Search results for: antigen genes
341 High Prevalence of Multi-drug Resistant Diarrheagenic Escherichia coli among Hospitalised Diarrheal Patients in Kolkata, India
Authors: Debjani Ghosh, Goutam Chowdhury, Prosenjit Samanta, Asish Kumar Mukhopadhyay
Abstract:
Acute diarrhoea caused by diarrheagenic Escherichia coli (DEC) is one of the major public health problem in developing countries, mainly in Asia and Africa. DEC consists of six pathogroups, but the majority of the cases were associated with the three pathogropus, enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and enteropathogenic E. coli (EPEC). Hence, we studied the prevalence and antimicrobial resistance of these three major DEC pathogroups in hospitalized diarrheal patients in Kolkata, India, during 2012-2019 with a large sample size. 8,891 stool samples were processed, and 7.8% of them was identified as DEC infection screened by multiplex PCR, in which ETEC was most common (47.7%) followed by EAEC (38.4%) and EPEC (13.9%). Clinical patient history suggested that children <5 years of age were mostly affected with ETEC and EAEC, whereas people within >5-14 years of age were significantly associated with EPEC and ETEC infections. Antibiogram profile showed a high prevalence of multidrug resistant (MDR) isolates among DEC (56.9%), in which 9% were resistant to antibiotics of six different antimicrobial classes. Screening of the antibiotic resistance conferring genes in DEC showed the presence of blaCTX-M (30.2%) in highest number followed by blaTEM (27.5%), tetB (18%), sul2 (12.6%), strA (11.8%), aadA1 (9.8%), blaOXA-1 (9%), dfrA1 (1.6%) and blaSHV (1.2%) which indicates the existence of mobile genetic elements in those isolates. Therefore, the presence of MDR DEC strains in higher number alarms the public health authorities to take preventive measures before the upsurge of the DEC caused diarrhea cases in near future.Keywords: diarrheagenic escherichia coli, ETEC, EAEC, EPEC
Procedia PDF Downloads 161340 Effect of Zinc Nanoparticles on Oxidative Stress-Related Genes and Antioxidant Enzymes Activity in the Brain of Oreochromis Niloticus and Tilapia Zillii
Authors: Salina Saddick, Mohamed Afifi, Osama Abuznadah
Abstract:
This study was carried out to determine the median lethal concentrations (LC50) of Zinc nanoparticles (ZnNPs) on Oreochromis niloticus and Tilapia zillii. The biochemical and molecular potential effects of ZnNPs (500 and 2000 μg L−1) on the antioxidant system in the brain tissue of O. niloticus and T. zillii were investigated. Four hundred fish were used for acute and sub-acute studies. ZnNP LC50 concentrations were investigated in O. niloticus and T. zillii. The effect of 500 and 2000 μg L−1 ZnNPs on brain antioxidants of O. niloticus and T. zillii was investigated. The result indicated that 69 h LC50 was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. Fish exposed to 500 μg L−1 ZnNPs showed a significant increase in reduced glutathione (GSH), total glutathione (tGSH) levels, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity and gene expression. On the contrary, malondialdehyde (MDA) levels significantly decreased. Meanwhile, fish exposed to 2000 μg L−1 ZnNPs showed a significant decrease of GSH, tGSH levels, SOD, CAT, GR, GPx and GST activity and gene expression. On the contrary, MDA levels significantly increased. It was concluded that, the 96 h LC50 of ZnNPs was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. ZnNPs in exposure concentrations of 2000 μg/L induced a deleterious effect on the brain antioxidant system of O. nilotica and T. zillii. In contrast, ZnNPs in exposure concentrations of 500 μg L−1 produced an inductive effect on the brain antioxidant system of O. nilotica and T. zillii.Keywords: ZnNPs, LC50, antioxidants, O. nilotica
Procedia PDF Downloads 243339 Identification of Superior Cowpea Mutant Genotypes, Their Adaptability, and Stability Under South African Conditions
Authors: M. Ntswane, N. Mbuma, M. Labuschagne, A. Mofokeng, M. Rantso
Abstract:
Cowpea is an essential legume for the nutrition and health of millions of people in different regions. The production and productivity of the crop are very limited in South Africa due to a lack of adapted and stable genotypes. The improvement of nutritional quality is made possible by manipulating the genes of diverse cowpea genotypes available around the world. Assessing the adaptability and stability of the cowpea mutant genotypes for yield and nutritional quality requires examining them in different environments. The objective of the study was to determine the adaptability and stability of cowpea mutant genotypes under South African conditions and to identify the superior genotypes that combine grain yield components, antioxidants, and nutritional quality. Thirty-one cowpea genotypes were obtained from the Agricultural Research Council grain crops (ARC-GC) and were planted in Glen, Mafikeng, Polokwane, Potchefstroom, Taung, and Vaalharts during the 2021/22 summer cropping season. Significant genotype by location interactions indicated the possibility of genetic improvement of these traits. The genotype plus genotype by environment indicated broad adaptability and stability of mutant genotypes. The principal component analysis identified the association of the genotypes with the traits. Phenotypic correlation analysis showed that Zn and protein content were significant and positively correlated and suggested the possibility of indirect selection of these traits. Results from this study could be used to help plant breeders in making informed decisions and developing nutritionally improved cowpea genotypes with the aim of addressing the challenges of poor nutritional quality.Keywords: cowpea seeds, adaptability, stability, mineral elements, protein content
Procedia PDF Downloads 111338 Advances in Sesame Molecular Breeding: A Comprehensive Review
Authors: Micheale Yifter Weldemichael
Abstract:
Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering
Procedia PDF Downloads 34337 Ultra-Sensitive Point-Of-Care Detection of PSA Using an Enzyme- and Equipment-Free Microfluidic Platform
Authors: Ying Li, Rui Hu, Shizhen Chen, Xin Zhou, Yunhuang Yang
Abstract:
Prostate cancer is one of the leading causes of cancer-related death among men. Prostate-specific antigen (PSA), a specific product of prostatic epithelial cells, is an important indicator of prostate cancer. Though PSA is not a specific serum biomarker for the screening of prostate cancer, it is recognized as an indicator for prostate cancer recurrence and response to therapy for patient’s post-prostatectomy. Since radical prostatectomy eliminates the source of PSA production, serum PSA levels fall below 50 pg/mL, and may be below the detection limit of clinical immunoassays (current clinical immunoassay lower limit of detection is around 10 pg/mL). Many clinical studies have shown that intervention at low PSA levels was able to improve patient outcomes significantly. Therefore, ultra-sensitive and precise assays that can accurately quantify extremely low levels of PSA (below 1-10 pg/mL) will facilitate the assessment of patients for the possibility of early adjuvant or salvage treatment. Currently, the commercially available ultra-sensitive ELISA kit (not used clinically) can only reach a detection limit of 3-10 pg/mL. Other platforms developed by different research groups could achieve a detection limit as low as 0.33 pg/mL, but they relied on sophisticated instruments to get the final readout. Herein we report a microfluidic platform for point-of-care (POC) detection of PSA with a detection limit of 0.5 pg/mL and without the assistance of any equipment. This platform is based on a previously reported volumetric-bar-chart chip (V-Chip), which applies platinum nanoparticles (PtNPs) as the ELISA probe to convert the biomarker concentration to the volume of oxygen gas that further pushes the red ink to form a visualized bar-chart. The length of each bar is used to quantify the biomarker concentration of each sample. We devised a long reading channel V-Chip (LV-Chip) in this work to achieve a wide detection window. In addition, LV-Chip employed a unique enzyme-free ELISA probe that enriched PtNPs significantly and owned 500-fold enhanced catalytic ability over that of previous V-Chip, resulting in a significantly improved detection limit. LV-Chip is able to complete a PSA assay for five samples in 20 min. The device was applied to detect PSA in 50 patient serum samples, and the on-chip results demonstrated good correlation with conventional immunoassay. In addition, the PSA levels in finger-prick whole blood samples from healthy volunteers were successfully measured on the device. This completely stand-alone LV-Chip platform enables convenient POC testing for patient follow-up in the physician’s office and is also useful in resource-constrained settings.Keywords: point-of-care detection, microfluidics, PSA, ultra-sensitive
Procedia PDF Downloads 110336 Correlation between Polysaccharides Molecular Weight Changes and Pectinases Gene Expression during Papaya Ripening
Authors: Samira B. R. Prado, Paulo R. Melfi, Beatriz T. Minguzzi, João P. Fabi
Abstract:
Fruit softening is the main change that occurs during papaya (Carica papaya L.) ripening. It is characterized by the depolymerization of cell wall polysaccharides, especially the pectic fractions, which causes cell wall disassembling. However, it is uncertain how the modification of the two main pectin polysaccharides fractions (water-soluble – WSF, and oxalate-soluble fractions - OSF) accounts for fruit softening. The aim of this work was to correlate molecular weight changes of WSF and OSF with the gene expression of pectin-solubilizing enzymes (pectinases) during papaya ripening. Papaya fruits obtained from a producer were harvest and storage under specific conditions. The fruits were divided in five groups according to days after harvesting. Cell walls from all groups of papaya pulp were isolated and fractionated (WSF and OSF). Expression profiles of pectinase genes were achieved according to the MIQE guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments). The results showed an increased yield and a decreased molecular weight throughout ripening for WSF and OSF. Gene expression data support that papaya softening is achieved by polygalacturonases (PGs) up-regulation, in which their actions might have been facilitated by the constant action of pectinesterases (PMEs). Moreover, BGAL1 gene was up-regulated during ripening with a simultaneous galactose release, suggesting that galactosidases (GALs) could also account for pulp softening. The data suggest that a solubilization of galacturonans and a depolymerization of cell wall components were caused mainly by the action of PGs and GALs.Keywords: carica papaya, fruit ripening, galactosidases, plant cell wall, polygalacturonases
Procedia PDF Downloads 423335 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Abdullah A. Al Qurashi, Hattan A. Hassani, Bader K. Alaslap
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: arrhythmogenic right ventricular dysplasia, cardiac disease, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 58334 Genome-Wide Analysis of BES1/BZR1 Gene Family in Five Plant Species
Authors: Jafar Ahmadi, Zhohreh Asiaban, Sedigheh Fabriki Ourang
Abstract:
Brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence and stress responses. BRs signal through the BES1/BZR1 family of transcription factors, which regulate hundreds of target genes involved in this pathway. In this research a comprehensive genome-wide analysis was carried out in BES1/BZR1 gene family in Arabidopsis thaliana, Cucumis sativus, Vitis vinifera, Glycin max, and Brachypodium distachyon. Specifications of the desired sequences, dot plot and hydropathy plot were analyzed in the protein and genome sequences of five plant species. The maximum amino acid length was attributed to protein sequence Brdic3g with 374aa and the minimum amino acid length was attributed to protein sequence Gm7g with 163aa. The maximum Instability index was attributed to protein sequence AT1G19350 equal with 79.99 and the minimum Instability index was attributed to protein sequence Gm5g equal with 33.22. Aliphatic index of these protein sequences ranged from 47.82 to 78.79 in Arabidopsis thaliana, 49.91 to 57.50 in Vitis vinifera, 55.09 to 82.43 in Glycin max, 54.09 to 54.28 in Brachypodium distachyon 55.36 to 56.83 in Cucumis sativus. Overall, data obtained from our investigation contributes a better understanding of the complexity of the BES1/BZR1 gene family and provides the first step towards directing future experimental designs to perform systematic analysis of the functions of the BES1/BZR1 gene family.Keywords: BES1/BZR1, brassinosteroids, phylogenetic analysis, transcription factor
Procedia PDF Downloads 339333 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells
Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard
Abstract:
Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics
Procedia PDF Downloads 248332 Mechanical Properties of Young and Senescence Fibroblast Cells Using Passive Microrheology
Authors: Samira Khalaji, , Fenneke Klein Jan, Kay-E. Gottschalk, Eugenia Makrantonaki, Karin Scharffetter-Kochanek
Abstract:
Biological aging is a multi-dimensional process that takes place over a whole range of scales from the nanoscopic alterations within individual cells, over transformations in tissues and organs and to changes of the whole organism. On the single cell level, aging involves mutation of genes, differences in gene expression levels as well as altered posttranslational modifications of proteins. A variety of proteins is affected, including proteins of the cell cytoskeleton and migration machinery. Previous work quantified the expression of cytoskeleton proteins on the gene and protein levels in senescent and young fibroblasts. Their results show that senescent skin fibroblasts have an upregulated expression of the intermediate filament (IF) protein vimentin in contrast to actin and tubulin, which are downregulated. IFs play an important role in providing mechanical stability of cells. However, the mechanical properties of IFs depending on cellular senescence or age of the donor has not been studied so far. Hence, we employed passive microrheology on primary human dermal fibroblasts from female donors with age of 28 years (young) and 86 years (old) as model of in vivo aging and human normal dermal fibroblast from 11-year old male with CPD 17-35 (young) and CPD 58-59 (senescence) as a model of in vitro replicative senescence. In contrast to the expectations, our primary results show no significant differences in the viscoelastic properties of fibroblasts depending on age of the donor or cellular replicative senescence.Keywords: aging, cytoskeleton, fibroblast, mechanical properties
Procedia PDF Downloads 320331 Osteogenesis in Thermo-Sensitive Hydrogel Using Mesenchymal Stem Cell Derived from Human Turbinate
Authors: A. Reum Son, Jin Seon Kwon, Seung Hun Park, Hai Bang Lee, Moon Suk Kim
Abstract:
These days, stem cell therapy is focused on for promising source of treatment in clinical human disease. As a supporter of stem cells, in situ-forming hydrogels with growth factors and cells appear to be a promising approach in tissue engineering. To examine osteogenic differentiation of hTMSCs which is one of mesenchymal stem cells in vivo in an injectable hydrogel, we use a methoxy polyethylene glycol-polycaprolactone blockcopolymer (MPEG-PCL) solution with osteogenic factors. We synthesized MPEG-PCL hydrogel and measured viscosity to check sol-gel transition. In order to demonstrate osteogenic ability of hTMSCs, we conducted in vitro osteogenesis experiment. Then, to confirm the cell cytotoxicity, we performed WST-1 with hTMSCs and MPEG-PCL. As the result of in vitro experiment, we implanted cell and hydrogel mixture into animal model and checked degree of osteogenesis with histological analysis and amount of expression genes. Through these experimental data, MPEG-PCL hydrogel has sol-gel transition in temperature change and is biocompatible with stem cells. In histological analysis and gene expression, hTMSCs are very good source of osteogenesis with hydrogel and will use it to tissue engineering as important treatment method. hTMSCs could be a good adult stem cell source for usability of isolation and high proliferation. When hTMSCs are used as cell therapy method with in situ-formed hydrogel, they may provide various benefits like a noninvasive alternative for bone tissue engineering applications.Keywords: injectable hydrogel, stem cell, osteogenic differentiation, tissue engineering
Procedia PDF Downloads 447330 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus
Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din
Abstract:
Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA
Procedia PDF Downloads 155329 The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9
Authors: Arefeh Jafarian, Mohammad Taghikani, Saied Abroun, Amir Allahverdi, Masoud Soleimani
Abstract:
Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.Keywords: diabetes, differentiation, MSCs, insulin producing cells, miR-375, miR-9
Procedia PDF Downloads 317328 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer
Authors: Xiaoping Su, Gabriel G. Malouf
Abstract:
Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor
Procedia PDF Downloads 105327 Monitoring of Serological Test of Blood Serum in Indicator Groups of the Population of Central Kazakhstan
Authors: Praskovya Britskaya, Fatima Shaizadina, Alua Omarova, Nessipkul Alysheva
Abstract:
Planned preventive vaccination, which is carried out in the Republic of Kazakhstan, promoted permanent decrease in the incidence of measles and viral hepatitis B. In the structure of VHB patients prevail people of young, working age. Monitoring of infectious incidence, monitoring of coverage of immunization of the population, random serological control over the immunity enable well-timed identification of distribution of the activator, effectiveness of the taken measures and forecasting. The serological blood analysis was conducted in indicator groups of the population of Central Kazakhstan for the purpose of identification of antibody titre for vaccine preventable infections (measles, viral hepatitis B). Measles antibodies were defined by method of enzyme-linked assay (ELA) with test-systems "VektoKor" – Ig G ('Vektor-Best' JSC). Antibodies for HBs-antigen of hepatitis B virus in blood serum was identified by method of enzyme-linked assay (ELA) with VektoHBsAg test systems – antibodies ('Vektor-Best' JSC). The result of the analysis is positive, the concentration of IgG to measles virus in the studied sample is equal to 0.18 IU/ml or more. Protective level of concentration of anti-HBsAg makes 10 mIU/ml. The results of the study of postvaccinal measles immunity showed that the share of seropositive people made 87.7% of total number of surveyed. The level of postvaccinal immunity to measles in age groups differs. So, among people older than 56 the percentage of seropositive made 95.2%. Among people aged 15-25 were registered 87.0% seropositive, at the age of 36-45 – 86.6%. In age groups of 25-35 and 36-45 the share of seropositive people was approximately at the same level – 88.5% and 88.8% respectively. The share of people seronegative to a measles virus made 12.3%. The biggest share of seronegative people was found among people aged 36-45 – 13.4% and 15-25 – 13.0%. The analysis of results of the examined people for the existence of postvaccinal immunity to viral hepatitis B showed that from all surveyed only 33.5% have the protective level of concentration of anti-HBsAg of 10 mIU/ml and more. The biggest share of people protected from VHB virus is observed in the age group of 36-45 and makes 60%. In the indicator group – above 56 – seropositive people made 4.8%. The high percentage of seronegative people has been observed in all studied age groups from 40.0% to 95.2%. The group of people which is least protected from getting VHB is people above 56 (95.2%). The probability to get VHB is also high among young people aged 25-35, the percentage of seronegative people made 80%. Thus, the results of the conducted research testify to the need for carrying out serological monitoring of postvaccinal immunity for the purpose of operational assessment of the epidemiological situation, early identification of its changes and prediction of the approaching danger.Keywords: antibodies, blood serum, immunity, immunoglobulin
Procedia PDF Downloads 255326 Modulation of Alternative Respiration Pathyway under Salt Stress in Exogenous Estrogen-Treated Maize Seedlings
Authors: Farideh K. Khosroushahi, Serkan Erdal, Mucip Geni̇şel
Abstract:
Soil salinity is one of the major abiotic stress factors that restricts arable land and reduces crop productivity worldwide. High salt concentration adversely affects plant growth and development inducing water deficit, ionic toxicity, nutrient imbalance, and lead to oxidative stress. Although the stimulating role of mammalian sex hormones on various biological and biochemical processes under normal and stress condition have been proven, there is no study regarding with these hormone's effect on modulation of the alternative respiration pathway and AOX gene expression. In this study, changes in alternative respiration pathway in leaves of maize seedlings under salinity and the possible modulating effect of estrogen on these changes were investigated. Maize seedlings were grown in a hydroponic media for 11 days and then were exposed to salt stress for 3 days after being sprayed estrogen. The data obtained from oxygen consumption revealed that salt stress elevated cellular respiration value in the leaves. In addition, a marked increase was observed at alternative respiration level in salt-stressed seedlings. Compared to salt application alone, supplementation with estrogen resulted in a significant rise in alternative oxidase (AOX) activities. Similarly, while salt stress caused to rise in expressions of AOX gene compared to control seedlings, estrogen application resulted in further activation of these genes’ expression compared to stressed-seedlings alone. These data revealed that mitigating role of estrogen against the detrimental effects of salt stress is linked to modulation of alternative respiration pathway.Keywords: alternative oxidase, estrogen, Ssalt stress, AOX, maize
Procedia PDF Downloads 215325 Isolation and Characterization of Bacteriophages Against Aeromonas Spp. Mediated Diseases in Indian Aquaculture
Authors: Mrunalini Sonne
Abstract:
Aquaculture uses a variety of broad spectrum antibiotics to manage and prevent a variety of diseases without understanding their mechanisms of action. This has led to water pollution in the modern world. The necessity for alternate control measures against bacterial illnesses in the aquaculture sector is highlighted by issues brought on by antibiotic-resistant bacteria and the dearth of effective control strategies. Bacteriophages (phages) have shown promise as therapeutic agents for the efficient management of bacterial infections in aquaculture. In the current study, a variety of investigations were conducted to determine if utilizing lytic phages to reduce Aeromonas spp. infection in fish aquaculture was appropriate. Motile Aeromonas septicaemia is a fish disease that has caused financial harm to the aquaculture sector. Currently, the production of aquaculture depends significantly on antibiotics, which adds to the worldwide problem of the rise of bacteria that are resistant to medicines and resistance genes. To decrease the usage of antibiotics in aquaculture systems, it is crucial to create efficient antibiotic substitutes. Bacteriophages are capable of acting as a natural antagonist, mostly because of their great specificity, capacity for self-replication, and ability to quickly eradicate dangerous bacteria. There is a need for research that goes beyond just isolating and characterising lytic bacteriophages to examine their morphology, stability, and efficacy in various environmental conditions. Bacteriophage (or phage) therapy is a promising technique to control dangerous microbes in farmed fish. More phage therapy research in aquaculture is required in order to effectively employ phage treatment to lessen infection in fish brought on by Aeromonas.Keywords: aquaculture, bacteriophages, fish, freshwater
Procedia PDF Downloads 103324 Genetic Polymorphism in the Vitamin D Receptor Gene and 25-Hydroxyvitamin D Serum Levels in East Indian Women with Polycystic Ovary Syndrome
Authors: Dipanshu Sur, Ratnabali Chakravorty
Abstract:
Background: Polycystic ovary syndrome (PCOS) is the most common metabolic abnormality such as changes in lipid profile, diabetes, hypertension and metabolic syndrome occurring in young women of reproductive age. Low vitamin D levels were found to be associated with the development of obesity and insulin resistance in women with PCOS. Variants on vitamin D receptor (VDR) gene have also been related to metabolic comorbidities in general population. Aim: The aim of this case-control study was to investigate whether the VDR gene polymorphisms are associated with susceptibility to PCOS. Methods: Women with PCOS and a control group, all aged 16-40 years, were enrolled. Genotyping of VDR Fok-I (rs2228570), VDR Apa-I (rs7975232) as well as GC (rs2282679), DHCR7 (rs12785878) SNPs between groups were determined by using direct sequencing. Serum 25-hydroxyvitamin D [25(OH)] levels were measured by ELISA. Results: Mean serum 25(OH)D in the PCOS and control samples were 19.08±7 and 23.27±6.03 (p=0.048) which were significantly lower in PCOS patients compared with controls. CC genotype of the VDR Apa-I SNP was same frequent in PCOS (25.6%) and controls (25.6%) (OR: 0.9995; 95%CI: 0.528 to 1.8921; p= 0.9987). The CC genotype was also significantly associated with both lower E2 (p=0.031) and Androstenedione levels (p=0.062). We observed a significant association of GC polymorphism with 25(OH)D levels. PCOS women carrying the GG genotype (in GC genes) had significantly higher risk for vitamin D deficiency than women carrying the TT genotype. Conclusions: In conclusion, data from this study indicate that vitamin D levels are lower, and vitamin D deficiency more frequent, in PCOS than in controls. The present findings suggest that the Apa-I, Fok-I polymorphism of the VDR gene is associated with PCOS and seems to modulate ovarian steroid secretion. Further studies are needed to better clarify the biological mechanisms by which the polymorphism influences PCOS risk.Keywords: vitamin D receptor, polymorphism, vitamin D, polycystic ovary syndrome
Procedia PDF Downloads 304323 CAP-Glycine Protein Governs Growth, Differentiation, and the Pathogenicity of Global Meningoencephalitis Fungi
Authors: Kyung-Tae Lee, Li Li Wang, Kwang-Woo Jung, Yong-Sun Bahn
Abstract:
Microtubules are involved in mechanical support, cytoplasmic organization as well as in a number of cellular processes by interacting with diverse microtubule-associated proteins (MAPs), such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A common feature of these proteins is the presence of a cytoskeleton-associated protein-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate functions of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which causes fatal meningoencephalitis globally. In this study, we identified five CAP-Gly proteins encoding genes in C. neoformans. Among these, Cgp1, encoded by CNAG_06352, has a unique domain structure that has not been reported before in other eukaryotes. Supporting the role of Cpg1 in microtubule-related functions, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer, and Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular functions of microtubules, Cgp1 also governs maintenance of membrane stability and genotoxic stress responses. Furthermore, we demonstrate that Cgp1 uniquely regulates sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Our domain analysis reveals that the CAP-Gly domain plays major roles in all the functions of Cgp1. Finally, the cgp1Δ mutant is attenuated in virulence. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation and pathogenicity of C. neoformans.Keywords: human fungal pathogen, CAP-Glycine protein, microtubule, meningoencephalitis
Procedia PDF Downloads 315322 Prophylactic Effects of Dairy Kluyveromyces marxianus YAS through Overexpression of BAX, CASP 3, CASP 8 and CASP 9 on Human Colon Cancer Cell Lines
Authors: Amir Saber Gharamaleki, Beitollah Alipour, Zeinab Faghfoori, Ahmad YariKhosroushahi
Abstract:
Colorectal cancer (CRC) is one of the most prevalent cancers and intestinal microbial community plays an important role in colorectal tumorigenesis. Probiotics have recently been assessed as effective anti-proliferative agents and thus this study was performed to examine whether CRC undergo apoptosis by treating with isolated Iranian native dairy yeast, Kluyveromyces marxianus YAS, secretion metabolites. The cytotoxicity assessments on cells (HT-29, Caco-2) were accomplished through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as well as qualitative DAPI (4',6-diamidino-2-phenylindole staining) and quantitative (flow cytometry assessments) evaluations of apoptosis. To evaluate the main mechanism of apoptosis, Real time PCR method was applied. Kluyveromyces marxianus YAS secretions (IC50) showed significant cytotoxicity against HT-29 and Caco-2 cancer cell lines (66.57 % and 66.34 % apoptosis) similar to 5-Fluorouracil (5-FU) while apoptosis only was developed in 27.57 % of KDR normal cells. The prophylactic effects of Kluyveromyces marxianus (PTCC 5195), as a reference yeast, was not similar to Kluyveromyces marxianus YAS indicating strain dependency of bioactivities on CRC disease prevention. Based on real time PCR results, the main cytotoxicity is related to apoptosis phenomenon and the core related mechanism is depended on the overexpression of BAX, CASP 9, CASP 8 and CASP 3 inducing apoptosis genes. However, several investigations should be conducted to precisely determine the effective compounds to be used as anticancer therapeutics in the future.Keywords: anticancer, anti-proliferative, apoptosis, cytotoxicity, yeast
Procedia PDF Downloads 344321 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Fahad Almehmadi, Abdullah Alrajhi, Bader K. Alaslab, Abdullah A. Al Qurashi, Hattan A. Hassani
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: ARVD/C, cardiology, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 63320 Heterologous Expression of a Clostridium thermocellum Proteins and Assembly of Cellulosomes 'in vitro' for Biotechnology Applications
Authors: Jessica Pinheiro Silva, Brenda Rabello De Camargo, Daniel Gusmao De Morais, Eliane Ferreira Noronha
Abstract:
The utilization of lignocellulosic biomass as source of polysaccharides for industrial applications requires an arsenal of enzymes with different mode of action able to hydrolyze its complex and recalcitrant structure. Clostridium thermocellum is gram-positive, thermophilic bacterium producing lignocellulosic hydrolyzing enzymes in the form of multi-enzyme complex, termed celulossomes. This complex has several hydrolytic enzymes attached to a large and enzymically inactive protein known as Cellulosome-integrating protein (CipA), which serves as a scaffolding protein for the complex produced. This attachment occurs through specific interactions between cohesin modules of CipA and dockerin modules in enzymes. The present work aims to construct celulosomes in vitro with the structural protein CipA, a xylanase called Xyn10D and a cellulose called CelJ from C.thermocellum. A mini-scafoldin was constructed from modules derived from CipA containing two cohesion modules. This was cloned and expressed in Escherichia coli. The other two genes were cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9 and integrated into the genome of the methylotrophic yeast Pichia pastoris GS115. Purification of each protein is being carried out. Further studies regarding enzymatic activity of the cellulosome is going to be evaluated. The cellulosome built in vitro and composed of mini-CipA, CelJ and Xyn10D, can be very interesting for application in industrial processes involving the degradation of plant biomass.Keywords: cellulosome, CipA, Clostridium thermocellum, cohesin, dockerin, yeast
Procedia PDF Downloads 233319 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary
Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori
Abstract:
Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing
Procedia PDF Downloads 56318 Mutation Profiling of Paediatric Solid Tumours in a Cohort of South African Patients
Authors: L. Lamola, E. Manolas, A. Krause
Abstract:
Background: The incidence of childhood cancer incidence is increasing gradually in low-middle income countries, such as South Africa. Globally, there is an extensive range of familial- and hereditary-cancer syndromes, where underlying germline variants increase the likelihood of developing cancer in childhood. Next-Generation Sequencing (NGS) technologies have been key in determining the occurrence and genetic contribution of germline variants to paediatric cancer development. We aimed to design and evaluate a candidate gene panel specific to inherited cancer-predisposing genes to provide a comprehensive insight into the contribution of germline variants to childhood cancer. Methods: 32 paediatric patients (aged 0-18 years) diagnosed with a malignant tumour were recruited, and biological samples were obtained. After quality control, DNA was sequenced using an ion Ampliseq 50 candidate gene panel design and Ion Torrent S5 technologies. Sequencing variants were called using Ion Torrent Suite software and were subsequently annotated using Ion Reporter and Ensembl's VEP. High priority variants were manually analysed using tools such as MutationTaster, SIFT-INDEL and VarSome. Putative identified candidates were validated via Sanger Sequencing. Results: The patients studied had a variety of cancers, the most common being nephroblastoma (13), followed by osteosarcoma (4) and astrocytoma (3). We identified 10 pathogenic / likely pathogenic variants in 10 patients, most of which were novel. Conclusions: According to the literature, we expected ~10% of our patient population to harbour pathogenic or likely pathogenic germline variants, however, we reported about 3 times (~30%) more than we expected. Majority of the identified variants are novel; this may be because this is the first study of its kind in an understudied South African population.Keywords: Africa, genetics, germline-variants, paediatric-cancer
Procedia PDF Downloads 138317 An Evaluation of Different Weed Management Techniques in Organic Arable Systems
Authors: Nicola D. Cannon
Abstract:
A range of field experiments have been conducted since 1991 to 2017 on organic land at the Royal Agricultural University’s Harnhill Manor Farm near Cirencester, UK to explore the impact of different management practices on weed infestation in organic winter and spring wheat. The experiments were designed using randomised complete block and some with split plot arrangements. Sowing date, variety choice, crop height and crop establishment technique have all shown a significant impact on weed infestations. Other techniques have also been investigated but with less clear, but, still often significant effects on weed control including grazing with sheep, undersowing with different legumes and mechanical weeding techniques. Tillage treatments included traditional plough based systems, minimum tillage and direct drilling. Direct drilling had significantly higher weed dry matter than the other two techniques. Taller wheat varieties which do not contain Rht1 or Rht2 had higher weed populations than the wheat without dwarfing genes. Early sown winter wheat had greater weed dry matter than later sown wheat. Grazing with sheep interacted strongly with sowing date, with shorter varieties and also late sowing dates providing much less forage but, grazing did reduce weed biomass in June. Undersowing had mixed impacts which were related to the success of establishment of the undersown legume crop. Weeds are most successfully controlled when a range of techniques are implemented to give the wheat crop the greatest chance of competing with weeds.Keywords: crop establishment, drilling date, grazing, undersowing, varieties, weeds
Procedia PDF Downloads 183316 Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces
Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi
Abstract:
Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.Keywords: tPA, recombinant, transgenic, tobacco
Procedia PDF Downloads 145315 Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens
Authors: Qingfang Guo
Abstract:
Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin.Keywords: isodon rubescens, MYB, oridonin, CRISPR/Cas9
Procedia PDF Downloads 29314 Altered Expression of Ubiquitin Editing Complex in Ulcerative Colitis
Authors: Ishani Majumdar, Jaishree Paul
Abstract:
Introduction: Ulcerative Colitis (UC) is an inflammatory disease of the colon resulting from an autoimmune response towards individual’s own microbiota. Excessive inflammation is characterized by hyper-activation of NFkB, a transcription factor regulating expression of various pro-inflammatory genes. The ubiquitin editing complex consisting of TNFAIP3, ITCH, RNF11 and TAX1BP1 maintains homeostatic levels of active NFkB through feedback inhibition and assembles in response to various stimuli that activate NFkB. TNFAIP3 deubiquitinates key signaling molecules involved in NFkB activation pathway. ITCH, RNF11 and TAX1BP1 provide substrate specificity, acting as adaptors for TNFAIP3 function. Aim: This study aimed to find expression of members of the ubiquitin editing complex at the transcript level in inflamed colon tissues of UC patients. Materials and Methods: Colonic biopsy samples were collected from 30 UC patients recruited at Department of Gastroenterology, AIIMS (New Delhi). Control group (n= 10) consisted of individuals undergoing examination for functional disorders. Real Time PCR was used to determine relative expression with GAPDH as housekeeping gene. Results: Expression of members of the ubiquitin editing complex was significantly altered during active disease. Expression of TNFAIP3 was upregulated while concomitant decrease in expression of ITCH, RNF11, TAX1BP1 was seen in UC patients. Discussion: This study reveals that increase in expression of TNFAIP3 was unable to control inflammation during active UC. Further, insufficient upregulation of ITCH, RNF11, TAX1BP1 may limit the formation of the ubiquitin complex and contribute to pathogenesis of UC.Keywords: altered expression, inflammation, ubiquitin editing complex, ulcerative colitis
Procedia PDF Downloads 262313 Bioinformatic Approaches in Population Genetics and Phylogenetic Studies
Authors: Masoud Sheidai
Abstract:
Biologists with a special field of population genetics and phylogeny have different research tasks such as populations’ genetic variability and divergence, species relatedness, the evolution of genetic and morphological characters, and identification of DNA SNPs with adaptive potential. To tackle these problems and reach a concise conclusion, they must use the proper and efficient statistical and bioinformatic methods as well as suitable genetic and morphological characteristics. In recent years application of different bioinformatic and statistical methods, which are based on various well-documented assumptions, are the proper analytical tools in the hands of researchers. The species delineation is usually carried out with the use of different clustering methods like K-means clustering based on proper distance measures according to the studied features of organisms. A well-defined species are assumed to be separated from the other taxa by molecular barcodes. The species relationships are studied by using molecular markers, which are analyzed by different analytical methods like multidimensional scaling (MDS) and principal coordinate analysis (PCoA). The species population structuring and genetic divergence are usually investigated by PCoA and PCA methods and a network diagram. These are based on bootstrapping of data. The Association of different genes and DNA sequences to ecological and geographical variables is determined by LFMM (Latent factor mixed model) and redundancy analysis (RDA), which are based on Bayesian and distance methods. Molecular and morphological differentiating characters in the studied species may be identified by linear discriminant analysis (DA) and discriminant analysis of principal components (DAPC). We shall illustrate these methods and related conclusions by giving examples from different edible and medicinal plant species.Keywords: GWAS analysis, K-Means clustering, LFMM, multidimensional scaling, redundancy analysis
Procedia PDF Downloads 124312 Direct Assessment of Cellular Immune Responses to Ovalbumin with a Secreted Luciferase Transgenic Reporter Mouse Strain IFNγ-Lucia
Authors: Martyna Chotomska, Aleksandra Studzinska, Marta Lisowska, Justyna Szubert, Aleksandra Tabis, Jacek Bania, Arkadiusz Miazek
Abstract:
Objectives: Assessing antigen-specific T cell responses is of utmost importance for the pre-clinical testing of prototype vaccines against intracellular pathogens and tumor antigens. Mainly two types of in vitro assays are used for this purpose 1) enzyme-linked immunospot (ELISpot) and 2) intracellular cytokine staining (ICS). Both are time-consuming, relatively expensive, and require manual dexterity. Here, we assess if a straightforward detection of luciferase activity in blood samples of transgenic reporter mice expressing a secreted Lucia luciferase under the transcriptional control of IFN-γ promoter parallels the sensitivity of IFNγ ELISpot assay. Methods: IFN-γ-LUCIA mouse strain carrying multiple copies of Lucia luciferase transgene under the transcriptional control of IFNγ minimal promoter were generated by pronuclear injection of linear DNA. The specificity of transgene expression and mobilization was assessed in vitro using transgenic splenocytes exposed to various mitogens. The IFN-γ-LUCIA mice were immunized with 50mg of ovalbumin (OVA) emulsified in incomplete Freund’s adjuvant three times every two weeks by subcutaneous injections. Blood samples were collected before and five days after each immunization. Luciferase activity was assessed in blood serum. Peripheral blood mononuclear cells were separated and assessed for frequencies of OVA-specific IFNγ-secreting T cells. Results: We show that in vitro cultured splenocytes of IFN-γ-LUCIA mice respond by 2 and 3 fold increase in secreted luciferase activity to T cell mitogens concanavalin A and phorbol myristate acetate, respectively but fail to respond to B cell-stimulating E.coli lipopolysaccharide. Immunization of IFN-γ-LUCIA mice with OVA leads to over 4 fold increase in luciferase activity in blood serum five days post-immunization with a barely detectable increase in OVA-specific, IFNγ-secreting T cells by ELISpot. Second and third immunizations, further increase the luciferase activity and coincidently also increase the frequencies of OVA-specific T cells by ELISpot. Conclusions: We conclude that minimally invasive monitoring of luciferase secretions in blood serum of IFN-γ-LUCIA mice constitutes a sensitive method for evaluating primary and memory Th1 responses to protein antigens. As such, this method may complement existing methods for rapid immunogenicity assessment of prototype vaccines.Keywords: ELISpot, immunogenicity, interferon-gamma, reporter mice, vaccines
Procedia PDF Downloads 170