Search results for: in-vitro and in-vivo assay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1171

Search results for: in-vitro and in-vivo assay

421 Seroprevalence and Associated Factors of Hepatitis B and Hepatitis C Viral Infections among Prisoners in Tigrai, Northern Ethiopia

Authors: Belaynesh Tsegay Beyene, Teklay Gebrecherkos, Atsebaha Gebrekidan Kahsay, Mahmud Abdulkader

Abstract:

Background: Hepatitis B and C viruses are of important health and socioeconomic problem of the globe with remarkable diseases and deaths in Sub-Saharan African countries. The burden of hepatitis is unknown in the prison settings of Tigrai. Therefore, we aimed to describe the seroprevalence and associated factors of hepatitis B and C viruses among prisoners of Tigrai, Ethiopia. Methods: A cross-sectional study was carried out from February 2020 to May 2020 at the prison facilities of Tigrai. Demographics and associated factors were collected from 315 prisoners prospectively. Five milliliter of blood was collected and tested using rapid tests kits of HBsAg (Zhejiang orient Gene Biotech Co., Ltd., China) and HCV antibodies (Volkan Kozmetik Sanayi Ve Ticaret Ltd. STI, Turkey). Positive samples were confirmed using enzyme-linked immunosorbent assay (ELISA) (Beijing Wantai Biological Pharmacy Enterprise Co. Ltd). Data were analyzed using Statistical Package for Social Sciences (SPSS) version 20 and p < 0.05 was considered statistically significant. Results: The overall seroprevalence of HBV and HCV were 25 (7.9%) and 1(0.3%), respectively. The majority of hepatitis B viral infections were identified from the age groups of 18-25 years (10.7%) and unmarried prisoners (11.8%). Prisoners greater than 100 per cell [AOR =3.95, 95% CI= (1.15, 13.6, p =0.029)] and having history of alcohol consumption [AOR =3.01, 95% CI= (1.17, 7.74, p =0.022)] were significantly associated with HBV infections. Conclusions: The seroprevalence of HBV among prisoners was nearly high or borderline (7.9%) with a very low HCV prevalence (0.3%). HBV was most prevalent among young adults, large number of prisoners per cell and those who had history of alcohol consumption. This study recommends that there should be prison-focused intervention including regular health education by emphasis on the mode of transmission and introducing HBV screening policy for prisoners especially when they enter to the prison.

Keywords: seroprevalence, HBV, HCV, prisoners, Tigrai

Procedia PDF Downloads 54
420 Antimicrobial Activity of Biosynthesized Silver Nanoparticles Using Different Bacteria

Authors: Malalage Mudara Peiris

Abstract:

Objectives of the study are: the biosynthesis of silver nanoparticles (AgNPs) using Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, characterization of silver nanoparticles and determination of antimicrobial activity against E. coli, P. aeruginosa, S. aureus, MRSA, and C. Albicans. Methods: E. coli (ATCC 25922), A. baumanii (clinical strain), S. aureus (clinical strain) cultured in nutrient broth medium were used for biosynthesis of AgNPs. Culture conditions (AgNO3 concentration, pH, incubation time and temperature) were optimized. Characterization of synthesized NPs was done by UV-Visible spectroscopy. The antimicrobial activity of the synthesized NPs was studied using the good diffusion assay against E. coli, S. aureus, MRSA (Methicillin-resistant Staphylococcus aureus), P. aeruginosa and C. Albicans. Results: All the selected bacteria produced silver nanoparticles at alkaline pH above 0.3 g/L AgNO3 concentration. The optimum reaction temperature was 60oC. According to the UV-Visible spectroscopy, the maximum absorbance was found to be around 420 - 430 nm indicating the presence of AgNPs. According to the good diffusion results, AgNPs produced by S. aureus resulted in the larger zone of inhibition (ZOI) against the selected pathogens, while AgNPs produced by E. coli showed comparatively smaller ZOI. In general, biosynthesized AgNPs were highly effective against gram-negative bacteria compared to gram-positive bacterial and fungal species. Conclusions: Green AgNPs produced by each bacterium show antimicrobial activity against the selected pathogens. AgNPs produced by S. aureus are the most effective NPs among tested AgNPs, while AgNPs produced by E. coli are the least effective. Further characterization of NPs is required to study the physical properties of silver NPs.

Keywords: green nanotechnology, silver nanoparticles, bacteria, antimicrobial activity

Procedia PDF Downloads 188
419 Comparison of Transforming Growth Factor-β1 Levels in the Human Gingival Sulcus during Canine Retraction Using Elastic Chain and Closed Coil Spring

Authors: Sri Suparwitri

Abstract:

When an orthodontic force is applied to a tooth, an inflammatory response is initiated then lead to bone remodeling process, and the process accommodates tooth movement. One of cytokine that plays a prominent role in bone remodeling process was transforming growth factor-beta 1 (TGF-β1). The purpose of this study was to identify and compare changes of TGF-β1 in human gingival crevicular fluid during canine retraction using elastic chain and closed coil spring. Ten patients (mean age 20.7 ± 2.9 years) participated. The patients were entering the space closure phase of fixed orthodontic treatment. An upper canine of each patient was retracted using elastic chain, and the contralateral canine was retracted using closed coil spring. Gingival crevicular fluid samples were collected from the canine teeth before and 7 days after the force was applied. Transforming growth factor-beta 1 was determined by enzyme-linked immunosorbent assay (ELISA). The concentrations of TGF-β1 at 7 days were significantly higher compared to before canine retraction in both groups. In the evaluation of between-group difference, before retraction, the difference was insignificant, whereas at 7 days significantly higher values were determined in the closed coil spring group compared to elastic chain group. The result suggests that TGF-β1 is associated with the bone remodeling that occurs during canine distalization movement. Closed coil spring gave higher TGF-β1 concentrations thus more bone remodeling occurred and may be considered the treatment of choice.

Keywords: closed coil spring, elastic chain, gingival crevicular fluid, TGF-β1

Procedia PDF Downloads 151
418 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell

Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim

Abstract:

Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.

Keywords: dolichos lablab, germination, neuroprotection, trigonelline

Procedia PDF Downloads 299
417 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice

Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza

Abstract:

Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.

Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E

Procedia PDF Downloads 409
416 Response of Wheat and Lentil to Herbicides Applied in the Preceding Non-Puddled Transplanted Rainy Season Rice

Authors: Taslima Zahan

Abstract:

A field study was done in 2013-14 and 2014-15 by following bio-assay technique to determine the carryover effect of herbicides applied in rainy season rice on growth and yield of two probable succeeding crops of rice viz., wheat and lentil. Rice seedlings were transplanted on strip-tilled non-puddled field, and five herbicides named pyrazosufuron-ethyl, butachlor, orthosulfamuron, butachlor + propanil and 2,4-D amine were applied in rice at their recommended rate and time as eight treatment combinations and compared with one untreated control. Residual effects of those rice herbicides on the succeeding wheat and lentil were examined by following micro-plot bioassay technique. The study revealed that germination of wheat and lentil seeds were not affected by the residue of herbicides applied in the preceding rainy season rice. Shoot length of wheat and lentil seedlings of herbicide treated plots were also non-significantly varied with untreated control plots. Herbicide treated plots of wheat had higher leaf chlorophyll contents over the control plots by 1.8-14.0% on an average while in case of lentil herbicide treated plots had negligible amount of reduction in leaf chlorophyll contents than control plots. Grain yields of wheat and lentil in herbicide treated plots were higher than control plots by 2.8-6.6% and 0.2-10.9%, respectively. Therefore, two-year bioassay study claimed that tested herbicides applied in rainy season rice under strip-tilled non-puddled field had no adverse residual effect on growth and yield of the succeeding wheat and lentil.

Keywords: crop sensitivity, herbicide persistence, minimum tillage rice, yield improvement

Procedia PDF Downloads 141
415 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 137
414 Chitosan Doped Curcumin Gold Clusters Flexible Nanofiber for Wound Dressing and Anticancer Activities

Authors: Saravanan Govindaraju, Kyusik Yun

Abstract:

The purpose of this study is to develop the chitosan doped curcumin gold cluster nanofiber for wound healing and skin cancer drug delivery applications. Chitosan is a typical marine polysaccharide composed of glucosamine and n-acetyl glucosamine biodegradable and biocompatible polymer. Curcumin is a natural bioactive molecule obtained from Curcuma longo, it mostly occurs in some Asian countries like India and China. It has naturally antioxidant, antimicrobial, wound healing and anticancer property. Due to this advantage, we prepared a combination of natural polymer chitosan with Curcumin and gold nanocluster nanofiber (CH-CUR-AuNCs nanofibers). The prepared nanofiber was characterized by using Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Antibacterial studies were performed with E.coli and S.aureus. Antioxidant assay, drug release test, and cytotoxicity will be evaluated. Prepared nanofiber emits low intensity of red fluorescent. The FTIR confirm the presence of chitosan and Curcumin in the nanofiber. In vitro study clearly shows the antibacterial activity against the gram negative and gram positive bacteria. Particularly, synthesised nanofibers provide better antibacterial activity against gram negative than gram positive. Cytotoxicity study also provides better killing rate in cancer cell, biocompatible with normal cell. Prepared CH-CUR-AuNCs nanofibers provide the better killing rate to bacterial strains and cancer cells. Finally, prepared nanofiber can be possible to use for wound healing dressing, patch for skin cancer and other biomedical applications.

Keywords: curcumin, chitosan, gold clusters, nanofibers

Procedia PDF Downloads 245
413 Role of Giardia lamblia Infection in the Pathogenesis of Gastritis in Patients with Dyspepsia

Authors: Aly Kassem, Eman A. Sabet, Hanaa A. El-Hady, Doha S. Mohamed, Abeer Sheneef, Mona Fattouh, Mamdouh M. Esmat

Abstract:

Objective: Giardia lamblia parasite is the most common protozoal infection in human. Concomitant Helecobacter Pylori (H. pylori) and Giardia lamblia infection is common for their similar mode of transmission and strong correlation to socioeconomic levels. Only few reports had described gastric giardiasis. Our aim was to detect H. pylori and Giardia in gastric antral mucosal biopsies from patients with dyspepsia. The impact of both pathogens on clinical, endoscopic and histopathogical changes was studied. Methods: 48 patients with dyspepsia (group1) and 28 control patients (patients undergoing esophagogastroduodenoscopy EGD for reasons other than dyspepsia), (group 2) were studied. Endoscopic data were reported and gastric biopsy specimens were obtained for subsequent PCR assay for both organisms and for histopathological and electron microscopic examination. Results: Endoscopic antral gastritis and duodenal lesions were found in both groups, however, they were significantly more frequently in group 1 (p= 0.002 and P= 0.0005 respectively). Esophageal lesions, nodular antral gastritis, gastric ulcers and superficial corpal gastritis were found only in group 1. PCR detected H. pylori infection in 58% Vs 64 % for group 1 and group 2 respectively (P: NS). Giardia infection was present in 67 % Vs 42 % for group 1 and group 2 respectively (P=0.0003, Odd ratio=2.6). Co-infection with H. pylori and Giardia was present in 33% of group 1 Vs 36% for group 2 (P:NS). Abnormal histologic findings were found in both groups, however, intestinal metaplasia was found in group 1 only. Cellular abnormalities in the form of cytoplasmic vacuoles, mitochondrial destruction or nuclear abnormalities were found by Electron microscopic study in infected subjects of both groups. Conclusion: H. pylori is not the only gastric pathogen in our community, gastric giardiasis is another pathogen. Its contribution might be a factor in persistent dyspepsia after H. pylori eradication.

Keywords: dyspepsia, gastritis, Giardia lamblia, H. pylori

Procedia PDF Downloads 282
412 Biochemical and Pomological Variability among 14 Moroccan and Foreign Cultivars of Prunus dulcis

Authors: H. Hanine, H. H'ssaini, M. Ibno Alaoui, A. Nablousi, H. Zahir, S. Ennahli, H. Latrache, H. Zine Abidine

Abstract:

Biochemical and pomological variability among 14 cultivars of Prunus dulcis planted in a germoplasm collection site in Morocco were evaluated. Almond samples from six local and eight foreign cultivars (France, Italy, Spain, and USA) were characterized. Biochemical and pomological data revealed significant genetic variability among the 14 cultivars; local cultivars exhibited higher total polyphenol content. Oil content ranged from 35 to 57% among cultivars; both Texas and Toundout genotypes recorded the highest oil content. Total protein concentration from select cultivars ranged from 50 mg/g in Ferraduel to 105 mg/g in Rizlane1 cultivars. Antioxidant activity of almond samples was examined by a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging assay; the antioxidant activity varied significantly within the cultivars, with IC50 (the half-maximal inhibitory concentration) values ranging from 2.25 to 20 mg/ml. Autochthonous cultivars originated from the Oujda region exhibited higher tegument total polyphenol and amino acid content compared to others. The genotype Rizlane2 recorded the highest flavonoid content. Pomological traits revealed a large variability within the almond germplasms. The hierarchical clustering analysis of all the data regarding pomological traits distinguished two groups with some particular genotypes as distinct cultivars, and groups of cultivars as polyclone varieties. These results strongly exhibit a potential use of Moroccan-originated almonds as potential clones for future selection due to their nutritional values and pomological traits compared to well-established cultivars.

Keywords: antioxidant activity, DDPH, Moroccan almonds, Prunus dulcis

Procedia PDF Downloads 216
411 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer

Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam

Abstract:

Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.

Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations

Procedia PDF Downloads 107
410 Rrelationship Between Intrauterine Growth Retardation and TORCH Infections in Neonates

Authors: Seyed Saeid Nabavi

Abstract:

Background: Many infants with intrauterine growth disorder are screened for TORCH infections. This action has no economic justification in terms of the imposed costs. In this regard, due to the research gap in this field, this study aimed to investigate the relationship between intrauterine growth disorder and TORCH infection in neonates referred to Milad hospital in 2019 and 2020. Materials and Methods: In this cross-sectional study, 41IUGR newborns were selected and evaluated based on diagnostic and clinical studies in Milad Hospital in 2019 and 2020. TORCH results found in IgG and IgM antibody titer assay were tested in mother and infant. Antibody titers of toxoplasmosis, rubella, cytomegalovirus, herpes, and syphilis were determined in cases, and other variables were compared. The collected data were entered in SPSS software 25 and analyzed at a significant level of 0.05 using the statistical tests of Kolmogorov–Smirnov, Shapiro–Wilk, chi-square, and Mann–Whitney. Results: Most of the IUGR infants studied were girls (68.3%), Gravida and Parity were reported to be 68.3% and 80%, respectively, in the study. Mean weight, APGAR score, and neonatal gestational age are reported as 1710.62±334.43 g, 7.71±1.47, and 35.7+ 1.98 weeks, respectively. Most of the newborns were born by cesarean section (92.7%). TORCH infection was reported in three patients, 7.3%. The mean gestational age of IUGR infants with TORCH infection was reported to be less than other babies with IUGR. Therefore, the mean gestational age of subjects with TORCH infection was 33±1.4 weeks and in others 35.94±1.91 weeks (p-value = 0.038). No significant relationship between TORCH infection and gender, gravidity, and parity of newborns was found (p-value > 0.05). Conclusion: TORCH infection was reported in 3 patients( 7.3%). No significant relationship between TORCH infection and gender, gravidity, and parity of newborns was found. p-value > 0.05

Keywords: congenital infection, intrauterine growth restriction, TORCH infections, neonates

Procedia PDF Downloads 115
409 Involvement of BCRP/ABCG2 in Protective Mechanisms of Resveratrol against Methotrexate-Induced Renal Damage in Rats

Authors: Mohamed A. Morsy, Azza A. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

Resveratrol (RES) is a well-known polyphenol antioxidant. We have previously shown that testicular protective effect of RES against the anticancer drug methotrexate (MTX)-induced toxicity involves transporter-mediated mechanisms. Here, we investigated the effect of RES on MTX-induced nephrotoxicity. Rats were administered RES (10 mg/kg/day) for 8 days, with or without a single MTX dose (20 mg/kg i.p.) at day 4 of the experiment. MTX induced nephrotoxicity evident by significantly increase in serum blood urea nitrogen and creatinine compared to control, as well as distortion of kidney microscopic structure. MTX also significantly increased renal nitric oxide level, with induction of inducible nitric oxide synthase expression. MTX also significantly up-regulated fas ligand and caspase 3. Administering RES prior to MTX significantly improved kidney function and microscopic picture, as well as significantly decreased nitrosative and apoptotic markers compared to MTX alone. RES, but not MTX, caused significant increase in expression of breast cancer resistance protein (BCRP), an apical efflux renal transporter that participates in urinary elimination of both MTX and RES. Interestingly, concomitant MTX and RES caused further up-regulation of renal Bcrp compared to RES alone. Using Human BCRP ATPase assay, both RES and MTX exhibited dose-dependent increase in ATPase activity, with Km values of 0.52 ± 0.03 and 30.9 ± 4.2 µM, respectively. Furthermore, combined RES and MTX caused ATPase activity which was significantly less than maximum ATPase activity attained by the positive control; sulfasalazine (12.5 µM). In conclusion, RES exerted nephro-protection against MTX-induced toxicity through anti-nitrosative and anti-apoptotic effects, as well as via up-regulation of renal Bcrp.

Keywords: methotrexate, resveratrol, nephrotoxicity, breast cancer resistance protein

Procedia PDF Downloads 266
408 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 96
407 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid

Authors: Anindita Sen

Abstract:

Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.

Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid

Procedia PDF Downloads 23
406 A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt

Authors: Ahmed Samy Elnoby

Abstract:

Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin.

Keywords: Ailanthus altissima, TLC, HPLC, anti-microbial activity, antifungal activity, antioxidant, cytotoxic activity

Procedia PDF Downloads 154
405 Antibacterial Activity and Kinetic Parameters of the Essential Oils of Drypetes Gossweileri S.Moore, Ocimun Gratissimum L. and Cymbopogon Citratus DC Stapf on 5 Multidrug-Resistant Strains of Shigella

Authors: Elsa Makue Nguuffo, Esther Del Florence Moni Ndedi, Jacky Njiki Bikoï, Jean Paul Assam Assam, Maximilienne Ascension Nyegue

Abstract:

Aims: The present study aims to evaluate the kinetic parameters of essential oils (EOs) and combinations fromDrypetes gossweileri Stem Bark, Ocimum gratissimum leaves, Cymbopogon citratusleaves after evaluation of their antibacterial activityonmultidrug-resistant strains ofShigella. Material and Methods:fiveclinical strains of Shigellaisolated from patients with diarrhoeaincluding Shigella flexneri, and 4 otherstrains of Shigella sppwere selected. Their antibiotic profile was established using agar test diffusion with seven antibiotics belonging to seven classes.EOs were extracted from each plant using hydrodistillation process. The activity of Ciprofloxacin®, OEs, and their combination formulatedinthe followingratios(w/w/w): C1: 1/1/1; C2: 2/1/1; C3: 1/2/1, C4:1/1/2 was evaluated microdilution assay. The various interactions of OEs in the different combinations were determined then the OE and the most active combination were retained to determine their kinetic parameters on S. flexneri. Results: Antibiotic susceptibility tests revealed that most Shigella isolates (n = 4) were resistant to six antibiotics tested. Ciprofloxacin (40%), Nalidixic acid (60%), Tetracycline (80%), Amoxicillin (100%), Cefotaxime (80%), Erythromycin (100%), and Cotrimoxazole (80%) were the profiles found in the different strains of Shigella. About the antibacterial activity of OEs, Drypetes gossweileriOE and C2 combination had shown a higher Shigellicide property with a Minimal Inhibitory Concentration(MIC) respectivelyranging from 0.078 mg/mL to 0.312 mg/mL and 0.012 to 1.562 mg/mL. Combinations of OEs showed various interactions whose synergistic effects were mostly encountered. The best deactivation was obtained by the combination C2 at 16 MIC withb= 1.962. Conclusion: the susceptibility of Shigella to OEs and their combinations justifies their use in traditional medicine in the treatment of shigellosis.

Keywords: shigella, multidrug-resistant, EOs, kinetic

Procedia PDF Downloads 78
404 Optimization of Enzymatic Hydrolysis of Cooked Porcine Blood to Obtain Hydrolysates with Potential Biological Activities

Authors: Miguel Pereira, Lígia Pimentel, Manuela Pintado

Abstract:

Animal blood is a major by-product of slaughterhouses and still represents a cost and environmental problem in some countries. To be eliminated, blood should be stabilised by cooking and afterwards the slaughterhouses must have to pay for its incineration. In order to reduce the elimination costs and valorise the high protein content the aim of this study was the optimization of hydrolysis conditions, in terms of enzyme ratio and time, in order to obtain hydrolysates with biological activity. Two enzymes were tested in this assay: pepsin and proteases from Cynara cardunculus (cardosins). The latter has the advantage to be largely used in the Portuguese Dairy Industry and has a low price. The screening assays were carried out in a range of time between 0 and 10 h and using a ratio of enzyme/reaction volume between 0 and 5%. The assays were performed at the optimal conditions of pH and temperature for each enzyme: 55 °C at pH 5.2 for cardosins and 37 °C at pH 2.0 for pepsin. After reaction, the hydrolysates were evaluated by FPLC (Fast Protein Liquid Chromatography) and tested for their antioxidant activity by ABTS method. FPLC chromatograms showed different profiles when comparing the enzymatic reactions with the control (no enzyme added). The chromatogram exhibited new peaks with lower MW that were not present in control samples, demonstrating the hydrolysis by both enzymes. Regarding to the antioxidant activity, the best results for both enzymes were obtained using a ratio enzyme/reactional volume of 5% during 5 h of hydrolysis. However, the extension of reaction did not affect significantly the antioxidant activity. This has an industrial relevant aspect in what concerns to the process cost. In conclusion, the enzymatic blood hydrolysis can be a better alternative to the current elimination process allowing to the industry the reuse of an ingredient with biological properties and economic value.

Keywords: antioxidant activity, blood, by-products, enzymatic hydrolysis

Procedia PDF Downloads 484
403 Antiplasmodial Activity of Drimane Sesquiterpene Isolated from Warburgia salutaris

Authors: Mthokozisi Simelane

Abstract:

Background: Malaria remains a life-threatening disease in tropical regions despite the advances in the treatment of this disease, it still remains a significant burden as some parasites have become resistant to the currently available drugs. This has created a necessity for the development of alternative, more efficient antimalarial drugs. Warburgia salutaris is a traditional medicinal plant used in malaria treatment by Zulu traditional healers. Materials and methods: The W. salutaris stem-bark was extracted with dichloromethane and the compound was isolated through column chromatography. The compound was identified and characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS) and the structure was also confirmed by x-ray crystallography. The anti-plasmodial activity (in vitro) was studied on NF54 Plasmodium falciparum strain (CQS). Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Docking of Mukaadial acetate was conducted in AutoDock Vina. Structural modifications were conducted in UCSF Chimera and molecular interactions examined in LigPlot. Results: The compound, Mukaadial Acetate showed appreciable inhibition (IC50 0.44±0.10 µg/ml) of the parasite growth and cytotoxicity activity of 0.124±0.109 and 0.199±0.083 (µg/ml) on HEK293 and HEPG2 cells respectively. Molecular docking revealed that Mukaadial Acetate binds to the purine, pyrophosphate and ribose binding sites of the PfHGXPRT with an optimum binding conformation and forms hydrogen bond, steric and hydrophobic interactions with the residues inhabiting the respective binding sites. Conclusion: It is apparent that W. salutaris contains components (including Mukaadial Acetate) that exhibit antimalarial activity. This study scientifically validates the use of this plant in folk medicine.

Keywords: plasmodium falciparum, molecular docking, antimalarial activity, PfHGXPRT, Warburgia salutaris, mukaadial acetate

Procedia PDF Downloads 182
402 Design, Synthesis and Pharmacological Investigation of Novel 2-Phenazinamine Derivatives as a Mutant BCR-ABL (T315I) Inhibitor

Authors: Gajanan M. Sonwane

Abstract:

Nowadays, the entire pharmaceutical industry is facing the challenge of increasing efficiency and innovation. The major hurdles are the growing cost of research and development and a concurrent stagnating number of new chemical entities (NCEs). Hence, the challenge is to select the most druggable targets and to search the equivalent drug-like compounds, which also possess specific pharmacokinetic and toxicological properties that allow them to be developed as drugs. The present research work includes the studies of developing new anticancer heterocycles by using molecular modeling techniques. The heterocycles synthesized through such methodology are much effective as various physicochemical parameters have been already studied and the structure has been optimized for its best fit in the receptor. Hence, on the basis of the literature survey and considering the need to develop newer anticancer agents, new phenazinamine derivatives were designed by subjecting the nucleus to molecular modeling, viz., GQSAR analysis and docking studies. Simultaneously, these designed derivatives were subjected to in silico prediction of biological activity through PASS studies and then in silico toxicity risk assessment studies. In PASS studies, it was found that all the derivatives exhibited a good spectrum of biological activities confirming its anticancer potential. The toxicity risk assessment studies revealed that all the derivatives obey Lipinski’s rule. Amongst these series, compounds 4c, 5b and 6c were found to possess logP and drug-likeness values comparable with the standard Imatinib (used for anticancer activity studies) and also with the standard drug methotrexate (used for antimitotic activity studies). One of the most notable mutations is the threonine to isoleucine mutation at codon 315 (T315I), which is known to be resistant to all currently available TKI. Enzyme assay planned for confirmation of target selective activity.

Keywords: drug design, tyrosine kinases, anticancer, Phenazinamine

Procedia PDF Downloads 91
401 Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells

Authors: Debasmita Mukhopadhyay, Manika Pal Bhadra

Abstract:

MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer.

Keywords: breast cancer, microRNA, metastasis, EMT

Procedia PDF Downloads 527
400 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology

Procedia PDF Downloads 56
399 Biophysical Study of the Interaction of Harmalol with Nucleic Acids of Different Motifs: Spectroscopic and Calorimetric Approaches

Authors: Kakali Bhadra

Abstract:

Binding of small molecules to DNA and recently to RNA, continues to attract considerable attention for developing effective therapeutic agents for control of gene expression. This work focuses towards understanding interaction of harmalol, a dihydro beta-carboline alkaloid, with different nucleic acid motifs viz. double stranded CT DNA, single stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G) and clover leaf tRNAphe by different spectroscopic, calorimetric and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order of CT DNA > poly(C)·poly(G) > tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with CT DNA and tRNAphe, (iii) significant structural changes of CT DNA, poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no intrinsic CD perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy driven, entropy favoured with CT DNA and poly(C)·poly(G) while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non-polyelectrolytic forces to Gibbs energy changes with CT DNA, poly(C)·poly(G) and tRNAphe, and (vi) intercalated state of harmalol with CT DNA and poly(C)·poly(G) structure as revealed from molecular docking and supported by the viscometric data. Furthermore, with competition dialysis assay it was shown that harmalol prefers hetero GC sequences. All these findings unequivocally pointed out that harmalol prefers binding with ds CT DNA followed by ds poly(C)·poly(G), clover leaf tRNAphe and least with ss poly(A). The results highlight the importance of structural elements in these natural beta-carboline alkaloids in stabilizing different DNA and RNA of various motifs for developing nucleic acid based better therapeutic agents.

Keywords: calorimetry, docking, DNA/RNA-alkaloid interaction, harmalol, spectroscopy

Procedia PDF Downloads 210
398 Using Baculovirus Expression Vector System to Express Envelop Proteins of Chikungunya Virus in Insect Cells and Mammalian Cells

Authors: Tania Tzong, Chao-Yi Teng, Tzong-Yuan Wu

Abstract:

Currently, Chikungunya virus (CHIKV) transmitted to humans by Aedes mosquitoes has distributed from Africa to Southeast Asia, South America, and South Europe. However, little is known about the antigenic targets for immunity, and there are no licensed vaccines or specific antiviral treatments for the disease caused by CHIKV. Baculovirus has been recognized as a novel vaccine vector with attractive characteristic features of an optional vaccine delivery vehicle. This approach provides the safety and efficacy of CHIKV vaccine. In this study, bi-cistronic recombinant baculoviruses vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP were produced. Both recombinant baculovirus can express EGFP reporter gene in insect cells to facilitate the recombinant virus isolation and purification. Examination of vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP showed that this recombinant baculovirus could induce syncytium formation in insect cells. Unexpectedly, the immunofluorescence assay revealed the expression of E1 and E2 of CHIKV structural proteins in insect cells infected by vAc-CMV-CHIKV26S-Rhir-EGFP. This result may imply that the CMV promoter can induce the transcription of CHIKV26S in insect cells. There are also E1 and E2 expression in mammalian cells transduced by vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP. The expression of E1 and E2 proteins of insect and mammalian cells was validated again by Western blot analysis. The vector construction with dual tandem promoters, which is polyhedrin and CMV promoter, has higher expression of the E1 and E2 of CHIKV structural proteins than the vector construction with CMV promoter only. Most of the E1 and E2 proteins expressed in mammalian cells were glycosylated. In the future, the expression of structural proteins of CHIKV in mammalian cells is expected can form virus-like particle, so it could be used as a vaccine for chikungunya virus.

Keywords: chikungunya virus, virus-like particle, vaccines, baculovirus expression vector system

Procedia PDF Downloads 401
397 Extraction, Synthesis, Characterization and Antioxidant Properties of Oxidized Starch from an Abundant Source in Nigeria

Authors: Okafor E. Ijeoma, Isimi C. Yetunde, Okoh E. Judith, Kunle O. Olobayo, Emeje O. Martins

Abstract:

Starch has gained interest as a renewable and environmentally compatible polymer due to the increase in its use. However, starch by itself could not be satisfactorily applied in industrial processes due to some inherent disadvantages such as its hydrophilic character, poor mechanical properties, its inability to withstand processing conditions such as extreme temperatures, diverse pH, high shear rate, freeze-thaw variation and dimensional stability. The range of physical properties of parent starch can be enlarged by chemical modification which invariably enhances their use in a number of applications found in industrial processes and food manufacture. In this study, Manihot esculentus starch was subjected to modification by oxidation. Fourier Transmittance Infra- Red (FTIR) and Raman spectroscopies were used to confirm the synthesis while Scanning Electron Microscopy (SEM) and X- Ray Diffraction (XRD) were used to characterize the new polymer. DPPH (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay was used to determine the antioxidant property of the oxidized starch. Our results show that the modification had no significant effect on the foaming capacity as well as on the emulsion capacity. Scanning electron microscopy revealed that oxidation did not alter the predominantly circular-shaped starch granules, while the X-ray pattern of both starch, native and modified were similar. FTIR results revealed a new band at 3007 and 3283cm-1. Differential scanning calorimetry returned two new endothermic peaks in the oxidized starch with an improved gelation capacity and increased enthalpy of gelatinization. The IC50 of oxidized starch was notably higher than that of the reference standard, ascorbic acid.

Keywords: antioxidant activity, DPPH, M. esculentus, oxidation, starch

Procedia PDF Downloads 272
396 The Effect of Environmental Enrichment on Anxiety and Stress Hormone in Maternally Separated Male Rats

Authors: Özge Selin Çevik, Leyla Şahin, Gülhan Örekeci Temel

Abstract:

The early postnatal period is critical for the development of cognitive and emotional functions. Maternal separation is a detrimental postnatal influence, whereas environmental enrichment is a therapeutic and protective agent. It is unclear if long-term environmental enrichment can compensate for the effects of maternal separation stress on anxiety behavior. This study was designed to examine how environmental enrichment affects anxiety levels and corticosterone levels in maternally separated rats. There are six main groups in this study: control (C), maternal separation+standard cage (MS), maternal separation+enriched environment (MSE), enriched environment (E), the maternal separation that decapitated at postnatal (PN) 21 (MS21), and standard cage that decapitated at PN21 (STD21). The maternal separation procedure consisted of PN for 21 days (between 09:00 a.m and 12:00 a.m). Enriched (E, MSE) or standard cage environment rats (MS, C) spent PN (22-55) days in either enriched cages or standard cages. Anxiety and locomotor activity were examined with the open field and elevated plus-maze test. Blood corticosterone level was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. Results showed that maternal separation (MS) increased locomotor activity and anxiety. An enriched environment (E) did not change the locomotor activity. MSE group’s anxiety and locomotor activity did not change. Corticosterone levels increased in the maternal separation group that decapitated at the PN 21 days. Maternal separation increases anxiety. Environmental enrichment alone was insufficient to cause alterations in the anxiety level. In addition, environmental enrichment did not ameliorate the anxiety level in maternally separated rats. However, environmental enrichment decreased the locomotor activity in the maternally separated rats.

Keywords: maternal separation, environment enrichment, stress, hippocampus, anxiety, memory, rat

Procedia PDF Downloads 64
395 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells

Authors: Moustafa Elhamouly, Masayuki Shimada

Abstract:

The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.

Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).

Procedia PDF Downloads 60
394 In vivo Iron Availability and Profile Lipid Composition in Anemic Rats Fed on Diets with Black Rice Bran Extract

Authors: Nurlaili E. P., Astuti M., Marsono Y., Naruki S.

Abstract:

Iron is an essential nutrient with limited bioavailability. Nutritional anemia caused mainly by iron deficiency is the most recognized nutritional problem in both countries as well as affluent societies. Rice (Oryza sativa L.) has become the most important cereal crop for the improvement of human health due to the starch, protein, oil, and the majority of micronutrients, particularly in Asian countries. In this study, the iron availability and profile lipid were evaluated for the extracts from Cibeusi varieties (black rices) of ancient rice brans. Results: The quality of K, B, R, E diets groups shows the same effect on the growth of rats. This indicate that groups is as efficiently utilized by the body as E diets. Hematocrit and MCHC levels of rats fed K, B, R and E diets were not significantly (P< 0.05). MCV and MCH levels of rats K, B, R were significantly (P< 0.05) with E groups but rats K, B, R were not significantly (P< 0.05). The iron content in the serum of rats fed with K, B, R and E diets were not significantly (P< 0.05). The highest level of iron in the serum was founded in the B group. The iron content in the liver of rats fed with K, B, R and E diets were not significantly (P< 0.05). The highest level of iron in the liver was founded in the R group. HDL cholesterol levels were significantly (P< 0.05) between rats of fed B, E with K, R, but K and R were not significantly (P< 0.05). LDL cholesterol levels of rats fed K and E significantly (P< 0.05) with B and R. Conclusions: the bran of pigmented rice varieties has, with some exceptions, greater antioxidant and free-radical scavenging activities. The results also show that pigmented rice extracts acted as pro-oxidants in the lipid peroxidation assay, possibly by mechanisms described for the pro-oxidant activities of tocopherol and ascorbic. Pigmented rice bran extracts more effectively increases iron stores and reduces the prevalence of iron deficiency. And reduces cholesterol, TG and LDL cholesterol and increses HDL cholesterol.

Keywords: anemia, black rice bran extract, iron, profile lipid

Procedia PDF Downloads 458
393 Antioxidant, Antibacterial and Functional Group Analysis of Ethanolic Extract of Hylocereus undatus and Garcinia indica by Using Fourier Transform Infrared Spectroscopy

Authors: Ajay Krishnamurthy, Mariyappan Mahesh Kumar, Sellamuthu Periyar Selvam

Abstract:

Fruits are considered as functional foods due to the presence of various bioactive compounds available such as polyphenols, which are beneficial to health when consumed as part of our diet. The primary objective of this study was to analyze the various functional groups present in ethanolic extracts of Hylocereus undatus and Garcinia indica and also measure their antibacterial and antioxidant potential respectively thereby affirming its nutraceutical potential. To fulfill our objective, a Fourier - transform Infrared Spectroscopy (FTIR) was conducted for functional group analysis, Total Phenolic Content and DPPH free radical scavenging activity for measuring it anti-oxidant potential and agar-well diffusion assay for antibacterial potential. On careful observation and analysis of the spectrum it was found that both the fruit extracts contain similar compounds viz. Phenols, Alkanes, Alkenes, Aldehydes, Ketones, Carboxylic Acid and Amines. Total phenolic content of H.undatus and G.indica was estimated to be (26.85 ± 1.84 mg GAE/100g) and (32.84 ± 1.63 mg GAE/100g) respectively which corresponds to an inhibition of 84% and 81% respectively. H.undatus shows an inhibition of (3.4 ± 2.1mm) in gram-positive and (4.2 ± 2.24mm) in gram-negative organism on the other hand G.indica shows (2.1 ± 0.98mm) in gram-positive and (3.1 ± 1.44mm) in gram negative. The presence of such diverse compounds in the fruits helps us to understand the necessity for the inclusion of fruits in our daily diet and also helps the pharmaceutical industry in realizing the importance of exotic fruits as a potential nutraceutical.

Keywords: DPPH, fourier-transform infrared spectroscopy (FTIR), Hylocereus undatus, Garcinia indica

Procedia PDF Downloads 158
392 Study of the Genotoxic Potential of Plant Growth Regulator Ethephon

Authors: Mahshid Hodjat, Maryam Baeeri, Mohammad Amin Rezvanfar, Mohammad Abdollahi

Abstract:

Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. The toxicity of organophosphate compounds is mostly attributed to their potent inhibition of acetylcholinesterase and their involvement in neurodegenerative disease. Although there are few reports on butyrylcholinesterase inhibitory role of ethephon, still there is no evidence on neurotoxicity and genotoxicity of this compound. The aim of the current study is to assess the potential genotoxic effect of ethephon using two genotoxic endpoints; γH2AX expression and comet assay on embryonic murine fibroblast. γH2AX serves as an early and sensitive biomarker for evaluating the genotoxic effects of chemicals. Oxidative stress biomarkers, including intracellular reactive oxygen species, lipid peroxidation and antioxidant capacity were also examined. The results showed a significant increase in cell proliferation 24h post-treatment with 10, 40,160µg/ml ethephon. The γH2AX expression and γH2AX foci count per cell were increased at low concentration of ethephon that was concomitant with increased DNA damage break at 40 and 160 µg/ml as illustrated by increased comet tail moment. A significant increase in lipid peroxidation and ROS formation were observed at 160 µg/ml and higher doses. The results showed that low-dose of ethephon promoted cell proliferation while induce DNA damage, raising the possibility of ethephon mutagenicity. Ethephon-induced genotoxic effect of low dose might not related to oxidative damage. However, ethephon was found to increase oxidative stress at higher doses, lead to cellular cytotoxicity. Taken together, all data indicated that ethylene, deserves more attention as a plant regulator with potential genotoxicity for which appropriate control is needed to reduce its usage.

Keywords: ethephon, DNA damage, γH2AX, oxidative stress

Procedia PDF Downloads 290