Search results for: features selection for CBIR
5205 Digital Forensics Showdown: Encase and FTK Head-to-Head
Authors: Rida Nasir, Waseem Iqbal
Abstract:
Due to the constant revolution in technology and the increase in anti-forensic techniques used by attackers to remove their traces, professionals often struggle to choose the best tool to be used in digital forensic investigations. This paper compares two of the most well-known and widely used licensed commercial tools, i.e., Encase & FTK. The comparison was drawn on various parameters and features to provide an authentic evaluation of licensed versions of these well-known commercial tools against various real-world scenarios. In order to discover the popularity of these tools within the digital forensic community, a survey was conducted publicly to determine the preferred choice. The dataset used is the Computer Forensics Reference Dataset (CFReDS). A total of 70 features were selected from various categories. Upon comparison, both FTK and EnCase produce remarkable results. However, each tool has some limitations, and none of the tools is declared best. The comparison drawn is completely unbiased, based on factual data.Keywords: digital forensics, commercial tools, investigation, forensic evaluation
Procedia PDF Downloads 185204 Using Assessment Criteria as a Pedagogic Tool to Develop Argumentative Essay Writing
Authors: Sruti Akula
Abstract:
Assessment criteria are mostly used for assessing skills like writing and speaking. However, they could be used as a pedagogic tool to develop writing skills. A study was conducted with higher secondary learners (Class XII Kendriya Vidyalaya) to investigate the effectiveness of assessment criteria to develop argumentative essay writing. In order to raise awareness about the features of argumentative essay, assessment criteria were shared with the learners. Along with that, self-evaluation checklists were given to the learners to guide them through the writing process. During the study learners wrote multiple drafts with the help of assessment criteria, self-evaluation checklists and teacher feedback at different stages of their writing. It was observed that learners became more aware of the features of argumentative essay which in turn improved their argumentative essay writing. In addition the self evaluation checklists imporved their ability to reflect on their work there by increasing learner autonomy in the class. Hence, it can be claimed that both assessment criteria and self evaluation checklists are effective pedagogic tools to develop argumentative essay writing. Thus, teachers can be trained to create and use tools like assessment criteria and self-evaluation checklists to develop learners’ writing skills in an effective way. The presentation would discuss the approach adopted in the study to teach argumentative essay writing along with the rationale. The tools used in the study would be shared and the data collected in the form of written scripts, self-evaluation checklists and student interviews will be analyzed to validate the claims. Finally, the practical implication of the study like the ways of using assessment criteria and checklists to raise learner awareness and autonomy, using such tools to keep the learners informed about the task requirements and genre features, and the like will be put forward.Keywords: argumentative essay writing, assessment criteria, self evaluation checklists, pedagogic
Procedia PDF Downloads 5075203 Function of Fractals: Application of Non-Linear Geometry in Continental Architecture
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the '70s until today and has generated significant styles such as deconstructivism and parametrism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials, and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties
Procedia PDF Downloads 2565202 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 2385201 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier
Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui
Abstract:
Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM
Procedia PDF Downloads 3905200 The Integration of Iranian Traditional Architecture in the Contemporary Housing Design: A Case Study
Authors: H. Nejadriahi
Abstract:
Traditional architecture is a valuable source of inspiration, which needs to be studied and integrated in the contemporary designs for achieving an identifiable contemporary architecture. Traditional architecture of Iran is among the distinguished examples of being contextually responsive, not only by considering the environmental conditions of a region, but also in terms of respecting the socio-cultural values of its context. In order to apply these valuable features to the current designs, they need to be adapted to today's condition, needs and desires. In this paper, the main features of the traditional architecture of Iran are explained to interrogate them in the formation of a contemporary house in Tehran, Iran. Also a table is provided to compare the utilization of the traditional design concepts in the traditional houses and the contemporary example of it. It is believed that such study would increase the awareness of contemporary designers by providing them some clues on maintaining the traditional values in the current design layouts particularly in the residential sector that would ultimately improve the quality of space in the contemporary architecture.Keywords: contemporary housing design, Iran, Tehran, traditional architecture
Procedia PDF Downloads 4685199 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique
Authors: Jaturong Som-ard
Abstract:
The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings
Procedia PDF Downloads 1905198 Using Blockchain Technology to Promote Sustainable Supply Chains: A Survey of Previous Studies
Authors: Saleh Abu Hashanah, Abirami Radhakrishnan, Dessa David
Abstract:
Sustainable practices in the supply chain have been an area of focus that require consideration of environmental, economic, and social sustainability practices. This paper aims to examine the use of blockchain as a disruptive technology to promote sustainable supply chains. Content analysis was used to analyze the uses of blockchain technology in sustainable supply chains. The results showed that blockchain technology features such as traceability, transparency, smart contracts, accountability, trust, immutability, anti-fraud, and decentralization promote sustainable supply chains. It is found that these features have impacted organizational efficiency in operations, transportation, and production, minimizing costs and reducing carbon emissions. In addition, blockchain technology has been found to elicit customer trust in the products.Keywords: blockchain technology, sustainability, supply chains, economic sustainability, environmental sustainability, social sustainability
Procedia PDF Downloads 1045197 The Sociology of the Facebook: An Exploratory Study
Authors: Liana Melissa E. de la Rosa, Jayson P. Ada
Abstract:
This exploratory study was conducted to determine the sociology of the Facebook. Specifically, it aimed to know the socio-demographic profile of the respondents in terms of age, sex, year level and monthly allowance; find out the common usage of Facebook to the respondents; identify the features of Facebook that are commonly used by the respondents; understand the benefits and risks of using the Facebook; determine how frequent the respondents use the Facebook; and find out if there is a significant relationship between socio-demographic profile of the respondents and their Facebook usage. This study used the exploratory research design and correlational design employing research survey questionnaire as its main data gathering instrument. Students of the University of Eastern Philippines were selected as the respondents of this study through quota sampling. Ten (10) students were randomly selected from each college of the university. Based on the findings of this study, the following conclusion were drawn: The majority of the respondents are aged 18 and 21 old, female, are third year students, and have monthly allowance of P 2,000 above. On the respondents’ usage of Facebook, the majority of use the Facebook on a daily basis for one to two (1-2) hours everyday. And most users used Facebook by renting a computer in an internet cafe. On the use of Facebook, most users have created their profiles mainly to connect with people and gain new friends. The most commonly used features of Facebook, are: photos application, like button, wall, notification, friend, chat, network, groups and “like” pages status updates, messages and inbox and events. While the other Facebook features that are seldom used by the respondents are games, news feed, user name, video sharing and notes. And the least used Facebook features are questions, poke feature, credits and the market place. The respondents stated that the major benefit that the Facebook has given to its users is its ability to keep in touch with family members or friends while the main risk identified is that the users can become addicted to the Internet. On the tests of relationships between the respondents’ use of Facebook and the four (4) socio-demographic profile variables: age, sex, year level, and month allowance, were found to be not significantly related to the respondents’ use of the Facebook. While the variable found to be significantly related was gender.Keywords: Facebook, sociology, social networking, exploratory study
Procedia PDF Downloads 2875196 Narrative Identity Predicts Borderline Personality Disorder Features in Inpatient Adolescents up to Six Months after Admission
Authors: Majse Lind, Carla Sharp, Salome Vanwoerden
Abstract:
Narrative identity is the dynamic and evolving story individuals create about their personal pasts, presents, and presumed futures. This storied sense of self develops in adolescence and is crucial for fostering a sense of self-unity and purpose in life. A growing body of work has shown that several characteristics of narrative identity are disturbed in adults suffering from borderline personality disorder (BPD). Very little research, however, has explored the stories told by adolescents with BPD features. Investigating narrative identity early in the lifespan and in relation to personality pathology is crucial; BPD is a developmental disorder with early signs appearing already in adolescence. In the current study, we examine narrative identity (focusing on themes of agency and communion) coded from self-defining memories derived from the child attachment interview in 174 inpatient adolescents (M = 15.12, SD = 1.52) at the time of admission. The adolescents’ social cognition was further assessed on the basis of their reactions to movie scenes (i.e., the MASC movie task). They also completed a trauma checklist and self-reported BPD features at three different time points (i.e., at admission, at discharge, and 6 months after admission). Preliminary results show that adolescents who told stories containing themes of agency and communion evinced better social cognition, and lower emotional abuse on the trauma checklist. In addition, adolescents who disclosed stories containing lower levels of agency and communion demonstrated more BPD symptoms at all three time points, even when controlling for the occurrence of traumatic life events. Surprisingly, social cognitive abilities were not significantly associated with BPD features. These preliminary results underscore the importance of narrative identity as an indicator, and potential cause, of incipient personality pathology. Thus, focusing on diminished themes of narrative-based agency and communion in early adolescence could be crucial in preventing the development of personality pathology over time.Keywords: borderline personality disorder, inpatient adolescents, narrative identity, follow-ups
Procedia PDF Downloads 1545195 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring
Procedia PDF Downloads 5545194 Brittle Fracture Tests on Steel Bridge Bearings: Application of the Potential Drop Method
Authors: Natalie Hoyer
Abstract:
Usually, steel structures are designed for the upper region of the steel toughness-temperature curve. To address the reduced toughness properties in the temperature transition range, additional safety assessments based on fracture mechanics are necessary. These assessments enable the appropriate selection of steel materials to prevent brittle fracture. In this context, recommendations were established in 2011 to regulate the appropriate selection of steel grades for bridge bearing components. However, these recommendations are no longer fully aligned with more recent insights: Designing bridge bearings and their components in accordance with DIN EN 1337 and the relevant sections of DIN EN 1993 has led to an increasing trend of using large plate thicknesses, especially for long-span bridges. However, these plate thicknesses surpass the application limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with the regulations outlined in DIN EN 1993-1-10 regarding material toughness and through-thickness properties requires some further modifications. Therefore, these standards cannot be directly applied to the material selection for bearings without additional information. In addition, recent findings indicate that certain bridge bearing components are subjected to high fatigue loads, necessitating consideration in structural design, material selection, and calculations. To address this issue, the German Center for Rail Traffic Research initiated a research project aimed at developing a proposal to enhance the existing standards. This proposal seeks to establish guidelines for the selection of steel materials for bridge bearings to prevent brittle fracture, particularly for thick plates and components exposed to specific fatigue loads. The results derived from theoretical analyses, including finite element simulations and analytical calculations, are verified through component testing on a large-scale. During these large-scale tests, where a brittle failure is deliberately induced in a bearing component, an artificially generated defect is introduced into the specimen at the predetermined hotspot. Subsequently, a dynamic load is imposed until the crack initiation process transpires, replicating realistic conditions akin to a sharp notch resembling a fatigue crack. To stop the action of the dynamic load in time, it is important to precisely determine the point at which the crack size transitions from stable crack growth to unstable crack growth. To achieve this, the potential drop measurement method is employed. The proposed paper informs about the choice of measurement method (alternating current potential drop (ACPD) or direct current potential drop (DCPD)), presents results from correlations with created FE models, and may proposes a new approach to introduce beach marks into the fracture surface within the framework of potential drop measurement.Keywords: beach marking, bridge bearing design, brittle fracture, design for fatigue, potential drop
Procedia PDF Downloads 395193 Variable Selection in a Data Envelopment Analysis Model by Multiple Proportions Comparison
Authors: Jirawan Jitthavech, Vichit Lorchirachoonkul
Abstract:
A statistical procedure using multiple comparisons test for proportions is proposed for variable selection in a data envelopment analysis (DEA) model. The test statistic in the multiple comparisons is the proportion of efficient decision making units (DMUs) in a DEA model. Three methods of multiple comparisons test for proportions: multiple Z tests with Bonferroni correction, multiple tests in 2Xc crosstabulation and the Marascuilo procedure, are used in the proposed statistical procedure of iteratively eliminating the variables in a backward manner. Two simulation populations of moderately and lowly correlated variables are used to compare the results of the statistical procedure using three methods of multiple comparisons test for proportions with the hypothesis testing of the efficiency contribution measure. From the simulation results, it can be concluded that the proposed statistical procedure using multiple Z tests for proportions with Bonferroni correction clearly outperforms the proposed statistical procedure using the remaining two methods of multiple comparisons and the hypothesis testing of the efficiency contribution measure.Keywords: Bonferroni correction, efficient DMUs, Marascuilo procedure, Pastor et al. method, 2xc crosstabulation
Procedia PDF Downloads 3095192 Applied Methods for Lightweighting Structural Systems
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior
Procedia PDF Downloads 5205191 Economical and Technical Analysis of Urban Transit System Selection Using TOPSIS Method According to Constructional and Operational Aspects
Authors: Ali Abdi Kordani, Meysam Rooyintan, Sid Mohammad Boroomandrad
Abstract:
Nowadays, one the most important problems in megacities is public transportation and satisfying citizens from this system in order to decrease the traffic congestions and air pollution. Accordingly, to improve the transit passengers and increase the travel safety, new transportation systems such as Bus Rapid Transit (BRT), tram, and monorail have expanded that each one has different merits and demerits. That is why comparing different systems for a systematic selection of public transportation systems in a big city like Tehran, which has numerous problems in terms of traffic and pollution, is essential. In this paper, it is tried to investigate the advantages and feasibility of using monorail, tram and BRT systems, which are widely used in most of megacities in all over the world. In Tehran, by using SPSS statistical analysis software and TOPSIS method, these three modes are compared to each other and their results will be assessed. Experts, who are experienced in the transportation field, answer the prepared matrix questionnaire to select each public transportation mode (tram, monorail, and BRT). The results according to experts’ judgments represent that monorail has the first priority, Tram has the second one, and BRT has the third one according to the considered indices like execution costs, wasting time, depreciation, pollution, operation costs, travel time, passenger satisfaction, benefit to cost ratio and traffic congestion.Keywords: BRT, costs, monorail, pollution, tram
Procedia PDF Downloads 1775190 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration
Authors: Matthew Yeager, Christopher Willy, John Bischoff
Abstract:
The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design
Procedia PDF Downloads 1835189 A Selection Approach: Discriminative Model for Nominal Attributes-Based Distance Measures
Authors: Fang Gong
Abstract:
Distance measures are an indispensable part of many instance-based learning (IBL) and machine learning (ML) algorithms. The value difference metrics (VDM) and inverted specific-class distance measure (ISCDM) are among the top-performing distance measures that address nominal attributes. VDM performs well in some domains owing to its simplicity and poorly in others that exist missing value and non-class attribute noise. ISCDM, however, typically works better than VDM on such domains. To maximize their advantages and avoid disadvantages, in this paper, a selection approach: a discriminative model for nominal attributes-based distance measures is proposed. More concretely, VDM and ISCDM are built independently on a training dataset at the training stage, and the most credible one is recorded for each training instance. At the test stage, its nearest neighbor for each test instance is primarily found by any of VDM and ISCDM and then chooses the most reliable model of its nearest neighbor to predict its class label. It is simply denoted as a discriminative distance measure (DDM). Experiments are conducted on the 34 University of California at Irvine (UCI) machine learning repository datasets, and it shows DDM retains the interpretability and simplicity of VDM and ISCDM but significantly outperforms the original VDM and ISCDM and other state-of-the-art competitors in terms of accuracy.Keywords: distance measure, discriminative model, nominal attributes, nearest neighbor
Procedia PDF Downloads 1125188 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 995187 Event Related Brain Potentials Evoked by Carmen in Musicians and Dancers
Authors: Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi
Abstract:
Event-related potentials (ERPs) evoked by simple tones in the brain have been extensively studied. However, in reality the music surrounding us is spectrally and temporally complex and dynamic. Thus, the research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation, which, in various forms, has always been an essential part of different cultures. In addition to sensory responses, music elicits vast cognitive and emotional processes in the brain. When compared to laymen, professional musicians have stronger ERP responses in processing individual musical features in simple tone sequences, such as changes in pitch, timbre and harmony. Here we show that the ERP responses evoked by rapid changes in individual musical features are more intense in musicians than in laymen, also while listening to long excerpts of the composition Carmen. Interestingly, for professional dancers, the amplitudes of the cognitive P300 response are weaker than for musicians but still stronger than for laymen. Also, the cognitive P300 latencies of musicians are significantly shorter whereas the latencies of laymen are significantly longer. In contrast, sensory N100 do not differ in amplitude or latency between musicians and laymen. These results, acquired from a novel ERP methodology for natural music, suggest that we can take the leap of studying the brain with long pieces of natural music also with the ERP method of electroencephalography (EEG), as has already been made with functional magnetic resonance (fMRI), as these two brain imaging devices complement each other.Keywords: electroencephalography, expertise, musical features, real-life music
Procedia PDF Downloads 4815186 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells
Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan
Abstract:
Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.
Procedia PDF Downloads 1135185 Population Diversity Studies in Dendrocalamus strictus Roxb. (Nees.) Through Morphological Parameters
Authors: Anugrah Tripathi, H. S. Ginwal, Charul Kainthola
Abstract:
Bamboos are considered as valuable resources which have the potential of meeting current economic, environmental and social needs. Bamboo has played a key role in humankind and its livelihood since ancient time. Distributed in diverse areas across the globe, bamboo makes an important natural resource for hundreds of millions of people across the world. In some of the Asian countries and northeast part of India, bamboo is the basis of life on many horizons. India possesses the largest bamboo-bearing area across the world and a great extent of species richness, but this rich genetic resource and its diversity have dwindled in the natural forest due to forest fire, over exploitation, lack of proper management policies, and gregarious flowering behavior. Bamboos which are well known for their peculiar, extraordinary morphology, show a lot of variation in many scales. Among the various bamboo species, Dendrocalamus strictus is the most abundant bamboo resource in India, which is a deciduous, solid, and densely tufted bamboo. This species can thrive in wide gradients of geographical as well as climatic conditions. Due to this, it exhibits a significant amount of variation among the populations of different origins for numerous morphological features. Morphological parameters are the front-line criteria for the selection and improvement of any forestry species. Study on the diversity among eight important morphological characters of D. strictus was carried out, covering 16 populations from wide geographical locations of India following INBAR standards. Among studied 16 populations, three populations viz. DS06 (Gaya, Bihar), DS15 (Mirzapur, Uttar Pradesh), and DS16 (Bhogpur, Pinjore, Haryana) were found as superior populations with higher mean values for parametric characters (clump height, no. of culms/ clump, circumference of clump, internode diameter and internode length) and with the higher sum of ranks in non-parametric characters (straightness, disease, and pest incidence and branching pattern). All of these parameters showed an ample amount of variations among the studied populations and revealed a significant difference among the populations. Variation in morphological characters is very common in a species having wide distribution and is usually evident at various levels, viz., between and within the populations. They are of paramount importance for growth, biomass, and quick production gains. Present study also gives an idea for the selection of the population on the basis of these morphological parameters. From this study on morphological parameters and their variation, we may find an overview of best-performing populations for growth and biomass accumulation. Some of the studied parameters also provide ideas to standardize mechanisms of selecting and sustainable harvesting of the clumps by applying simpler silvicultural systems so that they can be properly managed in homestead gardens for the community utilization as well as by commercial growers to meet the requirement of industries and other stakeholders.Keywords: Dendrocalamus strictus, homestead garden, gregarious flowering, stakeholders, INBAR
Procedia PDF Downloads 745184 The Traveling Business Websites Quality that Effect to Overall Impression of the Tourist in Thailand
Authors: Preecha Phongpeng
Abstract:
The objectives of this research are to assess the prevalence of travel businesses websites in Thailand, investigate and evaluate the quality of travel business websites in Thailand. The sample size includes 323 websites from the population of 1,458 websites. The study covers 4 types of travel business websites including: 78 general travel agents, 30 online reservation travel agents, 205 hotels, 7 airlines, and 3 car-rental companies with nation-wide operation. The findings indicated that e-tourism in Thailand is at its growth stage, with only 13% of travel businesses having websites, 28% of them providing e-mail and the quality of travel business websites in Thailand was at the average level. Seven common problems were found in websites: lack of travel essential information, insufficient transportation information, lack of navigation tools, lack of link pages to other organizations, lack of safety features, unclear online booking functions, and lack of special features also as well.Keywords: traveling business, website evaluation, e-commerce, e-tourism
Procedia PDF Downloads 3005183 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 4075182 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria
Authors: Mairo Musa Galadima, Phoebe Mshelia
Abstract:
In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools
Procedia PDF Downloads 3515181 The Impact of Scientific Content of National Geographic Channel on Drawing Style of Kindergarten Children
Authors: Ahmed Amin Mousa, Mona Yacoub
Abstract:
This study depends on tracking children style through what they have drawn after being introduced to 16 visual content through National Geographic Abu Dhabi Channel programs and the study of the changing features in their drawings before applying the visual act with them. The researchers used Goodenough-Harris Test to analyse children drawings and to extract the features which changed in their drawing before and after the visual content. The results showed a positive change especially in the shapes of animals and their properties. Children become more aware of animals’ shapes. The study sample was 220 kindergarten children divided into 130 girls and 90 boys at the Orman Experimental Language School in Dokki, Giza, Egypt. The study results showed an improvement in children drawing with 85% than they were before watching videos.Keywords: National Geographic, children drawing, kindergarten, Goodenough-Harris Test
Procedia PDF Downloads 1505180 Timescape-Based Panoramic View for Historic Landmarks
Authors: H. Ali, A. Whitehead
Abstract:
Providing a panoramic view of famous landmarks around the world offers artistic and historic value for historians, tourists, and researchers. Exploring the history of famous landmarks by presenting a comprehensive view of a temporal panorama merged with geographical and historical information presents a unique challenge of dealing with images that span a long period, from the 1800’s up to the present. This work presents the concept of temporal panorama through a timeline display of aligned historic and modern images for many famous landmarks. Utilization of this panorama requires a collection of hundreds of thousands of landmark images from the Internet comprised of historic images and modern images of the digital age. These images have to be classified for subset selection to keep the more suitable images that chronologically document a landmark’s history. Processing of historic images captured using older analog technology under various different capturing conditions represents a big challenge when they have to be used with modern digital images. Successful processing of historic images to prepare them for next steps of temporal panorama creation represents an active contribution in cultural heritage preservation through the fulfillment of one of UNESCO goals in preservation and displaying famous worldwide landmarks.Keywords: cultural heritage, image registration, image subset selection, registered image similarity, temporal panorama, timescapes
Procedia PDF Downloads 1655179 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.Keywords: convolutional image, lower knee, gait
Procedia PDF Downloads 2015178 The Hotel Logging Behavior and Factors of Tourists in Bankontee District, Samut Songkhram Province, Thailand
Authors: Aticha Kwaengsopha
Abstract:
The purpose of this research was to study the behaviour and related factors that tourists utilized for making decisions to choose their accommodations at a tourist destination, Bangkontee district, Samut Songkhran Province, Thailand. The independent variables included gender, age, income, occupation, and region, while the three important dependent variables included selection behaviour, factors related selection process, and satisfaction of the accommodation service. A total of 400 Thai and international tourists were interviewed at tourist destination of Bangkontee. A questionnaire was used as the tool for collecting data. Descriptive statistics in this research included percentage, mean, and standard deviation. The findings revealed that the majority of respondents were single, female, and with the age between 23-30 years old. Most of the international tourists were from Asia and planned to stay in Thailand about 1-6 days. In addition, the majority of tourists preferred to travel in small groups of 3 persons. The majority of respondents used internet and word of mouth as the main tool to search for information. The majority of respondents spent most of their budget on food & drink, accommodation, and travelling. Even though the majority of tourists were satisfied with the quality of accommodation, the price range of accommodation, and the image of accommodation and the facilities of the accommodation, they indicated that they were not likely to re-visit Thailand in the near future.Keywords: behaviour, decision factors, tourists, media engineering
Procedia PDF Downloads 2745177 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 1545176 School Partners in Initial Teacher Education: An Including or Excluding Approach When Engaging Schools
Authors: Laila Niklasson
Abstract:
The aim of the study is to critically discuss how partner schools are engaged during Initial teacher education, ITE. The background is an experiment in Sweden where the practicum organization is reorganized due to a need to enhance quality during practicum. It is a national initiative from the government, supported by the National Agency of Education and lasts 2014-2019. The main features are concentration of students to school with a certain amount of mentors, mentors who have a mentor education and teachers with relevant subject areas and where there could be a mentor team with a leader at the school. An expected outcome is for example that the student teachers should be engaged in peer-learning. The schools should be supported by extra lectures from university teachers during practicum and also extra research projects where the schools should be engaged. A case study of one university based ITE was carried out to explore the consequences for the schools not selected. The result showed that from engaging x schools in a region, x was engaged. The schools are both in urban and rural areas, mainly in the latter. There is also a tendency that private schools are not engaged. On a unit level recruitment is perceived as harder for schools not engaged. In addition they cannot market themselves as ´selected school´ which can affect parent´s selection of school for their children. Also, on unit level, but with consequences for professional development, they are not selected for research project and thereby are not fully supported during school development. The conclusion is that from an earlier inclusive approach concerning professions where all teachers were perceived as possible mentors, there is a change to an exclusive approach where selected schools and selected teachers should be engaged. The change could be perceived as a change in governance mentality, but also in how professions are perceived, and development work is pursued.Keywords: initial teacher education, practicum schools, profession, quality development
Procedia PDF Downloads 141