Search results for: moderator variables
3516 The Potential Impacts of Climate Change on Air Quality in the Upper Northern Thailand
Authors: Chakrit Chotamonsak
Abstract:
In this study, the Weather Research and Forecasting (WRF) model was used as regional climate model to dynamically downscale the ECHAM5 Global Climate Model projection for the regional climate change impact on air quality–related meteorological conditions in the upper northern Thailand. The analyses were focused on meteorological variables that potentially impact on the regional air quality such as sea level pressure, planetary boundary layer height (PBLH), surface temperature, wind speed and ventilation. Comparisons were made between the present (1990–2009) and future (2045–2064) climate downscaling results during majority air pollution season (dry season, January-April). Analyses showed that the sea level pressure will be stronger in the future, suggesting more stable atmosphere. Increases in temperature were obvious observed throughout the region. Decreases in surface wind and PBLH were predicted during air pollution season, indicating weaker ventilation rate in this region. Consequently, air quality-related meteorological variables were predicted to change in almost part of the upper northern Thailand, yielding a favorable meteorological condition for pollutant accumulation in the future.Keywords: climate change, climate impact, air quality, air pollution, Thailand
Procedia PDF Downloads 3553515 Evaluation of Public Library Adult Programs: Use of Servqual and Nippa Assessment Standards
Authors: Anna Ching-Yu Wong
Abstract:
This study aims to identify the quality and effectiveness of the adult programs provided by the public library using the ServQUAL Method and the National Library Public Programs Assessment guidelines (NIPPA, June 2019). ServQUAl covers several variables, namely: tangible, reliability, responsiveness, assurance, and empathy. NIPPA guidelines focus on program characteristics, particularly on the outcomes – the level of satisfaction from program participants. The reached populations were adults who participated in library adult programs at a small-town public library in Kansas. This study was designed as quantitative evaluative research which analyzed the quality and effectiveness of the library adult programs by analyzing the role of each factor based on ServQUAL and the NIPPA's library program assessment guidelines. Data were collected from November 2019 to January 2020 using a questionnaire with a Likert Scale. The data obtained were analyzed in a descriptive quantitative manner. The impact of this research can provide information about the quality and effectiveness of existing programs and can be used as input to develop strategies for developing future adult programs. Overall the result of ServQUAL measurement is in very good quality, but still, areas need improvement and emphasis in each variable: Tangible Variables still need improvement in indicators of the temperature and space of the meeting room. Reliability Variable still needs improvement in the timely delivery of the programs. Responsiveness Variable still needs improvement in terms of the ability of the presenters to convey trust and confidence from participants. Assurance Variables still need improvement in the indicator of knowledge and skills of program presenters. Empathy Variable still needs improvement in terms of the presenters' willingness to provide extra assistance. The result of program outcomes measurement based on NIPPA guidelines is very positive. Over 96% of participants indicated that the programs were informative and fun. They learned new knowledge and new skills and would recommend the programs to their friends and families. They believed that together, the library and participants build stronger and healthier communities.Keywords: ServQual model, ServQual in public libraries, library program assessment, NIPPA library programs assessment
Procedia PDF Downloads 953514 Predictors of Rumination and Co-Rumination: The Role of Attachment Dimensions, Self-Compassion and Self-Esteem
Authors: Asli Bugay Sökmez, Elif Manuoglu, Muhammet Coskun, Nebi̇ Sümer
Abstract:
Decades of research have searched out the relationships between self-esteem, self-compassion, attachment, and rumination. Yet, unique mediated and moderated predictor power of these correlates of rumination has not been discovered yet. Moreover, no study examined whether these critical correlates of rumination specifically predict sub-dimensions of rumination that are reflection and brooding. Despite the broad range of study regarding predictors of rumination, a huge gap exists for the possible predictors of co-rumination. To address these issues, the present study mainly investigates the predictor roles of self-esteem, self-compassion, and attachment on dimensions of rumination (brooding and reflection) and co-rumination, especially the mediating and moderating roles of these predictor variables. 510 undergraduate and graduate students from different departments of a major state university in Turkey participated in the current study. The mean age of the participants was 21.8 (SD = 2.29) and 57.3% of them were female. Overall analyses revealed that self-compassion and attachment anxiety was negatively correlated with both co-rumination and brooding. Surprisingly, while attachment anxiety significantly and positively predicted reflection, attachment avoidance predicted reflection negatively. Moreover, anxiety, avoidance and self-compassion all were found to be significant predictor variables of co-rumination. Finally, as expected, a moderating effect of self-compassion revealed in predicting reflection and showed as a mediator in predicting brooding and co-rumination. All findings were discussed in light of the related literature.Keywords: rumination, co-rumination, attachment, self-compassion, self-esteem
Procedia PDF Downloads 1493513 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns
Authors: Wajdi Mohamed Ratemi
Abstract:
The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.Keywords: pascal’s triangle, generalized pascal’s triangle, polynomial expansion, sierpinski’s triangle, combinatorics, probabilities
Procedia PDF Downloads 3673512 Rule-Based Mamdani Type Fuzzy Modeling of Performances of Anode Side of Proton Exchange Membrane Fuel Cell Spin-Coated with Yttria-Stabilized Zirconia
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input parameters voltage density (V/cm2), and current density (A/cm2), temperature (°C), time (s); output parameter power density (W/cm2) were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance of PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based Mamdani-type fuzzy (RMBTF) modeling, yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 3623511 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1053510 Comparative Analysis of Various Waste Oils for Biodiesel Production
Authors: Olusegun Ayodeji Olagunju, Christine Tyreesa Pillay
Abstract:
Biodiesel from waste sources is regarded as an economical and most viable fuel alternative to depleting fossil fuels. In this work, biodiesel was produced from three different sources of waste cooking oil; from cafeterias, which is vegetable-based using the transesterification method. The free fatty acids (% FFA) of the feedstocks were conducted successfully through the titration method. The results for sources 1, 2, and 3 were 0.86 %, 0.54 % and 0.20 %, respectively. The three variables considered in this process were temperature, reaction time, and catalyst concentration within the following range: 50 oC – 70 oC, 30 min – 90 min, and 0.5 % – 1.5 % catalyst. Produced biodiesel was characterized using ASTM standard methods for biodiesel property testing to determine the fuel properties, including kinematic viscosity, specific gravity, flash point, pour point, cloud point, and acid number. The results obtained indicate that the biodiesel yield from source 3 was greater than the other sources. All produced biodiesel fuel properties are within the standard biodiesel fuel specifications ASTM D6751. The optimum yield of biodiesel was obtained at 98.76%, 96.4%, and 94.53% from source 3, source 2, and source 1, respectively at optimum operating variables of 65 oC temperature, 90 minutes reaction time, and 0.5 wt% potassium hydroxide.Keywords: waste cooking oil, biodiesel, free fatty acid content, potassium hydroxide catalyst, optimization analysis
Procedia PDF Downloads 773509 Institutional and Economic Determinants of Foreign Direct Investment: Comparative Analysis of Three Clusters of Countries
Authors: Ismatilla Mardanov
Abstract:
There are three types of countries, the first of which is willing to attract foreign direct investment (FDI) in enormous amounts and do whatever it takes to make this happen. Therefore, FDI pours into such countries. In the second cluster of countries, even if the country is suffering tremendously from the shortage of investments, the governments are hesitant to attract investments because they are at the hands of local oligarchs/cartels. Therefore, FDI inflows are moderate to low in such countries. The third type is countries whose companies prefer investing in the most efficient locations globally and are hesitant to invest in the homeland. Sorting countries into such clusters, the present study examines the essential institutions and economic factors that make these countries different. Past literature has discussed various determinants of FDI in all kinds of countries. However, it did not classify countries based on government motivation, institutional setup, and economic factors. A specific approach to each target country is vital for corporate foreign direct investment risk analysis and decisions. The research questions are 1. What specific institutional and economic factors paint the pictures of the three clusters; 2. What specific institutional and economic factors are determinants of FDI; 3. Which of the determinants are endogenous and exogenous variables? 4. How can institutions and economic and political variables impact corporate investment decisions Hypothesis 1: In the first type, country institutions and economic factors will be favorable for FDI. Hypothesis 2: In the second type, even if country economic factors favor FDI, institutions will not. Hypothesis 3: In the third type, even if country institutions favorFDI, economic factors will not favor domestic investments. Therefore, FDI outflows occur in large amounts. Methods: Data come from open sources of the World Bank, the Fraser Institute, the Heritage Foundation, and other reliable sources. The dependent variable is FDI inflows. The independent variables are institutions (economic and political freedom indices) and economic factors (natural, material, and labor resources, government consumption, infrastructure, minimum wage, education, unemployment, tax rates, consumer price index, inflation, and others), the endogeneity or exogeneity of which are tested in the instrumental variable estimation. Political rights and civil liberties are used as instrumental variables. Results indicate that in the first type, both country institutions and economic factors, specifically labor and logistics/infrastructure/energy intensity, are favorable for potential investors. In the second category of countries, the risk of loss of assets is very high due to governmentshijacked by local oligarchs/cartels/special interest groups. In the third category of countries, the local economic factors are unfavorable for domestic investment even if the institutions are well acceptable. Cluster analysis and instrumental variable estimation were used to reveal cause-effect patterns in each of the clusters.Keywords: foreign direct investment, economy, institutions, instrumental variable estimation
Procedia PDF Downloads 1593508 Design of Tube Expanders with Groove Shapes to Reduce Deformation of Tube Inner Grooves in Copper Tube Expansion
Authors: I. Sin, H. Kim, S. Park
Abstract:
Fin-tube heat exchangers have grooves inside tubes to improve heat exchange performance. However, during the tube expansion process, heat exchange efficiency is decreased due to large deformation of tube inner grooves. Therefore, the objective of this study is to design a tube expander with groove shapes on its outer surface to minimize deformation of the inner grooves in copper tube expansion for fin-tube heat exchangers. In order to achieve this goal, first, we have tried to calculate tube inner groove deformation by the currently used tube expander without groove shapes on its surface. The tube inner groove deformation was acquired by elastoplastic finite element analysis from the boundary conditions with one tube end fixed and friction between the tube and tube expander (friction coefficient: 0.15). The tube expansion process was simulated by inserting the tube expander into the tube with a speed of 90 mm/s. The analysis results showed that tube inner groove heights were decreased by approximately 8 % from 0.15 mm to 0.138 mm with stress concentrations observed at the groove end, consistent with experimental results. Based on the current results, we are trying to design a novel shape of the tube expander with grooves to further reduce deformation tube inner grooves in copper tube expansion. For this, we will select major design variables of tube expander groove shapes by conducting sensitivity analysis and then optimize the design variables using the Taguchi method.Keywords: tube expansion, tube expander, heat exchanger, finite element
Procedia PDF Downloads 3283507 Variable Selection in a Data Envelopment Analysis Model by Multiple Proportions Comparison
Authors: Jirawan Jitthavech, Vichit Lorchirachoonkul
Abstract:
A statistical procedure using multiple comparisons test for proportions is proposed for variable selection in a data envelopment analysis (DEA) model. The test statistic in the multiple comparisons is the proportion of efficient decision making units (DMUs) in a DEA model. Three methods of multiple comparisons test for proportions: multiple Z tests with Bonferroni correction, multiple tests in 2Xc crosstabulation and the Marascuilo procedure, are used in the proposed statistical procedure of iteratively eliminating the variables in a backward manner. Two simulation populations of moderately and lowly correlated variables are used to compare the results of the statistical procedure using three methods of multiple comparisons test for proportions with the hypothesis testing of the efficiency contribution measure. From the simulation results, it can be concluded that the proposed statistical procedure using multiple Z tests for proportions with Bonferroni correction clearly outperforms the proposed statistical procedure using the remaining two methods of multiple comparisons and the hypothesis testing of the efficiency contribution measure.Keywords: Bonferroni correction, efficient DMUs, Marascuilo procedure, Pastor et al. method, 2xc crosstabulation
Procedia PDF Downloads 3103506 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome
Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler
Abstract:
Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model
Procedia PDF Downloads 1533505 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)
Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg
Abstract:
One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.Keywords: arsenic, fluoride, groundwater contamination, logistic regression
Procedia PDF Downloads 3483504 Energy Consumption and Economic Growth: Testimony of Selected Sub-Saharan Africa Countries
Authors: Alfred Quarcoo
Abstract:
The main purpose of this paper is to examine the causal relationship between energy consumption and economic growth in Sub-Saharan Africa using panel data techniques. An annual data on energy consumption and Economic Growth (proxied by real gross domestic product per capita) spanning from 1990 to 2016 from the World bank index database was used. The results of the Augmented Dickey–Fuller unit root test shows that the series for all countries are not stationary at levels. However, the log of economic growth in Benin and Congo become stationary after taking the differences of the data, and log of energy consumption become stationary for all countries and Log of economic growth in Kenya and Zimbabwe were found to be stationary after taking the second differences of the panel series. The findings of the Johansen cointegration test demonstrate that the variables Log of Energy Consumption and Log of economic growth are not co-integrated for the cases of Kenya and Zimbabwe, so no long-run relationship between the variables were established in any country. The Granger causality test indicates that there is a unidirectional causality running from energy use to economic growth in Kenya and no causal linkage between Energy consumption and economic growth in Benin, Congo and Zimbabwe.Keywords: Cointegration, Granger Causality, Sub-Sahara Africa, World Bank Development Indicators
Procedia PDF Downloads 523503 Climate Change Winners and Losers: Contrasting Responses of Two Aphaniops Species in Oman
Authors: Aziza S. Al Adhoobi, Amna Al Ruheili, Saud M. Al Jufaili
Abstract:
This study investigates the potential effects of climate change on the habitat suitability of two Aphaniops species (Teleostei: Aphaniidae) found in the Oman Mountains and the Southwestern Arabian Coast. Aphaniops kruppi, an endemic species, is found in various water bodies such as wadis, springs, aflaj, spring-fed streams, and some coastal backwaters. Aphaniops stoliczkanus, on the other hand, inhabits brackish and freshwater habitats, particularly in the lower parts of wadies and aflaj, and exhibits euryhaline characteristics. Using Maximum Entropy Modeling (MaxEnt) in conjunction with ArcGIS (10.8.2) and CHELSA bioclimatic variables, topographic indices, and other pertinent environmental factors, the study modeled the potential impacts of climate change based on three Representative Concentration Pathways (RCPs 2.6, 7.0, 8.5) for the periods 2011-2040, 2041-2070, and 2071-2100. The model demonstrated exceptional predictive accuracy, achieving AUC values of 0.992 for A. kruppi and 0.983 for A. stoliczkanus. For A. kruppi, the most influential variables were the mean monthly climate moisture index (Cmi_m), the mean diurnal range (Bio2), and the sediment transport index (STI), accounting for 39.9%, 18.3%, and 8.4%, respectively. As for A. stoliczkanus, the key variables were the sediment transport index (STI), stream power index (SPI), and precipitation of the coldest quarter (Bio19), contributing 31%, 20.2%, and 13.3%, respectively. A. kruppi showed an increase in habitat suitability, especially in low and medium suitability areas. By 2071-2100, high suitability areas increased slightly by 0.05% under RCP 2.6, but declined by -0.02% and -0.04% under RCP 7.0 and 8.5, respectively. A. stoliczkanus exhibited a broader range of responses. Under RCP 2.6, all suitability categories increased by 2071-2100, with high suitability areas increasing by 0.01%. However, low and medium suitability areas showed mixed trends under RCP 7.0 and 8.5, with declines of -0.17% and -0.16%, respectively. The study highlights that climatic and topographical factors significantly influence the habitat suitability of Aphaniops species in Oman. Therefore, species-specific conservation strategies are crucial to address the impacts of climate change.Keywords: Aphaniops kruppi, Aphaniops stoliczkanus, Climate change, Habitat suitability, MaxEnt
Procedia PDF Downloads 183502 Assessing Measures and Caregiving Experiences of Thai Caregivers of Persons with Dementia
Authors: Piyaorn Wajanatinapart, Diane R. Lauver
Abstract:
The number of persons with dementia (PWD) has increased. Informal caregivers are the major providing care. They can have perceived gains and burdens. Caregivers who reported high in perceived gains may report low in burdens and better health. Gaps of caregiving literature were: no report psychometrics in a few studies and unclear definitions of gains; most studies with no theory-guided and conducting in Western countries; not fully described relationships among caregiving variables: motivations, satisfaction with psychological needs, social support, gains, burdens, and physical and psycho-emotional health. Those gaps were filled by assessing psychometric properties of selected measures, providing clearly definitions of gains, using self-determination theory (SDT) to guide the study, and developing the study in Thailand. The study purposes were to evaluate six measures for internal consistency reliability, content validity, and construct validity. This study also examined relationships of caregiving variables: motivations (controlled and autonomous motivations), satisfaction with psychological needs (autonomy, competency, and relatedness), perceived social support, perceived gains, perceived burdens, and physical and psycho-emotional health. This study was a cross-sectional and correlational descriptive design with two convenience samples. Sample 1 was five Thai experts to assess content validity of measures. Sample 2 was 146 Thai caregivers of PWD to assess construct validity, reliability, and relationships among caregiving variables. Experts rated questionnaires and sent them back via e-mail. Caregivers answered questionnaires at clinics of four Thai hospitals. Data analysis was used descriptive statistics and bivariate and multivariate analyses using the composite indicator structural equation model to control measurement errors. For study results, most caregivers were female (82%), middle age (M =51.1, SD =11.9), and daughters (57%). They provided care for 15 hours/day with 4.6 years. The content validity indices of items and scales were .80 or higher for clarity and relevance. Experts suggested item revisions. Cronbach’s alphas were .63 to .93 of ten subscales of four measures and .26 to .57 of three subscales. The gain scale was acceptable for construct validity. With controlling covariates, controlled motivations, the satisfaction with three subscales of psychological needs, and perceived social support had positive relationships with physical and psycho-emotional health. Both satisfaction with autonomy subscale and perceived social support had negative relationship with perceived burdens. The satisfaction with three subscales of psychological needs had positive relationships among them. Physical and psycho-emotional health subscales had positive relationships with each other. Furthermore, perceived burdens had negative relationships with physical and psycho-emotional health. This study was the first use SDT to describe relationships of caregiving variables in Thailand. Caregivers’ characteristics were consistent with literature. Four measures were valid and reliable except two measures. Breadth knowledge about relationships was provided. Interpretation of study results was cautious because of using same sample to evaluate psychometric properties of measures and relationships of caregiving variables. Researchers could use four measures for further caregiving studies. Using a theory would help describe concepts, propositions, and measures used. Researchers may examine the satisfaction with psychological needs as mediators. Future studies to collect data with caregivers in communities are needed.Keywords: caregivers, caregiving, dementia, measures
Procedia PDF Downloads 3083501 Creating Knowledge Networks: Comparative Analysis of Reference Cases
Authors: Sylvia Villarreal, Edna Bravo
Abstract:
Knowledge management focuses on coordinating technologies, people, processes, and structures to generate a competitive advantage and considering that networks are perceived as mechanisms for knowledge creation and transfer, this research presents the stages and practices related to the creation of knowledge networks. The methodology started with a literature review adapted from the systematic literature review (SLR). The descriptive analysis includes variables such as approach (conceptual or practical), industry, knowledge management processes and mythologies (qualitative or quantitative), etc. The content analysis includes identification of reference cases. These cases were characterized based on variables as scope, creation goal, years, network approach, actors and creation methodology. It was possible to do a comparative analysis to determinate similarities and differences in these cases documented in knowledge network scientific literature. Consequently, it was shown that even the need and impact of knowledge networks in organizations, the initial guidelines for their creation are not documented, so there is not a guide of good practices and lessons learned. The reference cases are from industries as energy, education, creative, automotive and textile. Their common points are the human approach; it is oriented to interactions to facilitate the appropriation of knowledge, explicit and tacit. The stages of every case are analyzed to propose the main successful elements.Keywords: creation, knowledge management, network, stages
Procedia PDF Downloads 3023500 Association between Job Satisfaction, Motivation and Five Factors of Organizational Citizenship Behavior
Authors: Khadija Mushtaq, Muhammad Umar
Abstract:
The research aims to study the association between job satisfaction, motivation and the five factors of organizational citizenship behavior (i.e. Altruism, Conscientiousness, Sportsmanship, Courtesy and Civic virtue) among Public Sector Employees in Pakistan.In this research Structure Equation Modeling with confirmatory factor analysis was used to test the relationship between two independent and five dependent variables. Data was collected through questionnaire survey from 152 Public Servants Working in Gujrat District-Pakistan in different capacities. Stratified Random Sampling Technique was used to conduct this survey. The results of the study indicate that five factors of OCB have positive significant relation with both motivation and job satisfaction except the relationship of Civic Virtue with Motivation.The research findings implicate that factors other than motivation and job satisfaction may also affect OCB. Likewise, all the five factors of OCB may not be present in all populations. Thus, Managers must concentrate on increasing motivation and job satisfaction to increase OCB. Furthermore, the present research gives a direction to future researchers to use more independent variables (e.g. Culture, leadership, workplace environment, various job attitudes, types of motivation, etc.) on different types of populations with larger sample size in order to find the reasons behind insignificant relationship of civic virtue with Motivation in the research in hand and to generalize the tested model.Keywords: five factors of organizational citizenship behavior (OCB), motivation, job satisfaction, public sector employees in Pakistan
Procedia PDF Downloads 3473499 The Investigate Relationship between Moral Hazard and Corporate Governance with Earning Forecast Quality in the Tehran Stock Exchange
Authors: Fatemeh Rouhi, Hadi Nassiri
Abstract:
Earning forecast is a key element in economic decisions but there are some situations, such as conflicts of interest in financial reporting, complexity and lack of direct access to information has led to the phenomenon of information asymmetry among individuals within the organization and external investors and creditors that appear. The adverse selection and moral hazard in the investor's decision and allows direct assessment of the difficulties associated with data by users makes. In this regard, the role of trustees in corporate governance disclosure is crystallized that includes controls and procedures to ensure the lack of movement in the interests of the company's management and move in the direction of maximizing shareholder and company value. Therefore, the earning forecast of companies in the capital market and the need to identify factors influencing this study was an attempt to make relationship between moral hazard and corporate governance with earning forecast quality companies operating in the capital market and its impact on Earnings Forecasts quality by the company to be established. Getting inspiring from the theoretical basis of research, two main hypotheses and sub-hypotheses are presented in this study, which have been examined on the basis of available models, and with the use of Panel-Data method, and at the end, the conclusion has been made at the assurance level of 95% according to the meaningfulness of the model and each independent variable. In examining the models, firstly, Chow Test was used to specify either Panel Data method should be used or Pooled method. Following that Housman Test was applied to make use of Random Effects or Fixed Effects. Findings of the study show because most of the variables are positively associated with moral hazard with earnings forecasts quality, with increasing moral hazard, earning forecast quality companies listed on the Tehran Stock Exchange is increasing. Among the variables related to corporate governance, board independence variables have a significant relationship with earnings forecast accuracy and earnings forecast bias but the relationship between board size and earnings forecast quality is not statistically significant.Keywords: corporate governance, earning forecast quality, moral hazard, financial sciences
Procedia PDF Downloads 3223498 Prevalence and Characteristics of Torus Palatinus among Western Indonesian Population
Authors: Raka Aldy Nugraha, Kiwah Andanni, Aditya Indra Pratama, Aswin Guntara
Abstract:
Background: Torus palatinus is a bony protuberance in the hard palate. Sex and race are considered as influencing factors for the development of torus palatinus. Hence, the objective of this study was to determine the prevalence and characteristics of torus palatinus and its correlation with sex and ethnicity among Western Indonesian Population. Methods: We conducted a descriptive and analytical study employing cross-sectional design in 274 new students of Universitas Indonesia. Data were collected by using consecutive sampling method through questionnaire-filling and direct oral examination. Subject with racial background other than indigenous Indonesian Mongol were excluded from this study. Data were statistically analyzed using chi square test for categorical variables whereas logistic regression model was employed to assess the correlation between variables of interest with prevalence of torus palatinus. Results: Torus palatinus were found in 212 subjects (77.4%), mostly small in size (< 3 mm) and single in number, with percentage of 50.5% and 90.6%, respectively. The prevalence of torus palatinus were significantly higher in women (OR 2.88; 95% CI: 1.53-5.39; p = 0.001), dominated by medium-sized and single tori. There was no significant correlation between ethnicity and the occurrence of torus palatinus among Western Indonesian population. Conclusion: Torus palatinus was prevalent among Western Indonesian population. It showed significant positive correlation with sex, but not with ethnicity.Keywords: characteristic, ethnicity, Indonesia, mongoloid, prevalence, sex, Torus palatinus
Procedia PDF Downloads 2683497 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System
Authors: Ali Ates, Sadık Ata, Kevser Dincer
Abstract:
In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat
Procedia PDF Downloads 3533496 Levels of Family Empowerment and Parenting Skills of Parents with Children with Developmental Disabilities Who Are Users of Early Intervention Services
Authors: S. Bagur, S. Verger, B. Mut
Abstract:
Early childhood intervention (ECI) is understood as the set of interventions aimed at the child population with developmental disorders or disabilities from 0 to 6 years of age, the family, and the environment. Under the principles of family-centred practices, the members of the family nucleus are direct agents of intervention. Thus, the multidisciplinary team of professionals should work to improve family empowerment and the level of parenting skills. The aim of the present study is to analyse descriptively and differentially the level of parenting skills and family empowerment of parents using ECI services during the foster care phase. There were 135 families participating in the study. Three questionnaires were completed. The results show that the employment situation, the age of the child receiving an intervention, and the number of children in the family nucleus or the professional carrying out the intervention are variables that have a differential impact on different items of empowerment and parenting skills. The results are discussed and future lines of research are proposed, with the understanding that the initial analysis of the variables of empowerment and parenting skills may be predictors for the improvement of child development and family well-being. In addition, it is proposed to identify and analyse professional training in order to be able to adapt early care practices without depending on the discipline of the professional of reference.Keywords: developmental disabilities, early childhood intervention, family empowerment, parenting skills
Procedia PDF Downloads 1113495 Comparison of Chest Weight of Pure and Mixed Races Kabood 30-Day Squab
Authors: Sepehr Moradi, Mehdi Asadi Rad
Abstract:
The aim of this study is to evaluate and compare chest weight of pure and mixed races Kabood 30-day Pigeons to investigate about their sex, race, and some auxiliary variables. In this paper, 62 pieces of pigeons as 31 male and female pairs with equal age are studied randomly. A natural incubation was done from each pair. All produced chickens were slaughtered at 30 days age after 12 hours hunger. Then their chests were weighted by a scale with one gram precision. A covariance analysis was used since there were many auxiliary variables and unequal observations. SAS software was used for statistical analysis. Mean weight of chests in pure race (Kabood-Kabood) with 8 records, 123.8±32.3g and mixed races of Kabood-Namebar, Kabood-Parvazy, Kabood-Tizpar, Namebar-Kabood, Tizpar-Kabood, and Parvazi-Kabood with 8, 8, 6, 12, 10, and 10 records were 139.4±23.5, 7/122±23.8, 124.7±30.1, 50.3±29.3, 51.4±26.4, and 137±28.6 gr, respectively. Mean weight of 30-day chests in male and female sex were 87.3±2.5 and 82.7±2.6g, respectively. Difference chest weight of 30-day chests of Kabood-Kabood race with Kabood-Namebar, Kabood-Parvazi, Tizpar-Kabood, Kabood-Tizpar, Namebar-Kabood and Parvazi-Kabood mixed races was not significant. Effect of sex was also significant in 5% level (P<0.05), but mutual effect of sex and race was not significant. Auxiliary variable of father weight was significant in 1% level (p < 0.01), but auxiliary variable of mother weight was not significant. The results showed that most and least weights belonged to Kabood-Namebar and Namebar-Kabood.Keywords: squab, Kabood race, 30-day chest weight, pigeons
Procedia PDF Downloads 1533494 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB
Procedia PDF Downloads 1443493 Relationship Between Insulin Resistance and Some Coagulation and Fibrinolytic Parameters in Subjects With Metabolic Syndrome
Authors: Amany Ragab, Nashwa Khairat Abousamra, Omayma Saleh, Asmaa Higazy
Abstract:
Insulin resistance syndrome has been shown to be associated with many coagulation and fibrinolytic proteins and these associations suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders. This study was conducted to determine the levels of some of the haemostatic parameters in subjects having metabolic syndrome and to correlate these values with the anthropometric and metabolic variables associated with this syndrome. The study included 46 obese non diabetic subjects of whom 28 subjects(group1) fulfilled the ATP III criteria of the metabolic syndrome and 18 subjects (group2) did not have metabolic syndrome as well as 14 lean subjects (group 3) of matched age and sex as a control group. Clinical and laboratory evaluation of the study groups stressed on anthropometric measurements (weight, height, body mass index, waist circumference, and sagittal abdominal diameter), blood pressure, and laboratory measurements of fasting plasma glucose, fasting insulin, serum lipids, tissue plasminogen activator (t-PA), antithrombin III activity (ATIII), protein C and von Willebrand factor (vWf) antigen. There was significant increase in the concentrations of t-PA and vWf antigens in subjects having metabolic syndrome (group 1) in comparison to the other groups while there were non-significant changes in the levels of protein C antigen and AT III activity. Both t-PA and vWf showed significant correlation with HOMA-IR as a measure of insulin sensitivity. The t-PA showed also significant correlation with most of the variables of metabolic syndrome including waist circumference, BMI, systolic blood pressure, fasting plasma glucose, fasting insulin, and HDL cholesterol. On the other hand, vWf showed significant correlations with fasting plasma glucose, fasting insulin and sagital abdominal diameter, with non-significant correlations with the other variables. Haemostatic and fibrinolytic parameters should be included in the features and characterization of the insulin resistance syndrome. t-PA and vWf antigens concentrations were increased in subjects with metabolic syndrome and correlated with the HOMA-IR measure of insulin sensitivity. Taking into consideration that both t-PA and vWf are mainly released from vascular endothelium, these findings could be an indicator of endothelial dysfunction in that group of subjects.Keywords: insulin resistance, obesity, metabolic syndrome, coagulation
Procedia PDF Downloads 1373492 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 1013491 Survey of Methods for Solutions of Spatial Covariance Structures and Their Limitations
Authors: Joseph Thomas Eghwerido, Julian I. Mbegbu
Abstract:
In modelling environment processes, we apply multidisciplinary knowledge to explain, explore and predict the Earth's response to natural human-induced environmental changes. Thus, the analysis of spatial-time ecological and environmental studies, the spatial parameters of interest are always heterogeneous. This often negates the assumption of stationarity. Hence, the dispersion of the transportation of atmospheric pollutants, landscape or topographic effect, weather patterns depends on a good estimate of spatial covariance. The generalized linear mixed model, although linear in the expected value parameters, its likelihood varies nonlinearly as a function of the covariance parameters. As a consequence, computing estimates for a linear mixed model requires the iterative solution of a system of simultaneous nonlinear equations. In other to predict the variables at unsampled locations, we need to know the estimate of the present sampled variables. The geostatistical methods for solving this spatial problem assume covariance stationarity (locally defined covariance) and uniform in space; which is not apparently valid because spatial processes often exhibit nonstationary covariance. Hence, they have globally defined covariance. We shall consider different existing methods of solutions of spatial covariance of a space-time processes at unsampled locations. This stationary covariance changes with locations for multiple time set with some asymptotic properties.Keywords: parametric, nonstationary, Kernel, Kriging
Procedia PDF Downloads 2553490 Socio-Economic Factors Influencing the Use of Coping Strategies among Conflict Actors (Farmers and Herders) in Giron Masa Village, Kebbi State, Nigeria
Authors: S. Umar, B. F. Umar
Abstract:
This study was conducted at Giron Masa village, located 30 km from Yauri town. The study determines the socio-economic factors influencing the use of coping strategies among farmers and herders during post-conflict situation. Simple random sampling was employed to select one hundred respondents (50 farmers and 50 herders) from the study area. Logistic regression analysis (LR) was used to ascertain the socioeconomic variables that influenced the use of the coping strategies. The results of the study shows that age, income, family size and farming experience were individually significant and thus influenced the use of POCS by farmers. Annual income and production system influenced the use of POCS by herders. Age, farm size and farming experience were found to be individually significant in influencing the use of EOCS among farmers. Specifically, years of occupation experience among the herders increased the use of emotion oriented coping strategies among herders. The use of SSCS among farmers was influenced by educational level; farm size and farming experience, while the variables are not collectively significant in influencing the use of SSCS among the herders. The research recommends a need to adopt the strategy of community coping to cope with stress.Keywords: farmers, herders, conflict, coping strategies
Procedia PDF Downloads 3743489 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 963488 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 2023487 Studying the Effects of Economic and Financial Development as Well as Institutional Quality on Environmental Destruction in the Upper-Middle Income Countries
Authors: Morteza Raei Dehaghi, Seyed Mohammad Mirhashemi
Abstract:
The current study explored the effect of economic development, financial development and institutional quality on environmental destruction in upper-middle income countries during the time period of 1999-2011. The dependent variable is logarithm of carbon dioxide emissions that can be considered as an index for destruction or quality of the environment given to its effects on the environment. Financial development and institutional development variables as well as some control variables were considered. In order to study cross-sectional correlation among the countries under study, Pesaran and Friz test was used. Since the results of both tests show cross-sectional correlation in the countries under study, seemingly unrelated regression method was utilized for model estimation. The results disclosed that Kuznets’ environmental curve hypothesis is confirmed in upper-middle income countries and also, financial development and institutional quality have a significant effect on environmental quality. The results of this study can be considered by policy makers in countries with different income groups to have access to a growth accompanied by improved environmental quality.Keywords: economic development, environmental destruction, financial development, institutional development, seemingly unrelated regression
Procedia PDF Downloads 348