Search results for: direct methanol fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8486

Search results for: direct methanol fuel cell

7706 Chemical Bath Deposition Technique of CdS Used in Closed Space Sublimation of CdTe Solar Cell

Authors: Z. Mahmood, F. U. Babar, S. Naz, H. U. Rehman

Abstract:

Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Ellipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here). The efficiency came out to be approximately 16.5 % and the CIGS (copper-indium–gallium-selenide) maximum efficiency is 20 %. The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).

Keywords: Chemical Bath Deposition Technique (CBD), cadmium sulphide (CdS), CdTe, CSS (Closed Space Sublimation)

Procedia PDF Downloads 364
7705 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process

Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois

Abstract:

Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.

Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor

Procedia PDF Downloads 139
7704 Promotion of Lipid Syntheses of Microalgae by Microfluidic-Assisted Membrane Distortion

Authors: Seul Ki Min, Gwang Heum Yoon, Jung Hyun Joo, Hwa Sung Shin

Abstract:

Cellular membrane distortion is known as a factor to change intracellular signaling. However, progress of relevant studies is difficult because there are no facilities that can control membrane distortion finely. In this study, we developed microfluidic device which can inflict mechanical stress on cell membrane of Chlamydomonas reinhardtii using regular height of the channels. And cellular physiological changes were analyzed from cells cultured in the device. Excessive calcium ion influx through into cytoplasm was induced from mechanical stress. The results revealed that compressed cells had up-regulated Mat3 mRNA which regulates cell size and cell cycle from a prolonged G1 phase. Additionally, TAG used for the production of biodiesel was raised rapidly from 4 h after compression. Taken together, membrane distortion can be considered as an attractive inducer for biofuel production.

Keywords: mechanical stress, membrane distortion, Chlamydomonas reinhardtii, deflagellation, cell cycle, lipid metabolism

Procedia PDF Downloads 375
7703 Study of Hybrid Cells Based on Perovskite Materials Using Oghmasimultion

Authors: Nadia Bachir (Dahmani), Fatima Zohra Otmani

Abstract:

Due to its interesting optoelectronic properties, methylammonium perovskite CH3NH3PbI3 is used as the active layer in the development of several solar cells. In this work, the hybrid (organic-inorganic) cell with the architecture FTO/pedotpss/CH3NH3PbI3/pcdtbt/Al is simulated using the Organic and Hybrid Material Nano Simulation Tool (OghmaNano). We studied the influence of certain parameters, such as thickness, on the characteristics of the solar cell. The effect of the device temperature was also investigated. The photovoltaic characteristic curves, such as current-voltage (j-V), are presented in this work. The optimized final parameters are Voc = 0.947 V, FF = 0.8034%, and PCE = 23.16%.

Keywords: OghmaNano software, hybrid perovskite cell, CH3NH3PbI3, conversion efficiency

Procedia PDF Downloads 17
7702 Multilayered Assembly of Gelatin on Nanofibrous Matrix for 3-D Cell Cultivation

Authors: Ji Un Shin, Wei Mao, Hyuk Sang Yoo

Abstract:

Electrospinning is a versatile tool for fabricating nano-structured polymeric materials. Gelatin hydrogels are considered to be a good material for cell cultivation because of high water swellability as well as good biocompatibility. Three-dimensional (3-D) cell cultivation is a desirable method of cell cultivation for preparing tissues and organs because cell-to-cell interactions or cell-to-matrix interactions can be much enhanced through this approach. For this reason, hydrogels were widely employed as tissue scaffolds because they can support cultivating cells and tissue in multi-dimensions. Major disadvantages of hydrogel-based cell cultivation include low mechanical properties, lack of topography, which should be enhanced for successful tissue engineering. Herein we surface-immobilized gelatin on the surface of nanofibrous matrix for 3-D cell cultivation in topographical cues added environments. Electrospun nanofibers were electrospun with injection of poly(caprolactone) through a single nozzle syringe. Electrospun meshes were then chopped up with a high speed grinder to fine powders. This was hydrolyzed in optimized concentration of sodium hydroxide solution from 1 to 6 hours and harvested by centrifugation. The freeze-dried powders were examined by scanning electron microscopy (SEM) for revealing the morphology and fibrilar shaped with a length of ca. 20um was observed. This was subsequently immersed in gelatin solution for surface-coating of gelatin, where the process repeated up to 10 times for obtaining desirable coating of gelatin on the surface. Gelatin-coated nanofibrils showed high waterswellability in comparison to the unmodified nanofibrils, and this enabled good dispersion properties of the modified nanofibrils in aqueous phase. The degree of water-swellability was increased as the coating numbers of gelatin increased, however, it did not any meaning result after 10 times of gelatin coating process. Thus, by adjusting the gelatin coating times, we could successfully control the degree of hydrophilicity and water-swellability of nanofibrils.

Keywords: nano, fiber, cell, tissue

Procedia PDF Downloads 167
7701 A Biomechanical Perfusion System for Microfluidic 3D Bioprinted Structure

Authors: M. Dimitri, M. Ricci, F. Bigi, M. Romiti, A. Corvi

Abstract:

Tissue engineering has reached a significant milestone with the integration of 3D printing for the creation of complex bioconstructs equipped with vascular networks, crucial for cell maintenance and growth. This study aims to demonstrate the effectiveness of a portable microperfusion system designed to adapt dynamically to the evolving conditions of cell growth within 3D-printed bioconstructs. The microperfusion system was developed to provide a constant and controlled flow of nutrients and oxygen through the integrated vessels in the bioconstruct, replicating in vivo physiological conditions. Through a series of preliminary experiments, we evaluated the system's ability to maintain a favorable environment for cell proliferation and differentiation. Measurements of cell density and viability were performed to monitor the health and functionality of the tissue over time. Preliminary results indicate that the portable microperfusion system not only supports but optimizes cell growth, effectively adapting to changes in metabolic needs during the bioconstruct maturation process. This research opens perspectives in tissue engineering, demonstrating that a portable microperfusion system can be successfully integrated into 3D-printed bioconstructs, promoting sustainable and uniform cell growth. The implications of this study are far-reaching, with potential applications in regenerative medicine and pharmacological research, providing a platform for the development of functional and complex tissues.

Keywords: biofabrication, microfluidic perfusion system, 4D bioprinting

Procedia PDF Downloads 33
7700 Preliminary Phytochemical Screening and Comparison of Different Extracts of Capparidaceae Family

Authors: Noshaba Dilbar, Maria Jabbar

Abstract:

Medicinal plants are considered to be the richest source of drug discovery. The main cause of medicinal properties of plants is the presence of bioactive compounds in them. Phytochemical screening is the valuable process that detects bioactive compounds(secondary metabolites) in plants. The present study was carried out to determine phytochemical profile and ethnobotanical importance of Capparidaceae species. ( Capparis spinosa and Dipterygium glaucum). The selection of plants was made on basis of traditional knowledge of their usage in ayurvedic medicines. Different type of solvents(ethanol, methanol, chloroform, benzene and petroleum ether) were used to make extracts of dry and fresh plants. Phytochemical screening was made by using various standard techniques. Results reveal the presence of large range of bioactive compounds i.e alakloids, saponins, flavonoids, terpenoids, glycosides, phenols and steroids. Methanol, petroleum ether and chloroform extracts showed high extractability of bioactive compounds. The results obtained ensure these plants a reliable source of pharmacological industry and can be used in making of various biological friendly drugs.

Keywords: bioactive compounds, Capparidaceae, phytochemical screening, secondary metabolites

Procedia PDF Downloads 175
7699 Multiple-Channel Coulter Counter for Cell Sizing and Enumeration

Authors: Yu Chen, Seong-Jin Kim, Jaehoon Chung

Abstract:

High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated.

Keywords: Coulter counter, cell enumeration, high through-put, cell sizing

Procedia PDF Downloads 612
7698 Improvement of Diesel Oil Properties by Batch Adsorption and Simple Distillation Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

In this research, diesel oil properties, such as aniline point, density, diesel index, cetane index and cetane number before and after treatment were studied. The investigation was considered for diesel oil samples after batch adsorption process using powdered activated carbon. Batch distillation process was applied to all treated diesel oil samples for separation of the solid-liquid mixture. The diesel oil properties were studied to observe the impact of adsorptive desulfurization process on fuel quality. Results showed that the best cetane number for desulfurized diesel oil was found at the best-operating conditions 60℃, 10g activated carbon and 180 minute contact time. The best-desulfurized diesel oil cetane number was obtained around 51 while the cetane number of untreated diesel oil was 34. Results also showed that the calculated cetane number increases as the operating temperature and amounts of adsorbent increases. This behavior was same for other diesel oil properties such as aniline point, diesel index, cetane index and density. The best value for all the fuel properties was found at same operating conditions mentioned above. Thus, it can be concluded that adsorptive desulfurization using powdered activated carbon as adsorbent had significantly improved the fuel quality of diesel oil by reducing aromatic contents of diesel oil.

Keywords: activated carbon, adsorption, desulfurization, diesel oil, fuel quality

Procedia PDF Downloads 150
7697 ICAM-2, A Protein of Antitumor Immune Response in Mekong Giant Catfish (Pangasianodon gigas)

Authors: Jiraporn Rojtinnakorn

Abstract:

ICAM-2 (intercellular adhesion molecule 2) or CD102 (Cluster of Differentiation 102) is type I trans-membrane glycoproteins, composing 2-9 immunoglobulin-like C2-type domains. ICAM-2 plays the particular role in immune response and cell surveillance. It is concerned in innate and specific immunity, cell survival signal, apoptosis, and anticancer. EST clone of ICAM-2, from P. gigas blood cell EST libraries, showed high identity to human ICAM-2 (92%) with conserve region of ICAM N-terminal domain and part of Ig superfamily. Gene and protein of ICAM-2 has been founded in mammals. This is the first report of ICAM-2 in fish.

Keywords: ICAM-2, CD102, Pangasianodon gigas, antitumor

Procedia PDF Downloads 227
7696 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.

Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel

Procedia PDF Downloads 316
7695 Synthesis and Evaluation of Anti-Cancer Activity on Human Breast Cancer Cell Line MFC7 of Some Novel Thiazolidino (3,2-b)-1, 2,4-Triazole-5(6H)-one Derivatives

Authors: Kamta P. Namdeo

Abstract:

Novel thiazolidino-(3,2-b)-1, 2,4-triazole-5(6H)-one derivatives were synthesized, and anticancer activity was studied on human breast cancer cell line MFC7. It showed a significant decrease in cell viability with reference to the standard. The findings suggest that nitro-substituted compound showed best anticancer activity and activity was due to the triazole and thiazolidinone hetero nucleus present in the structure.

Keywords: anti-cancer, adriamycine, thiazolidinone, 1, 2, 4-triazole, thiazolidino-triazolone

Procedia PDF Downloads 376
7694 Anticancer Activity of Edible Coprinus Mushroom (Coprinus comatus) on Human Glioblastoma Cell Lines and Interaction with Temozolomide

Authors: Maria Borawska, Patryk Nowakowski, Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Anna Puscion-Jakubik, Krystyna Gromkowska-Kepka, Justyna Moskwa

Abstract:

Coprinus comatus (O. F. Müll.) Pers.) should not be confused with the common Ink Cap, which contains coprine and can induce coprine poisoning. We study the possibility of applying coprinus mushroom (Coprinus comatus), available in Poland, as food product supporting the treatment of human glioblastoma cells. The U87MG and T98 glioblastoma cell lines were exposed to water (CW) or ethanol 95° (CE) Cantharellus extracts (50-500 μg/ml), with or without temozolomide (TMZ) during 24, 48 or 72 hours. The cell division was examined by the H³-thymidine incorporation. The statistical analysis was performed using Statistica v. 13.0 software. Significant differences were assumed for p < 0.05. We found that both, CW and CE, administrated alone, had inhibitory effect on cell lines growth, but the CE extract had a higher degree of growth inhibition. The anti-tumor effect of TMZ (50 μM) on U87MG was enhanced by mushroom extracts, and the effect was lower to the effect after using Coprinus comatus extracts (CW and CE) alone. A significant decrease (p < 0.05) in pro-MMP2 (82.61 ± 6.3% of control) secretion in U87MG cells was observed after treated with CE (250 μg/ml). We conclude that extracts of Coprinus comatus, edible mushroom, present cytotoxic properties on U87MG and T98 cell lines and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line.

Keywords: anticancer, glioma, mushroom, temozolomide

Procedia PDF Downloads 196
7693 Silica Nanofibres – Promising Material for Regenerative Medicine

Authors: Miroslava Rysová, Zdena Syrová, Tomáš Zajíc, Petr Exnar

Abstract:

Currently, attention of tissue engineers has been attracted to novel nanofibrous materials having advanced properties and ability to mimic extracellular matrix (ECM) by structure which makes them interesting candidates for application in regenerative medicine as scaffolding and/or drug delivering material. Throughout the last decade, more than 200 synthetic and natural polymers have been successfully electrospun leading to the formation of nanofibres with a wide range of chemical, mechanical and degradation properties. In this family, inorganic nanofibres represent very specific group offering an opportunity to manufacture inert to body, well degradable and in properties tunable material. Aim of this work, was to reveal unique properties of silica (SiO2, CAS 7631-86-9) nanofibres and their potential in field of regenerative medicine. Silica nanofibres were prepared by sol-gel method from tetraethyl orthosilicate (TEOS, CAS 78-10-4) as a precursor and subsequently manufactured by needleless electrospinning on NanospiderTM device. Silica nanofibres thermally stabilized under 200°C were confirmed to be fully biodegradable and soluble in several simulated body fluids. In vitro cytotoxicity tests of eluate (ES ISO 10993-5:1999) and in direct contact (ES ISO 10993-5:2009) showed no toxicity - e.g. cell viabilities reached values exceeding 80%. Those results were obtained equally from two different cell lines (Vero, 3T3). Non-toxicity of silaca nanofibres´ eluate was additionally confirmed in real time by testing on xCelligence (ACEA Biosciences, Inc.) device. Both cell types also showed good adhesion to material. To conclude, all mentioned results lead to resumption that silica nanofibres have a potential as material for regenerative medicine which opens door to further research.

Keywords: cytotoxicity, electrospinning, nanofibres, silica, tissue engineering

Procedia PDF Downloads 429
7692 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.

Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain

Procedia PDF Downloads 202
7691 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency

Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade

Abstract:

Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".

Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency

Procedia PDF Downloads 305
7690 Research of Actuators of Common Rail Injection Systems with the Use of LabVIEW on a Specially Designed Test Bench

Authors: G. Baranski, A. Majczak, M. Wendeker

Abstract:

Currently, the most commonly used solution to provide fuel to the diesel engines is the Common Rail system. Compared to previous designs, as a due to relatively simple construction and electronic control systems, these systems allow achieving favourable engine operation parameters with particular emphasis on low emission of toxic compounds into the atmosphere. In this system, the amount of injected fuel dose is strictly dependent on the course of parameters of the electrical impulse sent by the power amplifier power supply system injector from the engine controller. The article presents the construction of a laboratory test bench to examine the course of the injection process and the expense in storage injection systems. The test bench enables testing of injection systems with electromagnetically controlled injectors with the use of scientific engineering tools. The developed system is based on LabView software and CompactRIO family controller using FPGA systems and a real time microcontroller. The results of experimental research on electromagnetic injectors of common rail system, controlled by a dedicated National Instruments card, confirm the effectiveness of the presented approach. The results of the research described in the article present the influence of basic parameters of the electric impulse opening the electromagnetic injector on the value of the injected fuel dose. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: fuel injector, combustion engine, fuel pressure, compression ignition engine, power supply system, controller, LabVIEW

Procedia PDF Downloads 131
7689 Biocompatibility and Electrochemical Assessment of Biomedical Ti-24Nb-4Zr-8Sn Produced by Spark Plasma Sintering

Authors: Jerman Madonsela, Wallace Matizamhuka, Akiko Yamamoto, Ronald Machaka, Brendon Shongwe

Abstract:

In this study, biocompatibility evaluation of nanostructured near beta Ti-24Nb-4Zr-8Sn (Ti2448) alloy with non-toxic elements produced utilizing Spark plasma sintering (SPS) of very fine microsized powders attained through mechanical alloying was performed. The results were compared with pure titanium and Ti-6Al-4V (Ti64) alloy. Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium took a lead under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448. Potentiodynamic measurement in Hanks, 0.9% NaCl and cell culture medium showed no distinct difference on the anodic polarization curves of the three alloys, indicating that the same anodic reaction occurred on their surface but with different rates. However, Ti2448 showed better corrosion resistance in cell culture medium with a slightly lower corrosion rate of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. Ti2448 adsorbed less protein as compared to Ti and Ti64 though no notable difference in surface wettability was observed.

Keywords: biocompatibility, osteoblast, corrosion, surface wettability, protein adsorption

Procedia PDF Downloads 223
7688 Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine

Authors: Mohamed K. Khalil, Mohamed S. Ragab

Abstract:

Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.

Keywords: gas turbine engines, atomization process, Sauter mean diameter, JP-5

Procedia PDF Downloads 167
7687 Operational Measures for Greenhouse Gas Reduction from Ships

Authors: Gorana Jelic Mrcelic

Abstract:

In order to reduce greenhouse gas emissions from ships, technical and operational measures can be used. Operational measures are easier and cheaper compared to technical measures, so are well recommended. One of the most cost-effective operational measure is fuel consumption. Fuel consumption can be reduced by various options but it sometimes needs investments in new equipment, new procedures and crew education. In order to implement operational measures in everyday procedures and routines on board, good understanding of the mechanisms by which these measures work is essential for the seamen.

Keywords: green shipping, gas emission reduction, operational measures, seamen

Procedia PDF Downloads 518
7686 Effects of Opuntia ficus-indica var. Saboten on Glucose Uptake and Insulin Sensitivity in Pancreatic β Cell

Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim

Abstract:

The prickly pear cactus (Opuntia ficus-indica) has a global distribution and have been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. However, very little information is currently available for their mechanism. The prikly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, southwestern region of Korea, and used as a functional food. Present study investigated the effects of OFS on pancreatic β-cell function using pancreatic islet β cells (HIT cell). Alpha-glucosidase inhibition, glucose uptake, insulin secretion, insulin sensitivity, and pancreatic β cell proliferation were determined. The inhibitory effect of ethanol extract of OFS stem on α-glucosidase enzyme was measured in a cell free system. Glucose uptake was determined using fluorescent glucose analogue, 2-NBDG. Insulin secretion was measured by ELISA assay. Cell proliferation was measured by MTT assay. Ethanol extracts of OFS dose-dependently inhibited α-glucosidase activity as well as glucose uptake. Insulinotrophic effect of OFS extract was observed at high glucose media in pancreatic β-islet cells. Furthermore, pancreatic β cell regeneration was also observed.These results suggest that OFS mediates the antidiabetic activity mainly via α-glucosidase inhibition, glucose uptake, and improved insulin sensitivity.

Keywords: prickly pear cactus, Opuntia ficus-indica var. Saboten, pancreatic islet HIT cells, α-glucosidase, glucose uptake, insulinotrophic

Procedia PDF Downloads 467
7685 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry

Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki

Abstract:

In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.

Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration

Procedia PDF Downloads 432
7684 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors

Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs

Abstract:

Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.

Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors

Procedia PDF Downloads 121
7683 Efficacy of Plant and Mushroom Based Bio-Products against the Red Poultry Mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae)

Authors: Muhammad Asif Qayyoum, Bilal Saeed Khan

Abstract:

Poultry red mites (Dermanyssus gallinae De Geer) are economically deleterious parasite of hens in poultry industry in all over the world. Due to lack of proper control managements and result of poor application of commercial products, D. gallinae get resistance and severe infestation in poultry birds. Laboratory experiment was planned for the control of D. gallinae by using different mushroom and plant extracts. We used control treatment (100 ml distilled water) and nine treatments (10 gr Lentinula adobas, Ganoderma lucidum and Pleurotus aryngii with 100 ml methanol, 1% and 2% Neemazal, 1.5% Gamma-T-ol, Echinacea Leaf , 1.5% Fungatol with neem spray and Methanol) with five replication having five mites each. Data collected after 12 and 24 hours every day till mites found dead in every treatment. The significant differences among the mean values were compared with the DUNCAN multiple range test. The efficacy (%) of each treatment was determined with the Abbott formula. All statistical analyses were conducted with the SPSS Version 12 program. Lentinula edodes (80%), Ganoderma lucidum (76%) and Fungatol+Neem spray (1.5%) (80%) were significant against D. gallinae within 3 days.

Keywords: mushroom extracts, plant extracts, D. gallinae, control

Procedia PDF Downloads 308
7682 Study of Aging Behavior of Parallel-Series Connection Batteries

Authors: David Chao, John Lai, Alvin Wu, Carl Wang

Abstract:

For lithium-ion batteries with multiple cell configurations, some use scenarios can cause uneven aging effects to each cell within the battery because of uneven current distribution. Hence the focus of the study is to explore the aging effect(s) on batteries with different construction designs. In order to systematically study the influence of various factors in some key battery configurations, a detailed analysis of three key battery construction factors is conducted. And those key factors are (1) terminal position; (2) cell alignment matrix; and (3) interconnect resistance between cells. In this study, the 2S2P circuitry has been set as a model multi-cell battery to set up different battery samples, and the aging behavior is studied by a cycling test to analyze the current distribution and recoverable capacity. According to the outcome of aging tests, some key findings are: (I) different cells alignment matrices can have an impact on the cycle life of the battery; (II) symmetrical structure has been identified as a critical factor that can influence the battery cycle life, and unbalanced resistance can lead to inconsistent cell aging status; (III) the terminal position has been found to contribute to the uneven current distribution, that can cause an accelerated battery aging effect; and (IV) the internal connection resistance increase can actually result in cycle life increase; however, it is noteworthy that such increase in cycle life is accompanied by a decline in battery performance. In summary, the key findings from the study can help to identify the key aging factor of multi-cell batteries, and it can be useful to effectively improve the accuracy of battery capacity predictions.

Keywords: multiple cells battery, current distribution, battery aging, cell connection

Procedia PDF Downloads 82
7681 Blood Profile of Weaner Rabbits Fed Pigeon Pea (Cajanus cajan) Meal as Replacement for Groundnut Cake

Authors: Adedokun Mathew Adewale, Ayandiran Samuel Kola, Adekunle Ibironke

Abstract:

Pigeon pea (Cajanus cajan) seeds contain about 20–22 percent protein and appreciable amounts of essential amino acids and minerals. Hence, this study evaluated the blood profile of weaner rabbits fed Cajanus cajan meal (CCM) as a replacement for groundnut cake. Forty weaner rabbits of mixed breed aged 5 - 6 weeks were used for the study, which lasted for 8 weeks. The rabbits were randomly allocated to four treatments (10 rabbits per treatment) in a completely randomized design. Four concentrate diets were compounded by direct replacement of groundnut cake with Cajanus cajan meal (CCM) at 0, 50, 75, and 100%, respectively. There were no significant differences (p>0.05) among the mean counts of packed cell volume, red blood cell, haemoglobin, and monocyte. The 75% CCM diet had significantly the highest (p<0.05). However, rabbits fed diets containing CCM had significantly higher (p<0.05) eosinophil than 0%CCM. Rabbits fed diets containing 100%CCM had significantly highest (p<0.05) total protein followed by 0%CCM, 75%CCM, and least 50%CCM, while 0%CCM and 75%CCM diets were significantly higher (p<0.05) in albumin. However, animals fed diets containing CCM had significantly lower (p<0.05) cholesterol content than 0%CCM diet. It could be concluded that Cajanus cajan meal could replace groundnut cake up to 100% in the diets of rabbits without any deleterious effect on the blood profile of the animals.

Keywords: blood profile, groundnut cake, pigeon pea, weaner rabbits

Procedia PDF Downloads 17
7680 Modelling of Silicon Solar Cell with Anti-reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its electrical performance by improving the optical properties using an antireflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various Anti-Reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF₂ coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for Anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: antireflecting coating, electrical efficiency, reflectance, solar cell, transmittance

Procedia PDF Downloads 153
7679 Modelling and Simulation of Photovoltaic Cell

Authors: Fouad Berrabeh, Sabir Messalti

Abstract:

The performances of the photovoltaic systems are very dependent on different conditions, such as solar irradiation, temperature, etc. Therefore, it is very important to provide detailed studies for different cases in order to provide continuously power, so the photovoltaic system must be properly sized. This paper presents the modelling and simulation of the photovoltaic cell using single diode model. I-V characteristics and P-V characteristics are presented and it verified at different conditions (irradiance effect, temperature effect, series resistance effect).

Keywords: photovoltaic cell, BP SX 150 BP solar photovoltaic module, irradiance effect, temperature effect, series resistance effect, I–V characteristics, P–V characteristics

Procedia PDF Downloads 490
7678 Experimental Study on Flooding Phenomena in a Three-Phase Direct Contact Heat Exchanger for the Utilisation in Solar Pond Applications

Authors: Hameed B. Mahood, Ali Sh. Baqir, Alasdair N. Campbell

Abstract:

Experiments to study the limitation of flooding inception of three-phase direct contact condenser have been carried out in a counter-current small diameter vertical condenser. The total column height was 70 cm and 4 cm diameter. Only 48 cm has been used as an active three-phase direct contact condenser height. Vapour pentane with three different initial temperatures (40, 43.5 and 47.5 °C) and water with a constant temperature (19 °C) have been used as a dispersed phase and a continuous phase respectively. Five different continuous phase mass flow rate and four different dispersed phase mass flow rate have been tested throughout the experiments. Dimensionless correlation based on the previous common flooding correlation is proposed to calculate the up flow flooding inception of the three-phase direct contact condenser.

Keywords: Three-phase heat exchanger, condenser, solar energy, flooding phenomena

Procedia PDF Downloads 341
7677 Inhibitory Effect of P2Y1R Agonist 1-Indolinoalkyl 2-Phenolic Derivative on Prostate Cancer Cell Proliferation via the MAPK Signalling

Authors: Hien Thi Thu Le, Nuno Rafael Candeias, Olli Yli-Harja, Meenakshisundaram Kandhavelu

Abstract:

Purinergic receptor 1 (P2Y1R) is the potential therapeutic target for inducing prostate cancer (PCa) cell death. Recently, 1-indolinoalkyl 2-phenolic derivative, HIC, was identified as a P2Y1R agonist that increases apoptosis and inhibits cell proliferation of PCa. However, the biological effects of HIC have not been extensively studied at the molecular level. In the present study, we have investigated the anticancer effects of HIC and the molecular mechanisms underlying in PCa cells. Half maximal inhibitory concentration (IC₅₀) of HIC was measured as 15.98 μM and 15.64 μM for DU145 and PC3 cells, respectively. In addition, we found that HIC inhibited cell growth and metastasis of PC3 and DU145 cells colonies, spheroid areas, and migrated cells. RNA seq analysis revealed significant changes of over 3000 genes (p value < 0.05) upon HIC treatment in PC3 and DU145 cells. Genes involved in DNA damage, apoptosis, cell cycle arrest at G1/S phase were modulated by HIC treatment. MAPK and NF-κB protein array revealed the increased expression of ERK1/2, JNK1/2, p53 phosphorylation, and p53 protein. ERK1/2 and JNK1/2 activations are known to increase the stabilization of p53, a tumor suppressor protein, which is required to arrest the cell cycle at G1/S phase and cause cell death of PCa cells. Overall, our results suggest that HIC can serve as a multi-dimensional chemotherapeutic agent possessing strong cytotoxic, anti-cancer, and anti-metastasis against PCa growth.

Keywords: prostate cancer, P2Y1 receptor, apoptosis, metastasis

Procedia PDF Downloads 133