Search results for: platform dynamics
4116 Experimental, Computational Fluid Dynamics and Theoretical Study of Cyclone Performance Based on Inlet Velocity and Particle Loading Rate
Authors: Sakura Ganegama Bogodage, Andrew Yee Tat Leung
Abstract:
This paper describes experimental, Computational Fluid Dynamics (CFD) and theoretical analysis of a cyclone performance, operated 1.0 g/m3 solid loading rate, at two different inlet velocities (5 m/s and 10 m/s). Comparing experimental results with theoretical and CFD simulation results, it is pronounced that the influence of solid in processing flow is significant than expected. Experimental studies based on gas- solid flows of cyclone separators are complicated as they required advanced sensitive measuring techniques, especially flow characteristics. Thus, CFD modelling and theoretical analysis are economical in analyzing cyclone separator performance but detailed clarifications of the application of these in cyclone separator performance evaluation is not yet discussed. The present study shows the limitations of influencing parameters of CFD and theoretical considerations, comparing experimental results and flow characteristics from CFD modelling.Keywords: cyclone performance, inlet velocity, pressure drop, solid loading rate
Procedia PDF Downloads 2404115 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty
Authors: Tomas Menard
Abstract:
The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.Keywords: dynamical system, control law design, sampled output, observer design
Procedia PDF Downloads 1884114 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform
Authors: K. Chethana, A. S. Guru Prasad, H. N. Vikranth, H. Varun, S. N. Omkar, S. Asokan
Abstract:
This paper describes a novel application of Fiber Braggs Grating (FBG) sensors on an unstable platform to assess human postural stability and balance. The FBG sensor based Stability Analyzing Device (FBGSAD) developed demonstrates the applicability of FBG sensors in the measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. Comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer along with FBGSAD validates the study. The results obtained depict qualitative similarities between the data recorded by both FBGSAD and accelerometer, illustrating the reliability and consistency of FBG sensors in biomechanical applications for both young and geriatric population. The developed FBGSAD simultaneously measures plantar strain distribution and postural stability and can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.Keywords: biomechanics, fiber bragg gratings, plantar strain measurement, postural stability analysis
Procedia PDF Downloads 5754113 Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction
Authors: Malik I. Al-Amayreh, Mohammad I. Kilani, Ahmed S. Al-Salaymeh
Abstract:
This works presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting. The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the velocity distributions, streamlines and path lines. Frequency spectrum of the pressure pulsations downstream the valves, and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance. These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe. CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.Keywords: butterfly valve vibration analysis, computational fluid dynamics, fluid flow circuit design, fluctuation
Procedia PDF Downloads 4384112 Unraveling Conflict Dynamics in Sudan: A Comprehensive Analysis of Three Decades for Sustainable Development and Peacebuilding
Authors: Safa Suliman
Abstract:
This quantitative research explores three decades of conflict data in Sudan, leveraging datasets from Armed Conflict Location & Event Data (ACLED) and Office for the Coordination of Humanitarian Affairs (OCHA). The comprehensive analysis encompasses 12,145 rows and 9 columns, revealing insights into event types, fatalities, and their geographic distribution across 27 states. Descriptive statistics, temporal trends, and spatial analyses contribute to a nuanced understanding of Sudan's socio-political landscape. The findings highlight nine distinct event types with varying fatality counts, emphasizing the diversity in the severity of incidents. Geographic distribution reveals differing degrees of conflict impact across states, with North Darfur emerging as a focal point of significant conflict. Temporal trends uncover critical periods marked by severe disorders, emphasizing the complex and multifaceted nature of conflicts. Text processing and sentiment analysis provide additional layers of insight, detecting prevalent themes such as fatalities, Darfur's regional focus, and the involvement of government forces. These textual findings align with quantitative results, reinforcing the understanding of conflict dynamics. The study concludes with a call for targeted, context-specific interventions to address the unique challenges faced by different regions. The insights generated contribute to evidence-based decision-making for sustainable urban and rural development, health enhancement, and poverty eradication in Sudan.Keywords: conflict dynamics, sustainable development, peacebuilding, Sudan conflicts, event analysis
Procedia PDF Downloads 84111 Kinematics and Dynamics Analysis of Crank-Piston System of a High-Power, Nine-Cylinder Aircraft Engine
Authors: Michal Biały, Konrad Pietrykowski, Rafal Sochaczewski
Abstract:
The kinematics and dynamics analysis of crank-piston system of aircraft engine. The object of the study was the high power aircraft engine ASz 62-IR. This engine is produced by a Polish company WSK "PZL-KALISZ" S.A.". All analyzes were performed numerically using CAD and CAE environment. Three-dimensional model of the crank-piston system was developed based on real engine located in the Laboratory of Centre of Innovation and Advanced Technologies of Lublin University of Technology. During the development of the model, the technique of reverse engineering - 3D scanning was used. ASz 62-IR engine is characterized by a radial type of crank-piston system. In this system the cylinders are arranged radially around the circle. This crank-piston system consists of a main connecting rod and eight additional connecting rods. In addition, three-dimensional model consists of a piston pins, pistons and piston rings. As a result of the specific engine design, characteristics of the piston individual movement are slightly different from each other. But the model assumes that they are the same during the analysis. Three-dimensional model of the engine was implemented into the MSC Adams software. The environment of MSC Adams allows for multibody simulation of the dynamic phenomena. This determines the state parameters of the moving elements, among which the load or force distribution on each kinematic node can be distinguished. Materials and characteristic materials parameters were adopted on the basis of commonly used materials for engine parts. The mass values of individual elements were adopted on the basis of real engine parts. The piston gas forces were replaced by calculation of pressure variations recorded during engine tests on the engine test bench. The research the changes of forces acting in the individual kinematic pairs of crank-piston system. The model allows to determine the load on the crankshaft main bearings. This gives the possibility for the main supports forces analysis The model allows for testing and simulation of kinematics and dynamics of a radial aircraft engine. This is the first stage of the work, which aims to numerical simulation of vibration of multi-cylinder aircraft engine. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: aircraft engine, CAD, CAE, dynamics, kinematics, MSC Adams, numerical simulation
Procedia PDF Downloads 3974110 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation
Authors: Fathi Soliman
Abstract:
With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction
Procedia PDF Downloads 1994109 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets
Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu
Abstract:
Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.Keywords: GEO SAR, radar, simulation, ship
Procedia PDF Downloads 1814108 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide
Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov
Abstract:
The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant
Procedia PDF Downloads 2654107 Compliance to Compassion: How COVID-19 Changed the Way Educators Used Social Media to Collaborate with Families
Authors: Eloise Thomson
Abstract:
The COVID-19 global pandemic challenged our normative conceptualization of teaching across all age levels, requiring the transition to remote instruction, in some instances, literally overnight. Included in the rapidly changing education environment was the delivery of early childhood education. In Victoria, Australia, the capital city, Melbourne, became known as the most locked down city in the world. This presentation examines the ways educators used social media to collaborate with families before the COVID-19 pandemic and during the lockdown phase through the use of a Third Space conceptual framework and case study methodology. As a first step, the paper examines how social media may offer new opportunities for collaborative practice between educators and families. Second, the data is outlined and discussed with respect to collaborative practice and quality. Finally, a postscript then allows for insight into how educators’ practice of using social media to collaborate with families has been impacted by the COVID-19 global pandemic. Finally, the implications of the ways in which educators are using social media to collaborate with families are discussed. The use of social media in early-childhood education has the potential to provide a valuable platform for educators to connect with families and students. However, the use of social media by educators uncovered a dialogue of ‘quality’ and appeared to be dominated by evidence around compliance and attaining quality in a very specific, and perhaps narrow, way. The findings suggest a culture of compliance that is dominated by outcomes, standards and assessments and that this has changed the dynamics by which educators engage with families. Furthermore, findings highlighted the disparity between educators' and families' understanding of the intent of the collaborations themselves. This research was significant as it exposed the ways in which educators are engaging with social media, resulting in a discussion on the intent of collaborations, the questioning of imposed quality, and the notion that quality is measurable and exists in only one form.Keywords: collaboration, compliance, early childhood, third space, pedagogy of caring, social media
Procedia PDF Downloads 704106 The Risk and Prevention of Peer-To-Peer Network Lending in China
Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang
Abstract:
How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision
Procedia PDF Downloads 1704105 Mechanistic Modelling to De-risk Process Scale-up
Authors: Edwin Cartledge, Jack Clark, Mazaher Molaei-Chalchooghi
Abstract:
The mixing in the crystallization step of active pharmaceutical ingredient manufacturers was studied via advanced modeling tools to enable a successful scale-up. A virtual representation of the vessel was created, and computational fluid dynamics were used to simulate multiphase flow and, thus, the mixing environment within this vessel. The study identified a significant dead zone in the vessel underneath the impeller and found that increasing the impeller speed and power did not improve the mixing. A series of sensitivity analyses found that to improve mixing, the vessel had to be redesigned, and found that optimal mixing could be obtained by adding two extra cylindrical baffles. The same two baffles from the simulated environment were then constructed and added to the process vessel. By identifying these potential issues before starting the manufacture and modifying the vessel to ensure good mixing, this study mitigated a failed crystallization and potential batch disposal, which could have resulted in a significant loss of high-value material.Keywords: active pharmaceutical ingredient, baffles, computational fluid dynamics, mixing, modelling
Procedia PDF Downloads 1024104 Surface Flattening Assisted with 3D Mannequin Based on Minimum Energy
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.Keywords: surface flattening, strain energy, minimum energy, approximate implicit method, fashion design
Procedia PDF Downloads 3434103 Business Feasibility of Online Marketing of Food and Beverages Products in India
Authors: Dimpy Shah
Abstract:
The global economy has substantially changed in last three decades. Now almost all markets are transparent and visible for global customers. The corporates are now no more reliant on local markets for trade. The information technology revolution has changed business dynamics and marketing practices of corporate. The markets are divided into two different formats: traditional and virtual. In very short span of time, many e-commerce portals have captured global market. This strategy is well supported by global delivery system of multinational logistic companies. Now the markets are dealing with global supply chain networks, which are more demand driven and customer oriented. The corporate have realized importance of supply chain integration and marketing in this competitive environment. The Indian markets are also significantly affected with all these changes. In terms of population, India is in second place after China. In terms of demography, almost half of the population is of youth. It has been observed that the Indian youth are more inclined towards e-commerce and prefer to buy goods from web portal. Initially, this trend was observed in Indian service sector, textile and electronic goods and now further extended in other product categories. The FMCG companies have also recognized this change and started integration of their supply chain with e-commerce platform. This paper attempts to understand contemporary marketing practices of corporate in e-commerce business in Indian food and beverages segment and also tries to identify innovative marketing practices for proper execution of their strategies. The findings are mainly focused on supply chain re-integration and brand building strategies with proper utilization of social media.Keywords: FMCG (Fast Moving Consumer Goods), ISCM (Integrated supply chain management), RFID (Radio Frequency Identification), traditional and virtual formats
Procedia PDF Downloads 2774102 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.Keywords: nanosecond, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 854101 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 4164100 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)
Authors: Ahmed E. Hodaib, Mohamed A. Hashem
Abstract:
In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization
Procedia PDF Downloads 2634099 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies
Authors: Getachew Tilahun, Oluwole Makinde, David Malonza
Abstract:
We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation
Procedia PDF Downloads 3334098 Modelling the Dynamics and Optimal Control Strategies of Terrorism within the Southern Borno State Nigeria
Authors: Lubem Matthew Kwaghkor
Abstract:
Terrorism, which remains one of the largest threats faced by various nations and communities around the world, including Nigeria, is the calculated use of violence to create a general climate of fear in a population to attain particular goals that might be political, religious, or economical. Several terrorist groups are currently active in Nigeria, leading to attacks on both civil and military targets. Among these groups, Boko Haram is the deadliest terrorist group operating majorly in Borno State. The southern part of Borno State in North-Eastern Nigeria has been plagued by terrorism, insurgency, and conflict for several years. Understanding the dynamics of terrorism is crucial for developing effective strategies to mitigate its impact on communities and to facilitate peace-building efforts. This research aims to develop a mathematical model that captures the dynamics of terrorism within the southern part of Borno State, Nigeria, capturing both government and local community intervention strategies as control measures in combating terrorism. A compartmental model of five nonlinear differential equations is formulated. The model analyses show that a feasible solution set of the model exists and is bounded. Stability analyses show that both the terrorism free equilibrium and the terrorism endermic equilibrium are asymptotically stable, making the model to have biological meaning. Optimal control theory will be employed to identify the most effective strategy to prevent or minimize acts of terrorism. The research outcomes are expected to contribute towards enhancing security and stability in Southern Borno State while providing valuable insights for policymakers, security agencies, and researchers. This is an ongoing research.Keywords: modelling, terrorism, optimal control, susceptible, non-susceptible, community intervention
Procedia PDF Downloads 294097 Numerical Investigation on the Interior Wind Noise of a Passenger Car
Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian
Abstract:
With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.Keywords: wind noise, computational fluid dynamics, finite element method, passenger car
Procedia PDF Downloads 1764096 Experimental Validation of Computational Fluid Dynamics Used for Pharyngeal Flow Patterns during Obstructive Sleep Apnea
Authors: Pragathi Gurumurthy, Christina Hagen, Patricia Ulloa, Martin A. Koch, Thorsten M. Buzug
Abstract:
Obstructive sleep apnea (OSA) is a sleep disorder where the patient suffers a disturbed airflow during sleep due to partial or complete occlusion of the pharyngeal airway. Recently, numerical simulations have been used to better understand the mechanism of pharyngeal collapse. However, to gain confidence in the solutions so obtained, an experimental validation is required. Therefore, in this study an experimental validation of computational fluid dynamics (CFD) used for the study of human pharyngeal flow patterns during OSA is performed. A stationary incompressible Navier-Stokes equation solved using the finite element method was used to numerically study the flow patterns in a computed tomography-based human pharynx model. The inlet flow rate was set to 250 ml/s and such that a flat profile was maintained at the inlet. The outlet pressure was set to 0 Pa. The experimental technique used for the validation of CFD of fluid flow patterns is phase contrast-MRI (PC-MRI). Using the same computed tomography data of the human pharynx as in the simulations, a phantom for the experiment was 3 D printed. Glycerol (55.27% weight) in water was used as a test fluid at 25°C. Inflow conditions similar to the CFD study were simulated using an MRI compatible flow pump (CardioFlow-5000MR, Shelley Medical Imaging Technologies). The entire experiment was done on a 3 T MR system (Ingenia, Philips) with 108 channel body coil using an RF-spoiled, gradient echo sequence. A comparison of the axial velocity obtained in the pharynx from the numerical simulations and PC-MRI shows good agreement. The region of jet impingement and recirculation also coincide, therefore validating the numerical simulations. Hence, the experimental validation proves the reliability and correctness of the numerical simulations.Keywords: computational fluid dynamics, experimental validation, phase contrast-MRI, obstructive sleep apnea
Procedia PDF Downloads 3154095 Computational Fluid Dynamics Model of Various Types of Rocket Engine Nozzles
Authors: Konrad Pietrykowski, Michal Bialy, Pawel Karpinski, Radoslaw Maczka
Abstract:
The nozzle is an element of the rocket engine in which the conversion of the potential energy of gases generated during combustion into the kinetic energy of the gas stream takes place. The design parameters of the nozzle have a decisive influence on the ballistic characteristics of the engine. Designing a nozzle assembly is, therefore, one of the most responsible stages in developing a rocket engine design. The paper presents the results of the simulation of three types of rocket propulsion nozzles. Calculations were made using CFD (Computational Fluid Dynamics) in ANSYS Fluent software. The next types of nozzles differ in shape. The analysis was made of a conical nozzle, a bell type nozzle with a conical supersonic part and a bell type nozzle. Calculation results are presented in the form of pressure, velocity and kinetic energy distributions of turbulence in the longitudinal section. The courses of these values along the nozzles are also presented. The results show that the cone nozzle generates strong turbulence in the critical section. Which negatively affect the flow of the working medium. In the case of a bell nozzle, the transformation of the wall caused the elimination of flow disturbances in the critical section. This reduces the probability of waves forming before or after the trailing edge. The most sophisticated construction is the bell type nozzle. It allows you to maximize performance without adding extra weight. The bell type nozzle can be used as a starter and auxiliary engine nozzle due to its advantages. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: computational fluid dynamics, nozzle, rocket engine, supersonic flow
Procedia PDF Downloads 1624094 Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model
Authors: Justin Zhengjie Tan, Yang Zhao
Abstract:
Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening.Keywords: quantum electrodynamics, adiabatic rapid passage, Landau-Zener transitions, dissipative environment
Procedia PDF Downloads 894093 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry
Authors: S. Fröhlich, M. Herold, M. Allmer
Abstract:
Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition
Procedia PDF Downloads 2564092 Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves
Authors: Seul-Ki Park, Jong-Chun Park, Gyu-Mok Jeon, Dae-Kyung Ock, Seung-Gyu Jeong
Abstract:
Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed.Keywords: multidirectional waves, focused waves, rogue waves, wave-structure interaction, numerical wave tank, computational fluid dynamics
Procedia PDF Downloads 2554091 Development of a Research Platform to Revitalize People-Forest Relationship Through a Cycle of Architectural Embodiments
Authors: Hande Ünlü, Yu Morishita
Abstract:
The total area of forest land in Japan accounts for 67% of the national land; however, despite this wealth and hundred years history of silviculture, today Japanese forestry faces socio-economic stagnation in forestry. While the growing gap in the people-forest relationship causes the depopulation of many forest villages, this paper introduces a methodology aiming to develop a place-specific approach in revitalizing this relationship. The paper focuses on a case study from Taiki town in the Hokkaido region to analyze the place's specific socio-economic requirements through interviews and workshops with the local experts, researchers, and stakeholders. Based on the analyzed facts, a master outline of design requirements is developed to produce locally sourced architectural embodiments that aim to act as a unifying element between the forests and the people of Taiki town. In parallel, the proposed methodology aims to generate a cycle of research feed and a researcher retreat, a definition given by Memu Earth Lab to the researchers' stay at Memu in Taiki town for a defined period to analyze local resources, for the continuous improvement of the introduced methodology to revitalize the interaction between people and forest through architecture.Keywords: architecture, Japanese forestry, local timber, people-forest relationship, research platform
Procedia PDF Downloads 1824090 Studying Frame-Resistant Steel Structures under Near Field Ground Motion
Authors: S. A. Hashemi, A. Khoshraftar
Abstract:
This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component
Procedia PDF Downloads 3194089 Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank
Authors: Thiyam Tamphasana Devi, Bimlesh Kumar
Abstract:
A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature.Keywords: Eulerian-Eulerian, gas-hold up, gas-liquid phase, local mass transfer rate, local specific area, Rushton Impeller
Procedia PDF Downloads 2374088 Effect of Land Use on Soil Organic Carbon Stock and Aggregate Dynamics of Degraded Ultisol in Nsukka, Southeastern Nigeria
Authors: Chukwuebuka Vincent Azuka, Chidimma Peace Odoh
Abstract:
Changes in agricultural practices and land use influence the storage and release of soil organic carbon and soil structural dynamics. To investigate this in Nsukka, southeastern Nigeria, soil samples were collected at 0-10 cm, 10-20 cm and 20-30 cm from three locations; Ovoko (OV), Obukpa (OB) and University of Nigeria, Nsukka (UNN) and three land use types; cultivated land (CL), forest land (FL) and grassland (GL)). Data were subjected to analysis of variance (ANOVA) using SPSS. Also, correlations between organic carbon stock, structural stability indices and other soil properties were established. The result showed that Ksat was significantly (p < 0.05) influenced by location with mean values of 68 cmhr⁻¹,121.63 cmhr⁻¹, 8.42 cmhr⁻¹ in OV, OB and UNN respectively. The MWD and aggregate stability (AS) were significantly (p < 0.05) influenced by land use and depth. The mean values of MWD are 0.85 (CL), 1.35 (FL) and 1.45 (GL), and 1.66 at 0-10 cm, 1.08 at 10-20 cm and 0.88 mm at 20-30 cm. The mean values of AS are; 27.66% (CL), 46.39% (FL) and 49.81% (GL), and 53.96% at 0-10cm, 40.22% at 10-20cm and 29.57% at 20-30cm. Clay flocculation (CFI) and dispersion indices (CDI) differed significantly (p < 0.05) among the land use. Soil pH differed significantly (p < 0.05) across the land use and locations with mean values ranging from 3.90-6.14. Soil organic carbon (SOC) significantly (p < 0.05) differed across locations and depths. SOC decreases as depth increases depth with mean values of 15.6 gkg⁻¹, 10.1 gkg⁻¹, and 8.6 gkg⁻¹ at 0-10 cm, 10-20 cm, and 20-30 cm respectively. SOC in the three land use was 8.8 g kg-1, 15.2 gkg⁻¹ and 10.4 gkg⁻¹ at CL, FL, and GL respectively. The highest aggregate-associated carbon was recorded in 0.5 mm across the land use and depth except in cultivated land and at 20-30 cm which recorded their highest SOC at 1mm. SOC stock, total nitrogen (TN) and CEC were significantly (p < 0.05) different across the locations with highest values of 23.43 t/ha, 0.07g/kg and 14.27 Cmol/kg respectively recorded in UNN. SOC stock was significantly (p < 0.05) influenced by depth as follows; 0-10>10-20>20-30 cm. TN was low with mean values ranging from 0.03-0.07 across the locations, land use and depths. The mean values of CEC ranged from 9.96-14.27 Cmol kg⁻¹ across the locations and land use. SOC stock showed correlation with silt, coarse sand, N and CEC (r = 0.40*, -0.39*, -0.65** and 0.64** respectively. AS showed correlation with BD, Ksat, pH in water and KCl, and SOC (r = -0.42*, 0.54**, -0.44*, -0.45* and 0.49** respectively. Thus, land use and location play a significant role in sustainable management of soil resources.Keywords: agricultural practices, structural dynamics, sequestration, soil resources, management
Procedia PDF Downloads 1494087 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 82