Search results for: radioactive waste management
10909 New Evaluation Methodology for Solidification Product Durability Assessment
Authors: Bozena Dohnalkova, Jakub Hodul, Rostislav Drochytka, Jana Kosikova
Abstract:
This paper deals with a proposal of a new methodology for durability assessment of solidification product for its safe further use. The new methodology is based on a review of the current state of assessment of treated waste in Czech Republic and abroad. The aim of the paper is to propose an optimal evaluation methodology for verifying properties of solidification product to ensure its safe further use in building industry.Keywords: solidification, stabilization, durability, waste
Procedia PDF Downloads 42910908 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas
Authors: Vijayakumar Kunche
Abstract:
Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery
Procedia PDF Downloads 23610907 Study of Environmental Impact
Authors: Houmame Benbouali
Abstract:
The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).Keywords: treatment plant, waste water, waste water treatment, environmental impact
Procedia PDF Downloads 51010906 Simulation Model for Optimizing Energy in Supply Chain Management
Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari
Abstract:
In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.Keywords: supply chain management, green supply chain management, system dynamics, energy consumption
Procedia PDF Downloads 13810905 The Utilization of Tea Residues for Activated Carbon Preparation
Authors: Jiazhen Zhou, Youcai Zhao
Abstract:
Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea
Procedia PDF Downloads 32810904 Production of Bricks Using Mill Waste and Tyre Crumbs at a Low Temperature by Alkali-Activation
Authors: Zipeng Zhang, Yat C. Wong, Arul Arulrajah
Abstract:
Since automobiles became widely popular around the early 20th century, end-of-life tyres have been one of the major types of waste humans encounter. Every minute, there are considerable quantities of tyres being disposed of around the world. Most end-of-life tyres are simply landfilled or simply stockpiled, other than recycling. To address the potential issues caused by tyre waste, incorporating it into construction materials can be a possibility. This research investigated the viability of manufacturing bricks using mill waste and tyre crumb by alkali-activation at a relatively low temperature. The mill waste was extracted from a brick factory located in Melbourne, Australia, and the tyre crumbs were supplied by a local recycling company. As the main precursor, the mill waste was activated by the alkaline solution, which was comprised of sodium hydroxide (8m) and sodium silicate (liquid). The introduction ratio of alkaline solution (relative to the solid weight) and the weight ratio between sodium hydroxide and sodium silicate was fixed at 20 wt.% and 1:1, respectively. The tyre crumb was introduced to substitute part of the mill waste at four ratios by weight, namely 0, 5, 10 and 15%. The mixture of mill waste and tyre crumbs were firstly dry-mixed for 2 min to ensure the homogeneity, followed by a 2.5-min wet mixing after adding the solution. The ready mixture subsequently was press-moulded into blocks with the size of 109 mm in length, 112.5 mm in width and 76 mm in height. The blocks were cured at 50°C with 95% relative humidity for 2 days, followed by a 110°C oven-curing for 1 day. All the samples were then placed under the ambient environment until the age of 7 and 28 days for testing. A series of tests were conducted to evaluate the linear shrinkage, compressive strength and water absorption of the samples. In addition, the microstructure of the samples was examined via the scanning electron microscope (SEM) test. The results showed the highest compressive strength was 17.6 MPa, found in the 28-day-old group using 5 wt.% tyre crumbs. Such strength has been able to satisfy the requirement of ASTM C67. However, the increasing addition of tyre crumb weakened the compressive strength of samples. Apart from the strength, the linear shrinkage and water absorption of all the groups can meet the requirements of the standard. It is worth noting that the use of tyre crumbs tended to decrease the shrinkage and even caused expansion when the tyre content was over 15 wt.%. The research also found that there was a significant reduction in compressive strength for the samples after water absorption tests. In conclusion, the tyre crumbs have the potential to be used as a filler material in brick manufacturing, but more research needs to be done to tackle the durability problem in the future.Keywords: bricks, mill waste, tyre crumbs, waste recycling
Procedia PDF Downloads 12210903 Agro-Industrial Waste as a Source of Catalyst Production
Authors: Brenda Cecilia Ledesma, Andrea Beltramone
Abstract:
This work deals with the bio-waste valorization approach for catalyst development, the use of products derived from biomass as raw material and the obtaining of biofuels. In this research, activated carbons were synthesized from the orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, PtIr bimetallic catalysts were prepared. Carbon activation was carried out through a chemical process with phosphoric acid as an activating agent, varying the acid concentration, the ratio substrate/activating agent and time of contact between them. The best support was obtained using a carbonization time of 1 h, the temperature of carbonization of 470oC, the phosphoric acid concentration of 50 wt.% and a BET area of 1429 m2/g. Subsequently, the metallic nanoparticles were deposited in the activated carbon to use the solid as a catalytic material for the hydrogenation of HMF to 2,5-DMF. The catalyst presented an excellent performance for biofuels generation.Keywords: orange peel, bio-waste valorization, platinum, iridium, 5-hydroxymethylfurfural
Procedia PDF Downloads 19510902 Use of End-Of-Life Footwear Polymer EVA (Ethylene Vinyl Acetate) and PU (Polyurethane) for Bitumen Modification
Authors: Lucas Nascimento, Ana Rita, Margarida Soares, André Ribeiro, Zlatina Genisheva, Hugo Silva, Joana Carvalho
Abstract:
The footwear industry is an essential fashion industry, focusing on producing various types of footwear, such as shoes, boots, sandals, sneakers, and slippers. Global footwear consumption has doubled every 20 years since the 1950s. It is estimated that in 1950, each person consumed one new pair of shoes yearly; by 2005, over 20 billion pairs of shoes were consumed. To meet global footwear demand, production reached $24.2 billion, equivalent to about $74 per person in the United States. This means three new pairs of shoes per person worldwide. The issue of footwear waste is related to the fact that shoe production can generate a large amount of waste, much of which is difficult to recycle or reuse. This waste includes scraps of leather, fabric, rubber, plastics, toxic chemicals, and other materials. The search for alternative solutions for waste treatment and valorization is increasingly relevant in the current context, mainly when focused on utilizing waste as a source of substitute materials. From the perspective of the new circular economy paradigm, this approach is of utmost importance as it aims to preserve natural resources and minimize the environmental impact associated with sending waste to landfills. In this sense, the incorporation of waste into industrial sectors that allow for the recovery of large volumes, such as road construction, becomes an urgent and necessary solution from an environmental standpoint. This study explores the use of plastic waste from the footwear industry as a substitute for virgin polymers in bitumen modification, a solution that presents a more sustainable future. Replacing conventional polymers with plastic waste in asphalt composition reduces the amount of waste sent to landfills and offers an opportunity to extend the lifespan of road infrastructures. By incorporating waste into construction materials, reducing the consumption of natural resources and the emission of pollutants is possible, promoting a more circular and efficient economy. In the initial phase of this study, waste materials from end-of-life footwear were selected, and plastic waste with the highest potential for application was separated. Based on a literature review, EVA (ethylene vinyl acetate) and PU (polyurethane) were identified as the polymers suitable for modifying 50/70 classification bitumen. Each polymer was analysed at concentrations of 3% and 5%. The production process involved the polymer's fragmentation to a size of 4 millimetres after heating the materials to 180 ºC and mixing for 10 minutes at low speed. After was mixed for 30 minutes in a high-speed mixer. The tests included penetration, softening point, viscosity, and rheological assessments. With the results obtained from the tests, the mixtures with EVA demonstrated better results than those with PU, as EVA had more resistance to temperature, a better viscosity curve and a greater elastic recovery in rheology.Keywords: footwear waste, hot asphalt pavement, modified bitumen, polymers
Procedia PDF Downloads 1510901 Comparative Analysis of Various Waste Oils for Biodiesel Production
Authors: Olusegun Ayodeji Olagunju, Christine Tyreesa Pillay
Abstract:
Biodiesel from waste sources is regarded as an economical and most viable fuel alternative to depleting fossil fuels. In this work, biodiesel was produced from three different sources of waste cooking oil; from cafeterias, which is vegetable-based using the transesterification method. The free fatty acids (% FFA) of the feedstocks were conducted successfully through the titration method. The results for sources 1, 2, and 3 were 0.86 %, 0.54 % and 0.20 %, respectively. The three variables considered in this process were temperature, reaction time, and catalyst concentration within the following range: 50 oC – 70 oC, 30 min – 90 min, and 0.5 % – 1.5 % catalyst. Produced biodiesel was characterized using ASTM standard methods for biodiesel property testing to determine the fuel properties, including kinematic viscosity, specific gravity, flash point, pour point, cloud point, and acid number. The results obtained indicate that the biodiesel yield from source 3 was greater than the other sources. All produced biodiesel fuel properties are within the standard biodiesel fuel specifications ASTM D6751. The optimum yield of biodiesel was obtained at 98.76%, 96.4%, and 94.53% from source 3, source 2, and source 1, respectively at optimum operating variables of 65 oC temperature, 90 minutes reaction time, and 0.5 wt% potassium hydroxide.Keywords: waste cooking oil, biodiesel, free fatty acid content, potassium hydroxide catalyst, optimization analysis
Procedia PDF Downloads 7710900 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 11910899 Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction
Authors: Dibya Jivan Pati, Kazuhisa Iki, Riken Homma
Abstract:
Unlike other metro cities of India, Bhubaneswar–the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it’s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it’s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs.Keywords: construction, dwelling unit, plastic bottle, solid waste generation, groups
Procedia PDF Downloads 47510898 Predicting Long-Term Performance of Concrete under Sulfate Attack
Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki
Abstract:
Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC
Procedia PDF Downloads 16310897 Preparation and Characterization of Bioplastic from Sorghum Husks
Authors: Hannatu Abubakar Sani, Abubakar Umar Birnin Yauri, Aliyu Muhammad, Mujahid Salau, Aminu Musa, Hadiza Adamu Kwazo
Abstract:
The increase in the global population and advances in technology have made plastic materials to have wide applications in every aspect of life. However, the non-biodegradability of these petrochemical-based materials and their increasing accumulation in the environment has been a threat to the planet and has been a source of environmental concerns and hence, the driving force in the search for ‘green’ alternatives for which agricultural waste remains the front liner. Sorghum husk, an agricultural waste with potentials as a raw material in the production of bioplastic, was used in this research to prepare bioplastic using sulphuric acid-catalyzed acetylation process. The prepared bioplastic was characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FTIR), and the structure of the prepared bioplastic was confirmed. The Fourier transform infrared spectroscopy (FTIR) spectra of the product displayed the presence of OH, C-H, C=O, and C-O absorption peaks. The bioplastic obtained is biodegradable and is affected by acid, salt, and alkali to a lesser extent. Other tests like solubility and swelling studies were carried out to ensure the commercial properties of these bioplastic materials. Therefore, this revealed that new bioplastics with better environmental and sustainable properties could be produced from agricultural waste, which may have applications in many industries.Keywords: agricultural waste, bioplastic, characterization, Sorghum Husk
Procedia PDF Downloads 15710896 Separate Collection System of Recyclables and Biowaste Treatment and Utilization in Metropolitan Area Finland
Authors: Petri Kouvo, Aino Kainulainen, Kimmo Koivunen
Abstract:
Separate collection system for recyclable wastes in the Helsinki region was ranked second best of European capitals. The collection system includes paper, cardboard, glass, metals and biowaste. Residual waste is collected and used in energy production. The collection system excluding paper is managed by the Helsinki Region Environmental Services HSY, a public organization owned by four municipalities (Helsinki, Espoo, Kauniainen and Vantaa). Paper collection is handled by the producer responsibility scheme. The efficiency of the collection system in the Helsinki region relies on a good coverage of door-to-door-collection. All properties with 10 or more dwelling units are required to source separate biowaste and cardboard. This covers about 75% of the population of the area. The obligation is extended to glass and metal in properties with 20 or more dwelling units. Other success factors include public awareness campaigns and a fee system that encourages recycling. As a result of waste management regulations for source separation of recyclables and biowaste, nearly 50 percent of recycling rate of household waste has been reached. For households and small and medium size enterprises, there is a sorting station fleet of five stations available. More than 50 percent of wastes received at sorting stations is utilized as material. The separate collection of plastic packaging in Finland will begin in 2016 within the producer responsibility scheme. HSY started supplementing the national bring point system with door-to-door-collection and pilot operations will begin in spring 2016. The result of plastic packages pilot project has been encouraging. Until the end of 2016, over 3500 apartment buildings have been joined the piloting, and more than 1800 tons of plastic packages have been collected separately. In the summer 2015 a novel partial flow digestion process combining digestion and tunnel composting was adopted for source separated household and commercial biowaste management. The product gas form digestion process is converted in to heat and electricity in piston engine and organic Rankine cycle process with very high overall efficiency. This paper describes the efficient collection system and discusses key success factors as well as main obstacles and lessons learned as well as the partial flow process for biowaste management.Keywords: biowaste, HSY, MSW, plastic packages, recycling, separate collection
Procedia PDF Downloads 21710895 Quality Management and Service Organization
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
In recent times, there has been a notable shift in the application of Total Quality Management (TQM) from manufacturing to service organizations, prompting numerous studies on the subject. TQM has firmly established itself across various sectors, emerging as an approach to process improvement, waste reduction, business optimization, and quality performance. Many researchers and academics have recognized the relevance of TQM for sustainable competitive advantage, particularly in service organizations. In light of this, the purpose of this research study is to explore the applicability of TQM within the service framework. The study delves into existing literature on TQM in service organizations and examines the reasons for its occasional shortcomings. Ultimately, the paper provides systematic guidelines for the effective implementation of TQM in service organizations. The findings of this study offer a much-improved understanding of TQM and its practices, shedding light on the evolution of service organizations. Additionally, the study highlights key insights from recent research on TQM in service organizations and proposes a ten-step approach for the successful implementation of TQM in the service sector. This framework aims to provide service managers and professionals with a comprehensive understanding of TQM fundamentals and encourages a deeper exploration of TQM theory.Keywords: quality, control, service, management, teamwork
Procedia PDF Downloads 5410894 Characterization of Copper Slag and Jarofix Waste Materials for Road Construction
Authors: V. K. Arora, V. G. Havanagi, A. K. Sinha
Abstract:
Copper slag and Jarofix are waste materials, generated during the manufacture of copper and zinc respectively, which have potential for utility in embankment and road construction. Accordingly, a research project was carried out to study the characteristics of copper slag and Jarofix to utilize in the construction of road. In this study, copper slag and Jarofix were collected from Tuticorin, State of Tamil Nadu and Hindustan Zinc Ltd., Chittorgarh, Rajasthan state, India respectively. These materials were investigated for their physical, chemical, and geotechnical characteristics. The materials were collected from the disposal area and laboratory investigations were carried out to study its feasibility for use in the construction of embankment and sub grade layers of road pavement. This paper presents the results of physical, chemical and geotechnical characteristics of copper slag and Jarofix. It was concluded that copper slag and Jarofix may be utilized in the construction of road.Keywords: copper slag, Jarofix waste, material, road construction
Procedia PDF Downloads 44610893 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA
Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen
Abstract:
To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis
Procedia PDF Downloads 14810892 Smart Speed Bump
Authors: Mohammad Rahmani Rezaiyeh, Mojtaba Rahmani Rezaiyeh, Mehrdad Rahmani Rezaiyeh
Abstract:
Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records.Keywords: invention, smart, robotic system, speed bump, traffic, management
Procedia PDF Downloads 41710891 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming
Authors: David Muyise
Abstract:
Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing
Procedia PDF Downloads 12910890 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants
Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver
Abstract:
This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants
Procedia PDF Downloads 35210889 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China
Abstract:
The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete
Procedia PDF Downloads 18110888 Waste Management Option for Bioplastics Alongside Conventional Plastics
Authors: Dan Akesson, Gauthaman Kuzhanthaivelu, Martin Bohlen, Sunil K. Ramamoorthy
Abstract:
Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in the UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. Impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester, and it is, by its very nature, more sensitive to degradation than PE and PP. PET also has a much higher melting point than PE and PP, and as a consequence, the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. The thermal properties show the change in the crystallinity. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. The study shows that PE is relatively robust against contamination, while polypropylene (PP) is sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.Keywords: bioplastics, contamination, recycling, waste management
Procedia PDF Downloads 22510887 Methane Production from Biomedical Waste (Blood)
Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan
Abstract:
This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal
Procedia PDF Downloads 30110886 Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement
Authors: Abdul Rahman Mohd. Sam, Olukotun Nathaniel, Dunu Williams
Abstract:
Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete.Keywords: concrete, rice husk ash, wood waste ash, ordinary Portland cement, compressive strength, tensile strength
Procedia PDF Downloads 25910885 Phytoremediation of Cr from Tannery Effluent by Vetiver Grass
Authors: Mingizem Gashaw Seid
Abstract:
Phytoremediation of chromium metal by vetiver grass was investigated in hydroponic system. The removal efficiency for organic load, nutrient and chromium were evaluated as a function of concentration of waste effluent (40 and 50% dilution with distilled water). Under this conditions 64.49-94.06 % of chromium was removed. This shows vetiver grass has potential for accumulation of chromium metal from tannery waste water stream.Keywords: chromium, phytoremediation, tannery effluent, vetiver grass
Procedia PDF Downloads 41610884 Industrial Wastewater Treatment Improvements Using Activated Carbon
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.Keywords: adsorption, COD removal, filtration, TDS removal
Procedia PDF Downloads 49710883 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment
Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Srinivasa Reddy Mallampati, Byeong-Kyu Lee
Abstract:
This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle
Procedia PDF Downloads 35910882 Treatment of Grey Water from Different Restaurants in FUTA Using Fungi
Authors: F. A. Ogundolie, F. Okogue, D. V. Adegunloye
Abstract:
Greywater samples were obtained from three restaurants in the Federal University of Technology; Akure coded SSR, MGR and GGR. Fungi isolates obtained include Rhizopus stolonifer, Aspergillus niger, Mucor mucedo, Aspergillus flavus, Saccharomyces cerevisiae. Of these fungi isolates obtained, R. stolonifer, A. niger and A. flavus showed significant degradation ability on grey water and was used for this research. A simple bioreactor was constructed using biodegradation process in purification of waste water samples. Waste water undergoes primary treatment; secondary treatment involves the introduction of the isolated organisms into the waste water sample and the tertiary treatment which involved the use of filter candle and the sand bed filtration process to achieve the end product without the use of chemicals. A. niger brought about significant reduction in both the bacterial load and the fungi load of the greywater samples of the three respective restaurants with a reduction of (1.29 × 108 to 1.57 × 102 cfu/ml; 1.04 × 108 to 1.12 × 102 cfu/ml and 1.72 × 108 to 1.60 × 102 cfu/ml) for bacterial load in SSR, MGR and GGR respectively. Reduction of 2.01 × 104 to 1.2 × 101; 1.72 × 104 to 1.1 × 101, and 2.50 × 104 to 1.5 × 101 in fungi load from SSR, MGR and GGR respectively. Result of degradation of these selected waste water by the fungi showed that A. niger was probably more potent in the degradation of organic matter and hence, A. niger could be used in the treatment of wastewater.Keywords: Aspergillus niger, greywater, bacterial, fungi, microbial load, bioreactor, biodegradation, purification, organic matter and filtration
Procedia PDF Downloads 31210881 Development of Scenarios for Sustainable Next Generation Nuclear System
Authors: Muhammad Minhaj Khan, Jaemin Lee, Suhong Lee, Jinyoung Chung, Johoo Whang
Abstract:
The Republic of Korea has been facing strong storage crisis from nuclear waste generation as At Reactor (AR) temporary storage sites are about to reach saturation. Since the country is densely populated with a rate of 491.78 persons per square kilometer, Construction of High-level waste repository will not be a feasible option. In order to tackle the storage waste generation problem which is increasing at a rate of 350 tHM/Yr. and 380 tHM/Yr. in case of 20 PWRs and 4 PHWRs respectively, the study strongly focuses on the advancement of current nuclear power plants to GEN-IV sustainable and ecological nuclear systems by burning TRUs (Pu, MAs). First, Calculations has made to estimate the generation of SNF including Pu and MA from PWR and PHWR NPPS by using the IAEA code Nuclear Fuel Cycle Simulation System (NFCSS) for the period of 2016, 2030 (including the saturation period of each site from 2024~2028), 2089 and 2109 as the number of NPPS will increase due to high import cost of non-nuclear energy sources. 2ndly, in order to produce environmentally sustainable nuclear energy systems, 4 scenarios to burnout the Plutonium and MAs are analyzed with the concentration on burning of MA only, MA and Pu together by utilizing SFR, LFR and KALIMER-600 burner reactor after recycling the spent oxide fuel from PWR through pyro processing technology developed by Korea Atomic Energy Research Institute (KAERI) which shows promising and sustainable future benefits by minimizing the HLW generation with regard to waste amount, decay heat, and activity. Finally, With the concentration on front and back end fuel cycles for open and closed fuel cycles of PWR and Pyro-SFR respectively, an overall assessment has been made which evaluates the quantitative as well as economical combativeness of SFR metallic fuel against PWR once through nuclear fuel cycle.Keywords: GEN IV nuclear fuel cycle, nuclear waste, waste sustainability, transmutation
Procedia PDF Downloads 35210880 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction
Procedia PDF Downloads 298