Search results for: international teaching and learning
4008 Advancing Net Zero Showcase in Subtropical High-Rise Commercial Building
Authors: Melody Wong
Abstract:
Taikoo Green Ribbon is the winning scheme of International Advancing Net Zero ANZ Ideas Competition 2021 and shortlisted as a finalist of top Architectural Award “AJ100 Sustainability Initiative of the Year, 2022, demonstrating city's aspirations to reach carbon neutrality by 2050. The project showcases total design solutions to blend technology and nature to create a futuristic workplace achieving net zero within a decade. The net zero building design featured with extremely low embodied carbon emission (<250 kgCO2/sqm), significant surplus in renewable energy generation (130% of energy consumption) and various carbon capture technology. The project leverages aesthetics, user-experience, sustainability, and technology to develop over 40 design features. Utilizing AI-controlled Smart Envelope system, the possibility of naturally ventilation was maximized to adjust the microclimate to foster behavourial change. The design principle – healthy and collaborative working environment is realized with a landscaped sky-track with kinetic energy pads, natural ventilated open space with edible plants across floors, and 500-seat open-space rooftop theatre to reshape and redefine the new generation of workplaces.Keywords: NetZero, zero carbon, green, sustainability
Procedia PDF Downloads 834007 A Review: Global Crisis Effects on Agriculture and Animal Production in Turkey
Authors: Muhittin Fatih Demirhan, Sibel Alapala Demirhan
Abstract:
Agriculture, is also regarded as the primary activity area in all economies. When international comparisons are made Turkey has comparative advantages in agricultural potential. However, it is diffi cult to say that Turkey's agricultural productivity and use of technology is well developed in terms of sufficieny. Turkey, in terms of agricultural production, is one of the rare self-sufficient countries, but for supplying excessive demand of its domesticproduction to foreign markets to obtain the necessary income it is rather insufficient. On the basis of wrong policies implemented during the crisis and found that bottlenecks in agriculture and animal husbandry or agriculture policies of the IMF and World Bank are imposed on countries like Turkey. The IMF and the World Bank, the reduction of support in the agricultural and livestock Turkey, is known to put pressure for the abolition. Under these circumstances, our farmers, livestock producers and breeders of, not a chance to compete in the same market with EU producers. Animal products that capture the productivity levels of developed countries, seems to be our chance to compete with the quality and hygiene criteria. Thus, the discussion of the issue must be raised as for the sector's contribution to the economy in terms of further increasing production of the existing potential in mobilization.Keywords: agricultural development, animal production, competition, economic crisis, food supply
Procedia PDF Downloads 2424006 An International Comparison of Forensic Identification Evidence Legislation: Balancing Community Interests and Individual Rights
Authors: Marcus Smith
Abstract:
DNA profiling has made a valuable contribution to criminal investigations over the past thirty years. Direct matching DNA profiles from a crime scene and suspect, or between a suspect and a database remain of great importance to crimes such as murder, assault, and property theft. As scientific and technological advancement continues, a wide range of new DNA profiling applications has been developed. The application of new techniques involves an interesting balancing act between admitting probative evidence in a criminal trial, evaluating its degree of relevance and validity, and limiting its prejudicial impact. The impact of new DNA profiling applications that have significant implications for law enforcement and the legal system can be evaluated through a review of relevant case law, legislation and the latest empirical evidence from jurisdictions around the world including the United States, United Kingdom, and Australia. There are benefits in further examining the implications of these new developments, including how the criminal law can best be adapted to ensure that new technology is used to enhance criminal investigation and prosecution while ensuring it is applied in a measured way that respects individual rights and maintains principles of fairness enshrined in the legal system.Keywords: criminal procedure, forensic evidence, DNA profiling, familial searching, phenotyping
Procedia PDF Downloads 1364005 Integrating a Six Thinking Hats Approach Into the Prewriting Stage of Argumentative Writing In English as a Foreign Language: A Chinese Case Study of Generating Ideas in Action
Abstract:
Argumentative writing is the most prevalent genre in diverse writing tests. How to construct academic arguments is often regarded as a difficult task by most English as a foreign language (EFL) learners. A failure to generate enough ideas and organise them coherently and logically as well as a lack of competence in supporting their arguments with relevant evidence are frequent problems faced by EFL learners when approaching an English argumentative writing task. Overall, these problems are closely related to planning, and planning an argumentative writing at pre-writing stage plays a vital role in a good academic essay. However, how teachers can effectively guide students to generate ideas is rarely discussed in planning English argumentative writing, apart from brainstorming. Brainstorming has been a common practice used by teachers to help students generate ideas. However, some limitations of brainstorming suggest that it can help students generate many ideas, but ideas might not necessarily be coherent and logic, and could sometimes impede production. It calls for a need to explore effective instructional strategies at pre-writing stage of English argumentative writing. This paper will first examine how a Six Thinking Hats approach can be used to provide a dialogic space for EFL learners to experience and collaboratively generate ideas from multiple perspectives at pre-writing stage. Part of the findings of the impact of a twelve-week intervention (from March to July 2021) on students learning to generate ideas through engaging in group discussions of using Six Thinking Hats will then be reported. The research design is based on the sociocultural theory. The findings present evidence from a mixed-methods approach and fifty-nine participants from two first-year undergraduate natural classes in a Chinese university. Analysis of pre- and post- questionnaires suggests that participants had a positive attitude toward the Six Thinking Hats approach. It fosters their understanding of prewriting and argumentative writing, helps them to generate more ideas not only from multiple perspectives but also in a systematic way. A comparison of participants writing plans confirms an improvement in generating counterarguments and rebuttals to support their arguments. Above all, visual and transcripts data of group discussion collected from different weeks throughout the intervention enable teachers and researchers to ‘see’ the hidden process of learning to generate ideas in action.Keywords: argumentative writing, innovative pedagogy, six thinking hats, dialogic space, prewriting, higher education
Procedia PDF Downloads 924004 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)
Authors: Wafa' Slaibi Alsharafat
Abstract:
Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection
Procedia PDF Downloads 4764003 Teachers’ Perceptions of the Negative Impact of Tobephobia on Their Emotions and Job Satisfaction
Authors: Prakash Singh
Abstract:
The aim of this study was to investigate the extent of teachers’ experiences of tobephobia (TBP) in their heterogeneous classrooms and what impact this had on their emotions and job satisfaction. The expansive and continuously changing demands for quality and equal education for all students in educational organisations that have limited resources connotes that the negative effects of TBP cannot be simply ignored as being non-existent in the educational environment. As this quantitative study reveals, teachers disliking their job with low expectations, lack of motivation in their workplace and pessimism, result in their low self-esteem. When there is pessimism in the workplace, then the employees’ self-esteem will inevitably be low, as pointed out by 97.1% of the respondents in this study. Self-esteem is a reliable indicator of whether employees are happy or not in their jobs and the majority of the respondents in this study agreed that their experiences of TBP negatively impacted on their self-esteem. Hence, this exploratory study strongly indicates that productivity in the workplace is directly linked to the employees’ expectations, self-confidence and their self-esteem. It is therefore inconceivable for teachers to be productive in their regular classrooms if their genuine professional concerns, anxieties, and curriculum challenges are not adequately addressed. This empirical study contributes to our knowledge on TBP because it clearly outlines some of the teaching problems that we are grappling with and constantly experience in our schools in this century. Therefore, it is imperative that the tobephobic experiences of teachers are not merely documented, but appropriately addressed with relevant action by every stakeholder associated with education so that our teachers’ emotions and job satisfaction needs are fully taken care of.Keywords: demotivated teachers' pessimism, low expectations of teachers' job satisfaction, self-esteem, tobephobia
Procedia PDF Downloads 2354002 People Management, Knowledge Sharing and Intermediary Variables
Authors: Nizar Mansour, Chiha Gaha, Emna Gara
Abstract:
The present research investigates the relationship among HRM practices, knowledge sharing behavior and a certain number of intermediary variables in the context of Tunisian knowledge-intensive firms. Results suggest that five HR practices influence either directly or indirectly the knowledge sharing behavior through enhancing the value of human capital and fostering a learning-oriented organizational climate. Results have strong theoretical implications for both the fields of knowledge management and strategic human resource management. Managerial implications are also derived.Keywords: human capital, knowledge intensive firms, knowledge sharing, organizational climate, Tunisia
Procedia PDF Downloads 3384001 Empirical Study for the Project and the Project Management Dimensions Comparison between SMEs and Large Companies
Authors: Amina Oukennou, Zitouni Beidouri, Otmane Bouksour
Abstract:
Small to Medium-sized enterprises are a very important component of the economy. They are present in the whole industries all over the world. They are considered as the engine for future growth in the economy. Project management is an economical international factor impacting all types of enterprises including the SMEs. This paper has the aim of measuring the weight of using projects and project management in Moroccan SMEs in comparison with the large companies. The study is based on interviews with experts: project managers, managers, directors, and consultants. They were asked questions measuring the weight of using projects, the level of using project management, and the resources employed. Eighteen Moroccan companies from a range of industries and sizes were consulted. All the companies consider projects as a key element in their strategy. Most of them affirm the great usefulness of the approach 'project', especially for the external activities. The main differences lie in the duration and the size of used projects. Despite the commonly shared idea about the importance of the project management, the interviewed persons believe that the project management knowledge has the same importance or less than the technical knowledge. All the companies affirm the need for a simpler version of project management. The content varies from one company to another.Keywords: project dimension, project management, small to medium-sized entreprise, Morocco
Procedia PDF Downloads 3224000 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia
Authors: Ikawati Wulandari
Abstract:
Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakageKeywords: PPM, Geothermal, Fault, Grabag
Procedia PDF Downloads 4723999 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1393998 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 1293997 Cross Cultural Challenges in International Projects: A Comparative Study between Indian and French
Authors: Niranjani Ruba Pandian
Abstract:
In today’s multicultural global business community, most of the businesses and industries are linked with various countries in which different nationalities have different roles and responsibilities throughout the project. The purpose of this research is to examine the cross-cultural challenges between Indian and French and the ways to minimize these challenges to manage effectively the cross-cultural aspect of human resources for the success of global business in an automotive industry. The conducted study utilized quantitative methodology to analyze the data on Indian and French employees' perceptions of 6 cultural dimensions such as power versus distance, individualism versus collectivism, masculinity versus femininity, uncertainty versus avoidance, pragmatic versus normative and indulgence versus restraint. Employees of 4 multinational companies filled in the questionnaire based on the 5-point Likert scale to present quantitative results. The data was analysed with the correlation and multiple regression statistical analyses. It was found that Indian and French have major gap in uncertainty versus avoidance followed by individualism versus collectivism. However, this article highlights the way to minimize these gaps by adopting certain sequenced methodologies.Keywords: automotive industry, cross cultural challenges, globalization, global business
Procedia PDF Downloads 4703996 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3403995 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry
Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes
Abstract:
The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium
Procedia PDF Downloads 1723994 ASEAN Our Eyes: A Strategic Information Exchange Platform on Counter-Terrorism
Authors: Nila Febri Wilujeng, Helda Risman
Abstract:
Enjoying stable security within its region for the last 50 years, ASEAN nowadays contends with the global context emerging dynamically, which brings about multidimensional challenges and threats such as terrorism, radicalism, armed rebellion, hijacking, and other non-traditional threats. Dealing with these circumstances, ASEAN member states tighten its capacity by enhancing regional cooperation and strategic information exchange among ASEAN member states so-called ASEAN Our Eyes. This initiative adopted for the sake of forestalling any possible threat posed by violent extremism, radicalization, and terrorism through timely strategic information exchange among ASEAN member states. By using qualitative method, this paper will utilize regional security complex and international cooperation theories in analyzing the process to examine ASEAN Our Eyes based on its terms of reference. As a result, it portrays that ASEAN Our Eyes is able to undermine the gaps in the realm of strategic information exchange in monitoring the movement of violent extremism, radicalism, foreign terrorist fighters, and crime-terror nexus. However, it remains premature as a strategic measure to encounter those threats in the years to come.Keywords: regional cooperation, counter-terrorism, ASEAN our eyes, strategic information exchange
Procedia PDF Downloads 2223993 Applied Linguistics: Language, Corpora, and Technology
Authors: M. Imran
Abstract:
This research explores the intersections of applied linguistics, corpus linguistics, translation, and technology, aiming to present innovative cross-disciplinary tools and frameworks. It highlights significant contributions to language, corpora, and technology within applied linguistics, which deepen our understanding of these domains and provide practical resources for scholars, educators, and translators. By showcasing these advancements, the study seeks to enhance collaboration and application in language-related fields. The significance of applied linguistics is emphasized by some of the research that has been emphasized, which presents pedagogical perspectives that could enhance instruction and the learning results of student’s at all academic levels as well as translation trainees. Researchers provided useful data from language studies with classroom applications from an instructional standpoint.Keywords: linguistics, language, corpora, technology
Procedia PDF Downloads 233992 Student Absenteeism as a Challenge for Inclusion: A Comparative Study of Primary Schools in an Urban City in India
Authors: Deepa Idnani
Abstract:
Attendance is an important factor in school success among children. Studies show that better attendance is related to higher academic achievement for students of all backgrounds, but particularly for children with lower socio-economic status. Beginning from the early years, students who attend school regularly score higher on tests than their peers who are frequently absent. The present study in different types of School In Delhi tries to highlight the impact of student absenteeism and the challenges it poses for the students. The study relies on Lewin ‘Model of Exclusion’ and tries to focus on the analysis of children with special needs and the inclusion and exclusion of students in the school.Keywords: student absenteeism, pedagogy, learning, right to education act, exclusion
Procedia PDF Downloads 3033991 A Study on the Annual Doses Received by the Workers of Some Medical Practices
Authors: Eltayeb Hamad Elneel Yousif
Abstract:
This paper describes occupational radiation doses of workers in non-destructive testing (NDT) and some medical practices during the year 2007. The annual doses received by the workers of a public hospital are presented in this report. The Department is facilitated with HARSHAW Reader model 6600 and assigned the rule of personal monitoring to contribute in controlling and reducing the doses received by radiation workers. TLD cards with two TLD chips type LiF: Mg, Ti (TLD-100) were calibrated to measure the personal dose equivalent Hp(10). Around 150 medical radiation workers were monitored throughout the year. Each worker received a single TLD card worn on the chest above lead apron and returned for laboratory reading every two months. The average annual doses received by the workers of radiotherapy, nuclear medicine and diagnostic radiology were evaluated. The annual doses for individual radiation workers ranged between 0.55-4.42 mSv, 0.48-1.86 mSv, and 0.48-0.91 mSv for the workers of radiotherapy, nuclear medicine and diagnostic radiology, respectively. The mean dose per worker was 1.29±1, 1.03±0.4, and 0.69±0.2 mSv, respectively. The results showed compliance with international dose limits. Our results reconfirm the importance of personal dosimetry service in assuring the radiation protection of medical staff in developing countries.Keywords: radiation medicine, non-destructive testing, TLD, public hospital
Procedia PDF Downloads 3843990 Teaching for Gender and Sexual Diversity in South African Primary Schools
Authors: Shakila Singh, Devanya Reddy, Navisha Sewnath
Abstract:
Children spend a substantial time at school, and their awareness and construction of sexual identities are significantly impacted by their teachers. South African primary schools locate sex and sexuality education in the Life Orientation (LO), leaving all engagement with issues of identity and diversity in the domain of LO teachers. This paper examines the views and experiences of selected teachers regarding their engagement with sexual diversity in a primary school in South Africa. This is a small-scale qualitative study. The sample comprised twelve teachers (including non-LO teachers), and the main research method was a semi-structured interview. The findings show that the teachers have limited understanding of sexual diversity. They mostly hold heteronormative and moralistic views, negate children's sexuality, and they are awkward about acknowledging and discussing diverse sexualities. We argue that teachers need to reflect on their own conservative socialisation and moral judgements, address their discomfort concerning addressing issues of sex and sexual diversity with children, and create an environment for children to construct their sexualities within a supportive context. Teacher Education must, therefore, prepare teachers in a manner that recognises the complex ways gender and sexuality infuse all aspects of learners' lives and prepare all teachers for a non-judgmental approach to sexual inclusion that challenges heteronormativity in primary school.Keywords: primary school, sexuality education, sexual diversity, teachers
Procedia PDF Downloads 673989 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management
Authors: Ezgi Şendil
Abstract:
Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.Keywords: disaster, NLP, postdisaster management, sentiment analysis
Procedia PDF Downloads 783988 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 873987 The Influence of Advertising in the Respect of the Right to Adequate Food: Some Notes regarding the Portuguese Legal Framework
Authors: Susana Almeida
Abstract:
The right to adequate food is a human right protected under several international human rights treaties of universal or regional application. In addition, this social right is – as we intend to demonstrate – guaranteed under the Portuguese Constitution. Therefore, in order to assure the protection of this right, the Portuguese State must not only abstain from interfering with this human right (negative obligation) but also take action to secure the human right to adequate food (positive obligation). In this context, the Portuguese State has developed several governmental policies, such as taxing sugary drinks, setting the maximum amount of salt in the bread or creating the National Program for the Promotion of Healthy Food. Nevertheless, we intend to demonstrate that special attention should be given to advertising, as advertisements have an extreme influence on the consumers' decisions and hence on the food decisions. In this paper, besides explaining the cross construction of the human right to adequate food, we aim to examine the Advertising Portuguese Code and to study the several provisions that could be held by the Portuguese consumer to challenge some advertisements due to the violation of the right to health and the right to adequate food. Moreover, having in mind the influence of advertising on the food decisions and the serious problems that unhealthy food may bring (e.g., child obesity), one should ask if this legal framework should not be reviewed in order to lay out some restrictions on advertising, namely setting advices like in alcohol advertisements.Keywords: advertising code, consumer law, right to adequate food, social human right
Procedia PDF Downloads 1743986 Effects of Evening vs. Morning Training on Motor Skill Consolidation in Morning-Oriented Elderly
Authors: Maria Korman, Carmit Gal, Ella Gabitov, Avi Karni
Abstract:
The main question addressed in this study was whether the time-of-day wherein training is afforded is a significant factor for motor skill ('how-to', procedural knowledge) acquisition and consolidation into long term memory in the healthy elderly population. Twenty-nine older adults (60-75 years) practiced an explicitly instructed 5-element key-press sequence by repeatedly generating the sequence ‘as fast and accurately as possible’. Contribution of three parameters to acquisition, 24h post-training consolidation, and 1-week retention gains in motor sequence speed was assessed: (a) time of training (morning vs. evening group) (b) sleep quality (actigraphy) and (c) chronotype. All study participants were moderately morning type, according to the Morningness-Eveningness Questionnaire score. All participants had sleep patterns typical of age, with average sleep efficiency of ~ 82%, and approximately 6 hours of sleep. Speed of motor sequence performance in both groups improved to a similar extent during training session. Nevertheless, evening group expressed small but significant overnight consolidation phase gains, while morning group showed only maintenance of performance level attained at the end of training. By 1-week retention test, both groups showed similar performance levels with no significant gains or losses with respect to 24h test. Changes in the tapping patterns at 24h and 1-week post-training were assessed based on normalized Pearson correlation coefficients using the Fisher’s z-transformation in reference to the tapping pattern attained at the end of the training. Significant differences between the groups were found: the evening group showed larger changes in tapping patterns across the consolidation and retention windows. Our results show that morning-oriented older adults effectively acquired, consolidated, and maintained a new sequence of finger movements, following both morning and evening practice sessions. However, time-of-training affected the time-course of skill evolution in terms of performance speed, as well as the re-organization of tapping patterns during the consolidation period. These results are in line with the notion that motor training preceding a sleep interval may be beneficial for the long-term memory in the elderly. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype.Keywords: time-of-day, elderly, motor learning, memory consolidation, chronotype
Procedia PDF Downloads 1413985 Improving Low English Oral Skills of 5 Second-Year English Major Students at Debark University
Authors: Belyihun Muchie
Abstract:
This study investigates the low English oral communication skills of 5 second-year English major students at Debark University. It aims to identify the key factors contributing to their weaknesses and propose effective interventions to improve their spoken English proficiency. Mixed-methods research will be employed, utilizing observations, questionnaires, and semi-structured interviews to gather data from the participants. To clearly identify these factors, structured and informal observations will be employed; the former will be used to identify their fluency, pronunciation, vocabulary use, and grammar accuracy, and the later will be suited to observe the natural interactions and communication patterns of learners in the classroom setting. The questionnaires will assess their self-perceptions of their skills, perceived barriers to fluency, and preferred learning styles. Interviews will also delve deeper into their experiences and explore specific obstacles faced in oral communication. Data analysis will involve both quantitative and qualitative responses. The structured observation and questionnaire will be analyzed quantitatively, whereas the informal observation and interview transcripts will be analyzed thematically. Findings will be used to identify the major causes of low oral communication skills, such as limited vocabulary, grammatical errors, pronunciation difficulties, or lack of confidence. They are also helpful to develop targeted solutions addressing these causes, such as intensive pronunciation practice, conversation simulations, personalized feedback, or anxiety-reduction techniques. Finally, the findings will guide designing an intervention plan for implementation during the action research phase. The study's outcomes are expected to provide valuable insights into the challenges faced by English major students in developing oral communication skills, contribute to the development of evidence-based interventions for improving spoken English proficiency in similar contexts, and offer practical recommendations for English language instructors and curriculum developers to enhance student learning outcomes. By addressing the specific needs of these students and implementing tailored interventions, this research aims to bridge the gap between theoretical knowledge and practical speaking ability, equipping them with the confidence and skills to flourish in English communication settings.Keywords: oral communication skills, mixed-methods, evidence-based interventions, spoken English proficiency
Procedia PDF Downloads 553984 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 1903983 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 3303982 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 253981 Leveraging Play to Foster Healthy Social-emotional Development in Young Children in Poverty
Authors: Smita Mathur
Abstract:
Play is an innate, player-centric, joyful, fundamental activity of early childhood development that significantly contributes to social, emotional, and academic learning. Leveraging the power of play can enhance these domains by creating engaging, interactive, and developmentally appropriate learning experiences for young children. This research aimed to systematically examine young children’s play behaviors with a focus on four primary objectives: (1) the frequency and duration of on-task behaviors, (2) social interactions and emotional expressions during play, (3) the correlation between academic skills and play, and (4) identifying best practices for integrating play-based curricula. To achieve these objectives, a mixed-method study was conducted among young preschool-aged children in low socio-economic populations in the United States. The children were identified using purposive sampling. The children were observed during structured play in classrooms and unstructured play during outdoor playtime and in their home environments. The study sampled 97 preschool-aged children. A total of 3970 minutes of observations were coded to address the research questions. Thirty-seven percent of children lived in linguistically isolated families, and 76% lived in basic budget poverty. Children lived in overcrowded housing situations (67%), and most families had mixed citizenship status (66%). The observational study was conducted using the observation protocol during the Oxford Study Project. On-task behaviors were measured by tracking the frequency and duration of activities where children maintained focus and engagement. In examining social interactions and emotional expressions, the study recorded social interactions, emotional responses, and teacher involvement during play. The study aimed to identify best practices for integrating play-based curricula into early childhood education. By analyzing the effectiveness of different play-based strategies and their impact on on-task behaviors, social-emotional development, and academic skills, the research sought to provide actionable recommendations for educators and caregivers. The findings from study 1. Highlight play behaviors that increase on-task behaviors and academic, & social skills in young children. 2. Offers insights into teacher preparation and designing play-based curriculum 3. Research critiques observation as a data collection technique.Keywords: play, early childhood education, social-emotional development, academic development
Procedia PDF Downloads 383980 Predicting Personality and Psychological Distress Using Natural Language Processing
Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi
Abstract:
Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality
Procedia PDF Downloads 823979 The Effective of Training Program Using Neuro- Linguistic Programming (NLP) to Reduce the Test Anxiety through the Use of Biological Feedback
Authors: Mohammed Fakehy, Mohammed Haggag
Abstract:
The problem of test anxiety considered as one of the most important and most complex psychological problems faced by students of King Saud University, where university students in a need to bring their reassurance and psychological comfort, relieves feeling pain and difficulties of the study. Recently, there are programs and science that help human to change, including the science Linguistic Programming this neural science stems from not just the tips of the need to make the effort or continue to work, but provides the keys in which one can be controlled in the internal environment. Even human potential energy is extracted seeking to achieve success and happiness and excellence. Through the work of the researchers as members of the teaching staff at King Saud University and specialists in the field of psychology noticed the suffering of some students of King Saud University, test anxiety. In an attempt by the researchers to mitigate as much as possible of the unity of this concern, students will have a training program in Neuro Linguistic Programming. The main Question of this study is What is the effectiveness of the impact of a training program using NLP to reduce test anxiety by using a biological feedback. Therefore, the results of this study might serve as a good announcement about the usefulness of NLP programs which influence future research to significant effect of NLP on test anxiety.Keywords: neuro linguistic programming, test anxiety, biological feedback, king saud
Procedia PDF Downloads 530