for a detailed assessment of catalyst performance under operational conditions typical of industrial hydrogen production. The study revealed that electrodeposited non-noble multi-metallic catalysts maintain stable performance as anodes in AEM water electrolysis. NiFe-type catalysts demonstrated superior activity, with the NiFeCoP alloy outperforming others by delivering the lowest overpotential and the highest current density. Furthermore, the use of different PTLs showed significant effects on the electrochemical behavior of the catalysts, indicating that PTL selection is crucial for optimizing performance and efficiency in AEM electrolyzers. Conclusion: The research underscores the potential of non-noble metal catalysts in enhancing efficiency and reducing the costs of AEM electrolysers. The findings highlight the importance of catalyst and PTL optimization in developing scalable and economically viable hydrogen production technologies. Continued innovation in this area is essential for supporting the growth of the hydrogen economy and achieving sustainable energy solutions.

Keywords: AEMWE, electrocatalyst, hydrogen production, water electrolysis.

Procedia PDF Downloads 31
1762 Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium

Authors: Y. J. Chen, T. M. Yue, Z. N. Guo

Abstract:

This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface.

Keywords: laser direct joining, Ti/PET interface, laser energy, XPS depth profiling, chemical bond, tensile failure load

Procedia PDF Downloads 212
1761 Optimizing Detection Methods for THz Bio-imaging Applications

Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu

Abstract:

A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.

Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer

Procedia PDF Downloads 348
1760 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer

Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh

Abstract:

Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.

Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering

Procedia PDF Downloads 166
1759 Aryne Mediated, Transition-Metal Free Arylations of Quinolines for Medicinal and Materials Applications

Authors: Rakesh Kumar, Shashi Janeoo, Ankit Dhiman, Siddharth Chopra

Abstract:

Arynes are versatile reactive intermediates that offer broad opportunities in green organic synthesis. Arynes are potential aryl group surrogates for the transition metal-free environment friendly arylation reactions. Regioselective arylations of quinolines were achieved by the reactions of quinoline N-oxides with aryne intermediates generated in situ from the Kobayashi precursors. Various 2-substituted quinolines provided 3-arylated-2-substituted quinolines under ambient conditions. Acridine N-oxides also reacted well and provided unusual 4-arylacridines. Various fluorine containing 2,3-diarylquinaolines prepared using this approach were evaluated for antibacterial activity and two compounds inhibited the drug-resistant strains of S-aureus with a good selectivity index. Further, the 2,3-diarylquinolines as the potential optoelectronic materials were prepared by the aryne chemistry approach and their optical and electronic properties for such applications are under study. The aryne intermediates provide an effective Green Chemistry tool to achieve versatile arylated heteroarenes for diverse applications.

Keywords: arynes, arylation, quinolines, acridines.

Procedia PDF Downloads 95
1758 Evaluation of the Effects of Lead on Some Physiological and Hormonal Biomarkeurs among Workers

Authors: Mansouri Ouarda, Adbdennour Cherif, Boukarma Ziad

Abstract:

Environmental and biological monitoring are used for the evaluation of exposure to industrial chemicals, and provide a tool for assessing workers’ exposure to chemicals. The organs or tissues where the first biological effects can be observed with increasing amounts of lead toxicity. This study aims at evaluating the effect of the metal element-trace; lead, on the sex hormones in male workers, exposed to this metal on the level of the manufacturing plant of lead accumulators. The results indicate a significant reduction of the testosterone concentration in exposed workers compared to the control. However, the rate of LH was strongly increased at the individuals exposed to Pb. A significant difference concerning the rate of FSH, the hormone Prolactin and cortisol was recorded. The indicators of the lead poisoning indicate a very highly significant increase in the value of Pbs which vary between (142-796 µg/L) among which 50% of the workers present a high lead poisoning and the value of PPZ which vary between (43-554µg/L). The biochemical parameters show a significant increase in the rate of the créatinine, the urea and the acid urique. The hepatic results show no significant differentiation in the rate of TGO and TGP between both groups of study. However the rates of the enzyme phosphatase alkaline, triglyceride, and cholesterol a significant difference were registered.

Keywords: hormons, parameters, physilogical, Pbs, PPZ

Procedia PDF Downloads 378
1757 Hazardous Effects of Metal Ions on the Thermal Stability of Hydroxylammonium Nitrate

Authors: Shweta Hoyani, Charlie Oommen

Abstract:

HAN-based liquid propellants are perceived as potential substitute for hydrazine in space propulsion. Storage stability for long service life in orbit is one of the key concerns for HAN-based monopropellants because of its reactivity with metallic and non-metallic impurities which could entrain from the surface of fuel tanks and the tubes. The end result of this reactivity directly affects the handling, performance and storability of the liquid propellant. Gaseous products resulting from the decomposition of the propellant can lead to deleterious pressure build up in storage vessels. The partial loss of an energetic component can change the ignition and the combustion behavior and alter the performance of the thruster. The effect of largely plausible metals- iron, copper, chromium, nickel, manganese, molybdenum, zinc, titanium and cadmium on the thermal decomposition mechanism of HAN has been investigated in this context. Studies involving different concentrations of metal ions and HAN at different preheat temperatures have been carried out. Effect of metal ions on the decomposition behavior of HAN has been studied earlier in the context of use of HAN as gun propellant. However the current investigation pertains to the decomposition mechanism of HAN in the context of use of HAN as monopropellant for space propulsion. Decomposition onset temperature, rate of weight loss, heat of reaction were studied using DTA- TGA and total pressure rise and rate of pressure rise during decomposition were evaluated using an in-house built constant volume batch reactor. Besides, reaction mechanism and product profile were studied using TGA-FTIR setup. Iron and copper displayed the maximum reaction. Initial results indicate that iron and copper shows sensitizing effect at concentrations as low as 50 ppm with 60% HAN solution at 80°C. On the other hand 50 ppm zinc does not display any effect on the thermal decomposition of even 90% HAN solution at 80°C.

Keywords: hydroxylammonium nitrate, monopropellant, reaction mechanism, thermal stability

Procedia PDF Downloads 424
1756 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 276
1755 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors

Authors: Ye Ling, Jiang Yuting, Ruan Haihui

Abstract:

Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.

Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor

Procedia PDF Downloads 47
1754 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting

Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan

Abstract:

Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.

Keywords: electron beam melting, additive manufacturing, Ti6Al4V, surface morphology

Procedia PDF Downloads 115
1753 Some Trace and Toxic Metal Content of Crude Ethanol Leaf Extract of Globimetula Oreophila (Hook. F) Danser Azadirachta Indica Using Atomic Absorption Spectroscopy

Authors: Dauda G., Bila Ha Sani Y. M., Magaji M. G., Musa A. M., Hassan H. S.

Abstract:

Introduction: Globimetula oreophila is a parasitic plant with a known therapeutic value that is widely used in the treatment of various ailments, including malaria, hypertension, cancer, diabetes, epilepsy and as a diuretic agent. Objectives: The present study is aimed at analyzing and documenting the level of trace and toxic metals in the crude ethanol leaf extract of G. oreophila. Methods: After collection and authentication, the leaves were air-dried, mashed into powder, weighed and extracted using aqueous ethanol (70%). The crude extract (0.5g) was digested with HNO₃: HCl (3:1); then heated to 2000C and analyzed for its metal content by atomic absorption spectroscopy (AAS). Results: Fe had the highest concentration (32.73mg/kg), while Pb was not detected. The concentrations of Co, Cu, Ni, Zn and Cd detected were 5.97, 10.8, 8.01 and 0.9mg/kg, respectively. The concentration of Cd, Fe and Ni were above the permissible limit of FAO/WHO. Conclusion: The results also show that the analyzed plant is a beneficial source of appropriate and essential trace metals. However, the leaf of G. oreophila in the present study was probably unsafe for long-term use because of the level of Fe, Ni, and Cd concentration.

Keywords: Globimetula oreophila, minerals, trace element, crude extract

Procedia PDF Downloads 153
1752 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah

Abstract:

Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.

Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork

Procedia PDF Downloads 548
1751 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 483