Search results for: machine resistance training
8750 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning
Authors: Karthik Mittal
Abstract:
This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA
Procedia PDF Downloads 1458749 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 208748 Percentage Change in the Selected Skinfold Measurements of Male Students of University of Delhi Due to Progressive and Constant Load of Physical Training
Authors: Seema Kaushik
Abstract:
Skinfold measurements provide considerably meaningful and consistent information about subcutaneous fat and its distribution. Physical activities in the form of conditioning and/or training leads to various structural, functional and mechanical changes and numerous training programmes exist for the improvement of physical fitness, however, most of the studies are conducted on foreign soil with foreign population as sample, which may/may not be applicable to the Indian conditions. Moreover, there is not even a single training/ conditioning programme that caters to the need of male students of University of Delhi with regard to various skinfold thickness measurements. Hence, the present study aimed at studying the effect of progressive and constant load training on selected skinfold measurements of male students of University of Delhi in form of percentage change. The sample size for the study was 90 having three groups of male; 30 samples in each group (mean age = 20.04±0.49 years). The variables included triceps, sub-scapular, supra-iliac and calf skinfolds. The experimental design adopted for the study was multi-group repeated measure design. Three different groups were measured four times repeatedly at an interval of 6 weeks, on completion of each of the three meso-cycles. Standard landmarks and protocols were followed to measure the selected variables. Mean, standard deviation and percentage were computed to analyze the data statistically. The study concluded that both the progressive and constant load of physical training bring changes in the skinfold thickness measurements of male students of University of Delhi.Keywords: constant load, progressive load, physical training, skinfold measurements
Procedia PDF Downloads 3218747 Enhancing Human Resource Development in Entrepreneurship: A Catalyst for Economic Growth and Development in Nigeria
Authors: Eli Maikoto Agison
Abstract:
The relevance of enhancing human resource development in entrepreneurship for economic growth and development cannot be overemphasized since no country can grow and developed economically above its citizenry. Africa for example and Nigeria in particular is lagging behind in terms of economic growth and development when compared with other developed countries of the world like China, Japan, Singapore, USA etc. The reason is not farfetched from these developed countries efforts in enhancing human resource development in entrepreneurship education. For Nigeria to attain this height of development, this paper discusses the meaning of human resource development in entrepreneurship as the framework for helping employees develop their personal and organizational skills knowledge and abilities as this includes employee training, career development and performance management to enable an organization achieve a set goal. While entrepreneurship education is seen as an aspect of education that is geared towards self-reliance, some of the challenges faced in the enhancement of human resource development in Nigeria include inadequate training and re-training of instructors of entrepreneurship in higher education. Insufficient funding to higher education were discussed and recommendations to include adequate funding, training and re-training of instructors of higher education be enhanced as some of the ways forward.Keywords: economic development, economic growth, entrepreneurship education, human resource development
Procedia PDF Downloads 2918746 Real-time PCR to Determine Resistance Genes in ESBLEscherichia Coli Strains Stored in the Epidemic Diseases Laboratory of the National Institute of Hygiene (INH)
Authors: A. Qasmaoui, F. Ohmani, Z. Zaine, I. El Akrad, J. Hamamouchi, K. Halout, B. Belkadi, R. Charof
Abstract:
The evolution of antibiotic resistance is a crucial aspect of the problem related to the intensive use of these substances in medicine for humans and animals. The production of ESBL extended spectrum β-lactamase enzymes is the main mechanism of resistance to β-lactam antibiotics in Escherichia coli. The objective of our work is to determine the resistance genes in E. coli strains.ESBL coli stored at the epidemic diseases laboratory of the National Institute of Hygiene. The strains were identified according to the classic bacteriological criteria. An antibiogram was performed on the strains isolated by the Mueller Hinton agar disc diffusion method. The production of ESBL in the strains was detected by the synergy assay technique and confirmed for the presence of the blaCTX-M1, blaCTX-M2, blaTEM, blaSHV, blaOXA-48 genes by gene amplification . Of the 27 observed strains of E.coli, 17 isolated strains present the phenotype of extended-spectrum Beta-lactamase with a percentage of 63%.. All 18 cefotaxime-resistant strains were analyzed for an ESBL phenotype. All strains were positive in the double-disc synergy assay. The fight against the emergence and spread of these multi-resistant antibiotic-resistant strains requires the reasonable use of antibiotics.Keywords: E coli, BLSE, CTX, TEM, SHV, OXA, résistance aux antibiotique
Procedia PDF Downloads 168745 Antimicrobial Resistance Patterns of Campylobacter from Pig and Cattle Carcasses in Poland
Authors: Renata Szewczyk, Beata Lachtara, Kinga Wieczorek, Jacek Osek
Abstract:
Campylobacter is recognized as the main cause of bacterial gastrointestinal infections in Europe. A main source of the pathogen is poultry and poultry meat; however, other animals like pigs and cattle can also be reservoirs of the bacteria. Human Campylobacter infections are often self-limiting but in some cases, macrolide and fluoroquinolones have to be used. The aim of this study was to determine antimicrobial resistance patterns (AMR) of Campylobacter isolated from pig and cattle carcasses. Between July 2009 and December 2015, 735 swabs from pig (n = 457) and cattle (n = 278) carcasses were collected at Polish slaughterhouses. All samples were tested for the presence of Campylobacter by ISO 10272-1 and confirmed to species level using PCR. The antimicrobial susceptibility of Campylobacter isolates was determined by a microbroth dilution method with six antimicrobials: gentamicin (GEN), streptomycin (STR), erythromycin (ERY), nalidixic acid (NAL), ciprofloxacin (CIP) and tetracycline (TET). It was found that 167 of 735 samples (22.7%) were contaminated with Campylobacter. The vast majority of them were of pig origin (134; 80.2%), whereas for cattle carcasses Campylobacter was less prevalent (33; 19.8%). Among positive samples C. coli was predominant species (123; 73.7%) and it was isolated mainly from pig carcasses. The remaining isolates were identified as C. jejuni (44; 26.3%). Antimicrobial susceptibility indicated that 22 out of 167 Campylobacter (13.2%) were sensitive to all antimicrobials used. Fourteen of them were C. jejuni (63.6%; pig, n = 6; cattle, n = 8) and 8 was C. coli (36.4%; pig, n = 4; cattle, n = 4). Most of the Campylobacter isolates (145; 86.8%) were resistant to one or more antimicrobials (C. coli, n = 115; C. jejuni, n = 30). Comparing the AMR for Campylobacter species it was found that the most common pattern for C. jejuni was CIP-NAL-TET (9; 30.0%), whereas CIP-NAL-STR-TET was predominant among C. coli (47; 40.9%). Multiresistance, defined as resistance to three or more classes of antimicrobials, was found in 57 C. coli strains, mostly obtained from pig (52 isolates). On the other hand, only one C. jejuni strain, isolated from cattle, showed multiresistance with pattern CIP-NAL-STR-TET. Moreover, CIP-NAL-STR-TET was characteristic for most of multiresistant C. coli isolates (47; 82.5%). For the remaining C. coli the resistance patterns were CIP-ERY-NAL-TET (7 strains; 12.3%) and for one strain of each patterns: ERY-STR-TET, CIP-STR-TET, CIP-NAL-GEN-STR-TET. According to the present findings resistance to erythromycin was observed only in 11 C. coli (pig, n = 10; cattle, n = 1). In conclusion, the results of this study showed that pig carcasses may be a serious public health concern because of contamination with C. coli that might features multiresistance to antimicrobials.Keywords: antimicrobial resistance, Campylobacter, carcasses, multi resistance
Procedia PDF Downloads 3308744 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools
Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus
Abstract:
Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects
Procedia PDF Downloads 2628743 Intrusion Detection Based on Graph Oriented Big Data Analytics
Authors: Ahlem Abid, Farah Jemili
Abstract:
Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud
Procedia PDF Downloads 1448742 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 1368741 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 1768740 Experimental Investigation of Hull Form for Electric Driven Ferry
Authors: Vasilij Djackov, Tomas Zapnickas, Evgenii Iamshchikov, Lukas Norkevicius, Rima Mickeviciene, Larisa Vasiljeva
Abstract:
In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units.Keywords: electrical ferry, model tests, open flow channel, pitching, resistance
Procedia PDF Downloads 928739 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection
Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour
Abstract:
Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid
Procedia PDF Downloads 1458738 Teaching Swahili as a Foreign Languages to Young People in South Africa
Authors: Elizabeth Mahenge
Abstract:
Unemployment is a problem that face many graduates all over the world. Every year universities in many parts of the world produce graduates who are looking for an employment. Swahili, a Bantu language originated in East African coast, can be used as an avenue for youth’s employment in South Africa. This paper helps youth to know about job opportunities available through teaching Swahili language. The objective of this paper is capacity building to youths to be teachers of Swahili and be ready to compete in the marketplace. The methodology was through two weeks online training on how to teach Swahili as a foreign language. The communicative approach and task-based approach were used. Participants to this training were collected through a WhatsApp group advertisement about “short training for Swahili teachers for foreigners”. A total number of 30 participants registered but only 11 attended the training. Training was online via zoom. The contribution of this paper is that by being fluent in Swahili one would benefit with teaching job opportunities anywhere in the world. Hence the problem of unemployment among the youths would be reduced as they can employ themselves or being employed in academic institutions anywhere in the world. The paper calls for youths in South Africa to opt for Swahili language courses to be trained and become experts in the teaching Swahili as a foreign language.Keywords: foreign language, linguistic market, Swahili, employment
Procedia PDF Downloads 738737 Prevalence and Genetic Determinant of Drug Resistant Tuberculosis among Patients Completing Intensive Phase of Treatment in a Tertiary Referral Center in Nigeria
Authors: Aminu Bashir Mohammad, Agwu Ezera, Abdulrazaq G. Habib, Garba Iliyasu
Abstract:
Background: Drug resistance tuberculosis (DR-TB) continues to be a challenge in developing countries with poor resources. Routine screening for primary DR-TB before commencing treatment is not done in public hospitals in Nigeria, even with the large body of evidence that shows a high prevalence of primary DR-TB. Data on drug resistance and its genetic determinant among follow up TB patients is lacking in Nigeria. Hence the aim of this study was to determine the prevalence and genetic determinant of drug resistance among follow up TB patients in a tertiary hospital in Nigeria. Methods: This was a cross-sectional laboratory-based study conducted on 384 sputum samples collected from consented follow-up tuberculosis patients. Standard microbiology methods (Zeil-Nielsen staining and microscopy) and PCR (Line Probe Assay)] were used to analyze the samples collected. Person’s Chi-square was used to analyze the data generated. Results: Out of three hundred and eighty-four (384) sputum samples analyzed for mycobacterium tuberculosis (MTB) and DR-TB twenty-five 25 (6.5%) were found to be AFB positive. These samples were subjected to PCR (Line Probe Assay) out of which 18(72%) tested positive for DR-TB. Mutations conferring resistance to rifampicin (rpo B) and isoniazid (katG, and or inhA) were detected in 12/18(66.7%) and 6/18(33.3%), respectively. Transmission dynamic of DR-TB was not significantly (p>0.05) dependent on demographic characteristics. Conclusion: There is a need to strengthened the laboratory capacity for diagnosis of TB and drug resistance testing and make these services available, affordable, and accessible to the patients who need them.Keywords: drug resistance tuberculosis, genetic determinant, intensive phase, Nigeria
Procedia PDF Downloads 2848736 Marker Assisted Selection of Rice Genotypes for Xa5 and Xa13 Bacterial Leaf Blight Resistance Genes
Authors: P. Sindhumole, K. Soumya, R. Renjimol
Abstract:
Rice (Oryza sativa L.) is the major staple food crop over the world. It is prone to a number of biotic and abiotic stresses, out of which Bacterial Leaf Blight (BLB), caused by Xanthomonas oryzae pv. oryzae, is the most rampant. Management of this disease through chemicals or any other means is very difficult. The best way to control BLB is by the development of Host Plant Resistance. BLB resistance is not an activity of a single gene but it involves a cluster of more than thirty genes reported. Among these, Xa5 and Xa13 genes are two important ones, which can be diagnosed through marker assisted selection using closely linked molecular markers. During 2014, the first phase of field screening using forty traditional rice genotypes was carried out and twenty resistant symptomless genotypes were identified. Molecular characterisation of these genotypes using RM 122 SSR marker revealed the presence of Xa5 gene in thirteen genotypes. Forty-two traditional rice genotypes were used for the second phase of field screening for BLB resistance. Among these, sixteen resistant genotypes were identified. These genotypes, along with two susceptible check genotypes, were subjected to marker assisted selection for Xa13 gene, using the linked STS marker RG-136. During this process, presence of Xa13 gene could be detected in ten resistant genotypes. In future, these selected genotypes can be directly utilised as donors in Marker assisted breeding programmes for BLB resistance in rice.Keywords: oryza sativa, SSR, STS, marker, disease, breeding
Procedia PDF Downloads 3938735 Linking Supervisor’s Goal Orientation to Post-Training Supportive Behaviors: The Mediating Role of Interest in the Development of Subordinates Skills
Authors: Martin Lauzier, Benjamin Lafreniere-Carrier, Nathalie Delobbe
Abstract:
Supervisor support is one of the main levers to foster transfer of training. Although past and current studies voice its effects, few have sought to identify the factors that may explain why supervisors offer support to their subordinates when they return from training. Based on Goal Orientation Theory and following the principles of supportive supervision, this study aims to improve our understanding of the factors that influence supervisors’ involvement in the transfer process. More specifically, this research seeks to verify the influence of supervisors’ goal orientation on the adoption of post-training support behaviors. This study also assesses the mediating role of the supervisors’ interest in subordinates’ development on this first relationship. Conducted in two organizations (Canadian: N₁ = 292; Belgian: N₂ = 80), the results of this study revealed three main findings. First, supervisors’ who adopt learning mastery goal orientation also tend to adopt more post-training supportive behaviors. Secondly, regression analyses (using the bootstrap method) show that supervisors' interest in developing their subordinates’ skills mediate the relationship between supervisors’ goal orientation and post-training supportive behaviors. Thirdly, the observed mediation effects are consistent in both samples, regardless of supervisors’ gender or age. Overall, this research is part of the limited number of studies that have focused on the determining factors supervisors’ involvement in the learning transfer process.Keywords: supervisor support, transfer of training, goal orientation, interest in the development of subordinates’ skills
Procedia PDF Downloads 1878734 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine
Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu
Abstract:
This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.Keywords: tooling condition, machining stability, milling machine, chatter
Procedia PDF Downloads 4288733 A Study on Big Data Analytics, Applications and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 818732 A Study on Big Data Analytics, Applications, and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 938731 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism
Abstract:
Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning
Procedia PDF Downloads 168730 Training Isolated Respiration in Rehabilitation
Authors: Marketa Kotova, Jana Kolarova, Ludek Zalud, Petr Dobsak
Abstract:
A game for training of breath (TRABR) for continuous monitoring of pulmonary ventilation during the patients’ therapy focuses especially on monitoring of their ventilation processes. It is necessary to detect, monitor and differentiate abdominal and thoracic breathing during the therapy. It is a fun form of rehabilitation where the patient plays and also practicing isolated breathing. Finally the game to practice breath was designed to evaluate whether the patient uses two types of breathing or not.Keywords: pulmonary ventilation, thoracic breathing, abdominal breathing, breath monitoring using pressure sensors, game TRABR TRAining of BReath)
Procedia PDF Downloads 4888729 Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs
Authors: Szymon Kowieski, Zygmunt Mikno
Abstract:
The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%.Keywords: 22MnB5, hot stamping, interfacial fracture, resistance spot welding, simulation, single lap joint, welding lobe
Procedia PDF Downloads 3858728 Insider Theft Detection in Organizations Using Keylogger and Machine Learning
Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.
Abstract:
About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.Keywords: cyber security, machine learning, cyclic process, email notification
Procedia PDF Downloads 568727 An Investigation into the Gaps in Green Building Education and Training Offerings in Nigeria
Authors: Adebayo A. Abimbola, Anifowose O. Joseph, Olanrewaju S. Taiwo
Abstract:
Green building (GB) practices have the potential to save energy, save money, and improve the quality of human habitat. They can also contribute to water conservation, more efficient use of raw materials, and ecosystem health around the globe. The Intergovernmental Panel on Climate Change (IPCC) singled out the building sector as having the most cost-effective opportunities for reducing carbon emissions—in fact, many building-related opportunities are cost-neutral, or even cost-positive, to the building owner. These benefits have made green building practices the fastest-growing trend in the building industry, but they still represent only a fraction of new construction, and the enormous stock of existing buildings has barely been touched at all. To effectively deliver the kind of (GB) that can become a force for positive change at global, regional and local scales, all workforce sectors need new skills that are both technical and interpersonal in nature. A prominent bottleneck is seen to be education and training. This paper investigates the major gaps in current GB education and training offerings in Nigeria. A questionnaire survey was developed to capture the perception of construction professionals and academics in relevant professions regarding the significance of the identified gaps as it affects GB education and training. Based on Likert scale ranking, research result shows that perception of training in specific technical fields and financial benefits and evaluation are identified as the top gaps in GB training and education offerings. The paper concludes with suggestions and actions that can enhance capabilities of the GB workforce in Nigeria.Keywords: education and training, gaps, green building, workforce
Procedia PDF Downloads 3178726 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel
Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi
Abstract:
Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray
Procedia PDF Downloads 4328725 Analysis and Modeling of Graphene-Based Percolative Strain Sensor
Authors: Heming Yao
Abstract:
Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.Keywords: graphene, gauge factor, percolative transport, strain sensor
Procedia PDF Downloads 4168724 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant
Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.
Abstract:
The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.Keywords: availability, displacement, vibration, rio-vibro, condition monitoring
Procedia PDF Downloads 898723 Design Modification in CNC Milling Machine to Reduce the Weight of Structure
Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar
Abstract:
The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction
Procedia PDF Downloads 2748722 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 1078721 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce
Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada
Abstract:
With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.Keywords: distributed algorithm, MapReduce, multi-class, support vector machine
Procedia PDF Downloads 399